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Abstract
Objectives: Tomap the kimberlite pipes emplaced in parts of AnantpurDistrict,
India using Landsat-8 OLI multispectral data. Kimberlite are considered as the
primary host of natural diamond. Kimberlite pipes have very limited exposure
and are altered, therefore the indirect surface indicators associated with
kimberlite such as ferric iron bearing minerals (hematite, goethite), hydroxyl
(clay) and carbonate (calcrete) minerals, were mapped to trace kimberlite
pipe. Methods: Feature based Principal Component Analysis (FPCA) was
applied over the OLI bands 2, 4, 5 and 6, and 2, 5, 6 and 7 to generate
ferric iron (F image) and hydroxyl/carbonate image (H/C images). The color
compositewas generated by assigning RGB colours to F, H/C and F+H/C images.
Findings: When matched with the pre-explored kimberlite pipe locations, it
was observed that the kimberlitic pipes display different colours in the above
colour composite. Hence, the Isodata clustering was carried out to segregate
the classes, which resulted in 12 unique classes. Of these, the kimberlite pipes
fall in 4 classes. However, due to the moderate resolution of OLI, false positive
areas were also noted. Further the target area was found to be reduced
by incorporating the structural control (lineament) over the emplacement of
Kimberlite pipes. Novelty: The present work highlights the usefulness of the
moderate resolution multispectral image in mapping the Kimberlite pipes in
semiarid region, in absence of a hyperspectral sensor.
Keywords: Kimberlite; Landsat8 OLI; feature based Principal Component
Analysis (FPCA); Lineaments; Dharwar Craton

1 Introduction
Kimberlites are rare igneous rocks. They are considered to be geochemists probe to
the earth’s mantle due to presence of mantle xenocrysts carried by the kimberlite
magma originating in the deep mantle. Presence of natural diamond in some of the
kimberlite pipes makes them economically important (1–3).These unique ultrabasic and
ultrapotassic volcanic rocks, essentially having mantle xenolith showing porphyritic
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texture, mainly composed of olivine were first noted in the Kimberley region of South Africa in 1869 (1–4). Highly volatile fluid
richKimberliticmagma originating at deepmantle, ascend rapidly (order of 400m/s) and get emplaced in carrot shaped pipes or
diatremes (3–6). Most of kimberlite pipes are found to be emplaced on the stable part of the ancient craton having age older than
2.4 Ga except a few pipes that are emplaced on the younger accreted belts of cratonized region of around 1100Ma (5,6). The pipes
found in the cratonic part are more likely to be diamondiferous, compared to those emplaced in the younger accreted parts (6).
World over studies have revealed that the Kimberlite pipe are found to be emplaced in vicinity of regional weak zones formed
due to extensional tectonics and at intersection of regional compressional structures with regional faults or lineaments (7–9).The
pipes are circular or elliptical in outline with a dimension ranging from 100 m2 to 1000 -2000 m2. Kimberlite pipes are usually
found to be emplaced as clusters, with each cluster havingmore than one pipe. Kimberlite field is defined by grouping of several
cluster of pipes together occurring in an area (10,11).

As the kimberlite is the primary host rock of the diamond that have high economic values, locating the kimberlite pipe gains
the prime importance while carrying out exploration for diamond.The challenges faced during exploration aremainly due to (i)
small spatial dimension of the pipe (ii) high degree of weathering in the humid tropical climates and (iii)mantling of the pipes by
the alluvium in the low-lying areas or development of calcrete over the pipes. Technique employed in exploring kimberlite pipe
include photo-geological interpretation of aerial photo or satellite imageries, (8) multispectral, hyperspectral remote sensing
and GIS (12–18); geochemical prospecting techniques such as analysis of soil sample, Kimberlite indicator minerals (KIMs)
from stream sediment samples (19,20) and calcrete geochemistry (21); and geophysical methods including electromagnetic (22),
aeromagnetic, ground magnetic studies and gravity method (23,24).

Photo-geological interpretation of aerial photo or satellite imageries are used for mapping the structural features found in
association with kimberlite such as regional lineaments, dyke intrusion and geomorphology (8,9,12,17,18). In recent years, spectral
based remote sensing has also been widely used in exploration of mineral deposits based on the spectral characteristic of the
path finder minerals (25–27). Even though hyperspectral data is preferred for mineral exploration owing to their higher spectral
resolution, their availability is limited. Hence, the broad band multispectral images such as Landsat TM, ETM+ and ASTER are
used for exploring themineral deposits (27–34), with use of Image processing techniques such as band ratio, Principle Component
Analysis (PCA), FPSCA or Crosta technique (28,29) etc.

Principal component analysis (PCA) is a common image processing method applied over multispectral images for mapping
alteration zones in metallogenic provinces (27–34). The Feature Oriented Principal Components selection (FPCS), also known
as Crosta technique, identifies the principal components that contain spectral information about specific features (e.g.
vegetation/mineral) by the analysis of the eigenvector values, as well as the contribution of each of the original bands to the
components in relation to the spectral response of the materials of interest (28,30–33). Depending on the magnitude and sign of
the eigenvectors loadings, the materials may be represented in bright or dark pixels in the principal components. Loughlin (29)

improvised the FPCS technique by applying the PCA over the selected set of bands in which the target material has diagnostic
spectral feature instead of the whole bands. The technique is known as Feature based Principal Component Analysis (FPCA)
technique or a Modified Crosta technique (34).

