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Abstract
Objectives: To find the suitable solvent for the oxidation of methionine by
Cr(VI) reagents using EDAS and TOPSIS method. Methods: When methio-
nine oxidized by Cr(VI) complexes i.e. tetrakis(pyridine)silver dichromate
(TPSD), quinolinium bromochromate (QBC), tetraethylammonium chlorochro-
mate (TEACC) and quonilinium chlorochromate (QCC) formation of corre-
sponding sulfoxide take place. Reaction performed in chloroform (CF), 1,2-
dichloroethane (DCE), dichloromethane (DCM), dimethylsulphoxide (DMSO)
and acetone solvents. Findings: Reaction is fastest in DMSO and slowest in ace-
tone for the oxidation of methionine in the following- DMSO, DCE, DCM, ace-
tone, CF. Novelty: Solvent effect is investigated using the rate constant k2, by
EDAS and TOPSIS methods.
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1 Introduction
Oxidation reaction in non-aqueous conditions is a fundamental process in synthetic
organic chemistry. Since metal ions are involved in so many biological processes, oxi-
dation kinetics has gained a lot of attention. In redox reactions, chromium (VI) serves
as an effective catalyst. A number of chromium(VI) oxidants, including pyridinium
chlorochromate (1), tributylammonium chlorochromate (2), tripropylammonium flu-
orochromate (3), pyridinium fluorochromate (4), imidazolium fluorochromate (5), and
isoquinolinium bromochromate (6), used for the oxidation process of various organic
compounds. Several oxidants proposed as mechanistic studies for methionine oxi-
dation (7–14). Sulfur identified most vulnerable to attack by chromium(VI) and a low
energy source for the electron transfer (15–17). ATP and liver enzyme initiate the trans-
fer of the methyl group of methionine (18). Reactive oxygen species (ROS) can oxidise
amino acids and the oxidation reaction can occur with one or two electron trans-
fers (19–21). Around the sulphide, amino and carboxyl groups control the redox pro-
cess (22–24).Methionine has a regulating role, based on potential reversion by the enzyme
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methionine sulfoxide reductase (Msr) (25). Methionine to methionine sulphur radical cation, oxidation can play an important
role in protecting protein oxidation (26,27). Many experiments conducted on the oxidation of methionine and methionine-
containing peptides (28–31). Met residue oxidation in vivo contributes to the formation of methionine sulfoxide, which can
catalyse a thioredoxin-dependent decrease of methionine residue from sulfoxide, and the majority of the cells that produce
methionine sulfoxidereductase (32). Methionine oxidation is significant in physiology and pathology (33–37). Solvent impact
studies on acetaldehyde and benzaldehyde oxidation have been conducted (38,39). A review of the literature shows that no
research exists on the estimate of methionine oxidation by various Cr (VI) reagents using EDAS and TOPSIS. TOPSIS is a
technique for evaluating performance on the basis of its resemblance to the ideal solution. Recently, it has been incorporated
into renewable energy technologies (40–44). Keshavarz Ghorabaee et al. (45) proposed the EDAS scheme, a contemporary and
powerful technique. EDAS method applied to a variety of real-world problems (46–50). The effect of solvent on the oxidation of
methionine by Cr(VI) reagents is discussed in this paper. The assessment of solvent impact by EDAS and TOPSIS methods for
the oxidation of methionine by Cr(VI) oxidizing agents is a significant achievement in this work.

2 Material and Methods
Material: The DL-methionine (Merck, Germany) is used exactly as prescribed. The stated methods are used to prepare
TPSD (51), QCC (52), QBC (53), and TEACC (54), and purity is determined using an iodometric process. Solvents are purified
using standard purification methods (55).

Measurements: By holding an excess of methionine (X 10 or greater) over the oxidant, the reactions have been set up to operate
under pseudo-first order conditions. The reactions take place at a steady temperature of 303 K. The reaction mixture is made
by combining the required amounts of methionine and Solvent, etc., and then allowed to stand in a thermostatic bath for a
suitable amount of time to allow the solution to reach the temperature of the bath. The reaction is started by pipetting in an
oxidant solution that has previously been equilibrated in the thermostat. To blend the solution, the reaction flask was vigorously
swirled. The reactions are then monitored spectro-photometrically for a decrease in [oxidant].

3 Results and Discussion
There are a variety of MCDM (multiple criteria decision making) approaches for selecting the optimal solvent among those
available. We compare the value of the rate constant k2 in five different solvents using the EDAS and TOPSIS methods.

3.1 Evaluation Based on Distance from Average Solution (EDAS) Method

Step-1 Identify the mean solution (Sα j)

Sα j =
∑n

i=1 Ai j

n

Step-2 Positive distances from mean
If jth criterion is beneficiary

PDMi j =
Max

{
0,(Ai j −Sα j)

Sα j

If jth criterion is non-beneficiary

PDMi j =
Max

{
0,(Sα j −Ai j)

Sα j

Step-3 Calculate negative distances from mean(NDM)
If jth criterion is beneficiary

NDMi j =
Max

{
0,(Sα j −Ai j)

Sα j
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If jth criterion is non-beneficiary

NDMi j =
Max

{
0,(Ai j −Sα j)

Sα j

Step-4 Weighted addition of PDM

APi =
m

∑
j=1

w jPDMi j

Step-5 Weighted addition of NDM

ANi =
m

∑
j=1

w jNDMi j

Step-6 Normalization of AP and AN

NMPi =
APi

Max(APi)

NMNi = 1− ANi

Max(ANi)

Step-7 Normalization of NMP and NMN

MXi = (NMPi +NMNi)/2

In this study, we asserted the order of reactivity as acetone < DCE < DCM < CF < DMSO, when oxidants such as TPSD, QBC,
TEACC, and QCC were used. This order corresponds to the best solvent claimed in earlier TOPSIS investigations (38).

3.2 Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS) Method
Step-1 Calculate the matrix’s normalised value

Ai j =
Ai j√

∑n
i=1 A2

i j

Step-2 Determine the weighted normalised matrix.

Ti j = Ai j ×Wj

Step-3 Calculate the best and worst ideal worth
Step-4 Calculate the Euclidean interval between the ideal best and the actual best.

D+
i =

[
m

∑
j=1

(
Ti j −T+

j

)2
]0.5

Step-5 Calculate the Euclidean interval between the ideal best and the actual worst.

D−
i =

[
m

∑
j=1

(
Ti j −T−

j

)2
]0.5

Step-6 Determine the performance score

Pi =
D−

i

D+
i +D−

i

In this analysis, we claimed the order of reactivity as acetone < DCM < DCE < CF < DMSO, when oxidants such as TPSD,
QBC, TEACC and QCC are taken. This order is also satisfies with the best solvent claimed in previous studies using TOPSIS
method (38).
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Table 1. Rateconstants for the oxidation of methionine by various oxidants (k2 104dm3/mol s)
Solvents TPSD QBC TEACC QCC
CF 77.6 50.1 35.8 75.9
DCE 87.1 41.7 29.3 67.6
DCM 72.4 42.6 34 63.1
DMSO 216 135 80.2 198
ACETONE 63.1 34.7 27 52.5

Table 2.Determination of meansolution
Solvents TPSD QBC TEACC QCC
CF 77.6 50.1 35.8 75.9
DCE 87.1 41.7 29.3 67.6
DCM 72.4 42.6 34 63.1
DMSO 216 135 80.2 198
ACETONE 63.1 34.7 27 52.5

103.24 60.82 41.26 91.42

Table 3. PositiveDistance from Mean (PDM)
Solvents TPSD QBC TEACC QCC
CF 0.24835335 0 0 0
DCE 0.15633475 0 0 0
DCM 0.29872143 0 0 0
DMSO 0 1.219664584 0.943771 1.165828
ACETONE 0.38880279 0 0 0

Table 4.Negative Distance from Mean (NDM)
Solvents TPSD QBC TEACC QCC
CF 0 0.17625781 0.132332 0.169766
DCE 0 0.314370273 0.289869 0.260556
DCM 0 0.299572509 0.175957 0.309779
DMSO 1.09221232 0 0 0
ACETONE 0 0.429463992 0.345613 0.425727

Table 5.Weightedsum of PDM
TPSD QBC TEACC QCC SPi
0.06208834 0 0 0 0.062088
0.03908369 0 0 0 0.039084
0.07468036 0 0 0 0.07468
0 0.30491615 0.235943 0.291457 0.832316
0.0972007 0 0 0 0.097201

Table 6.Weightedsum of NDM
TPSD QBC TEACC QCC SNi
0 0.04406445 0.033083 0.042441 0.119589
0 0.07859257 0.072467 0.065139 0.216199
0 0.07489313 0.043989 0.077445 0.196327
0.27305308 0 0 0 0.273053
0 0.107366 0.086403 0.106432 0.300201

https://www.indjst.org/ 3193

https://www.indjst.org/


Rao et al. / Indian Journal of Science and Technology 2021;14(43):3190–3198

Table 7. Rank the order with normalised criterion
Solvents APi ANi NAPi NANi MXi Rank
CF 0.06209 0.11959 0.299745 0.334731 0.31724 2
DCE 0.03908 0.2162 0.188662 -0.2027 -0.007 4
DCM 0.07468 0.19633 0.360524 -0.09217 0.13418 3
DMSO 0.83232 0.27305 4.018094 -0.51895 1.74957 1
ACETONE 0.0972 0.3002 0.469241 -0.66999 -0.1004 5

Table 8.Normalized matrix
Solvents TPSD QBC TEACC QCC
CF 0.29438 0.31378 0.3501 0.32
DCE 0.330419 0.26117 0.2865 0.285
DCM 0.274653 0.26681 0.3325 0.266
DMSO 0.819408 0.84552 0.7843 0.835
ACETONE 0.239373 0.21733 0.264 0.221

Table 9.Weighted normalized matrix
Solvents TPSD QBC TEACC QCC
CF 0.073595 0.07845 0.0875 0.08
DCE 0.082605 0.06529 0.0716 0.071
DCM 0.068663 0.0667 0.0831 0.066
DMSO 0.204852 0.21138 0.1961 0.209
ACETONE 0.059843 0.05433 0.066 0.055

Table 10. Best and worst ideal values
V+ 0.204852 0.21138 0.1961 0.209
V- 0.059843 0.05433 0.066 0.055

Table 11. Euclideandistances, Performance scores and ranks
Solvents D+

i D−
i Pi Rank

CF 0.251 0.043 0.146 2
DCE 0.266 0.03 0.103 3
DCM 0.269 0.025 0.086 4
DMSO 0 0.293 1 1
ACETONE 0.293 0 0 5

Fig 1.Distribution of rateconstants by various oxidants
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Fig 2. Sensitivity analysisof optimal values in EDAS

Fig 3. Sensitivity analysis of optimal values in TOPSIS

Fig 4. Comparative study of EDAS and TOPSIS
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4 Conclusion
Comparative solvent effect analysis is a critical concept of physical organic chemistry. EDAS and TOPSIS are decision-making
algorithms that are used in various decisions. In this analysis, we discovered the following solvent preference order for
methionine oxidation:

• Making use of EDAS technique obtained as acetone < DCE < DCM < CF < DMSO.
• Making use of TOPSIS technique obtained as acetone < DCM < DCE < CF < DMSO.

The reaction occurs most rapidly in DMSO and most slowly in acetone. Oxidation of methionine by Cr(VI) reagents using
EDAS and TOPSIS methods is the new work in the field and is very applicable to choose the best alternative from the available
solvents for more reactivity. The current study was limited to a crisp scenario of available data, but in real-world circumstances,
there are many uncertainties in data that cannot be addressed with the evaluated methodologies. So, in the future, our primary
focus will be on dealing with uncertainty through the use of probability ideas and fuzzy mathematical methodologies.
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