Kimberlite is found to be emplaced in several cratons of India such as Dharwar, Bastar, Singhbhum and Bundelkhand
Craton (11,12). Eastern Dharwar craton is the largest Kimberlite Provenance of India, with 4 kimberlite Fields viz., (i) the
Wajrakarur Kimberlite Feld (WKF), (ii) the Narayanpet Kimberlite Field (NKF)(iii) the Raichur Kimberlite Field (RKF) and
(iv) the Tungabhadra Kimberlite Field (TKF) (11,12). The WKF is the largest of them with more than 40 pipes which have been
reported by Geological Survey of India as well as private exploration companies so far, and the count is going on increasing
based on new discovery. WKF that admistratively fall in Anantapur district of Andhra Pradesh, has potential for discovery of
new pipes in the region. In this study, we attempt to utilize the broad band multispectral imagery (Landsat OLI) to assess its
efficacy in targeting the weathered kimberlite pipes of Wajrakarur Kimberlite Field (WKF) (Figure 1).

1.1 Geological setting of the study area

The Archaean Dharwar Craton of the India is bounded by Bastar Craton towards north east, Proterozoic Eastern Ghats Mobile
Belt (EGMB) towards the east, Deccan Volcanic Province in the north west and the Southern Granulite Terrain (SGT) in
the south (35) (Figure 1). The Dharwar Craton is made up of granite-green stone belts as well as of tonalite-trondhjemite-
granodiorite (TTG) basement gneiss (36). Numerous Paleo-Mesoproterozoic intracratonic sedimentary basins (e.g. Cuddapah
basin) unconformably overlie the granite-greenstone terrain in the eastern end margins. Dharwar craton is divisible into two
distinct groups called as Eastern Dharwar Craton (EDC) and Western Dharwar Craton (WDC) (37) based on the history of
crustal evolution (38,39). A prominent shear zone located along the eastern margin of the Chitradurga greenstone belt, the
Chitradurga Boundary Fault (CBF), is widely considered to be the boundary between these blocks (37–40). A North-south
trending Closepet Granite pluton of 2510 Ma age intrude the craton (41). Widespread mafic dyke swarms are also observed in
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the area (42). Kimberlite pipes intruding the EDC represent the youngest rocks (~1100Ma) (42,43).The kimberlite pipes observed
in EDC are grouped under Wajrakarur Kimberlite Field (WKF), Narayanapet Kimberlite Field (NKF) and Raichur Kimberlite
Field (RKF) (44).The Wajrakarur Kimberlite Field (WKF) is situated in the eastern part of the Eastern Dharwar Craton (EDC)
of the South Indian Shield. WKF includes four kimbelite clusters (i) Wajrakarur-Latavaram Cluster, (ii) Kalyandurg Cluster,
(iii) Timmasamudram Cluster and (iv) Chigicherla Cluster (8). Each cluster has several pipes along with more than 40 pipes
discovered so far from WKF (45,46), out of which a few are reported to being diamondiferous.

Kimberlite pipe emplacement in the region is highly controlled by regional lineaments (16) and structural dome (8,47). The
lineaments and the dykes show two major trends, NW-SE trending Dharwarian lineaments and NE-SW trending regional
faults/lineaments. The probability of kimberlite emplacement increases at the intersection of these two set of lineaments (8).
Morphologically, kimberlite pipes occur in sloping grounds or topographically depressed areas, some of them showing circular
outline (16). The general geology and the spatial distribution of Kimberlite pipes in WKF with the tectonic settings are shown in
Figure 1.

Fig 1. (a)The location mapof the study area; (b) regional geological map of the Wajrakarur Kimberlite field (after Nayak and Kudari, 1999);
and (c) Landsat8 OLI standard False Color Composite covering the study area.

2 Materials and Methods
The datasets used in the study includes SOI toposheet of the study area of 1:50,000 scale; published geological map, Landsat 8
OLI satellite image and ancillary data about explored kimberlite pipes frompublished literatures, and limited ground validation.
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The topographical maps and the published Geological maps were georeferenced to geographic coordinate with WGS84 datum
and finally stored in the geodatabase.

Cloud free Level 1Terrain corrected (L1T) Landsat8OLImultispectral data of the study area LC81440502013103LGN01_WK,
acquired on 2013-04-13 was downloaded from Earth Explorer website. Landsat8 has total 11 bands, of which six bands (band
2 to 7) are in visible to shortwave infrared region of EMR with a 30m spatial resolution. Band 8 is panchromatic band with 15
m resolution. Band 11 and 12 are thermal bands with 100 m resolution resampled to 60m spatial resolution. Band 1 and band
9 are Coastal aerosol and Cirrus bands respectively, which has 30m spatial resolution (48) (Table 1).

Table 1. Sensor characteristics of Landsat8 OLI data
Bands Wavelength (µm) Spatial Resolution (m) Date of Acquisition
Band 1 - Coastal aerosol 0.43 - 0.45 30

13/04/2013

Band 2 - Blue 0.45 - 0.51 30
Band 3 - Green 0.53 - 0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85 - 0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11 - 2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)

The Level 1 Terrain corrected (L1T) Landsat 8 data provides the terrain corrected data in calibrated Digital Numbers (DNs).
Data in each band (Band 2 to Band 7) were first converted to at-sensor-radiance, which was given as input to FLAASH (Fast
Line of sight Atmospheric Analysis of Hypercube) atmospheric correction modelling tool in ENVI. FLAASH incorporates
the MODTRAN4 radiation transfer code (48–50) and converts the radiance values to the Top-of–Atmosphere (TOA) reflectance
values.The reflectance bands were further used for analysis to target iron oxides, clay/carbonateminerals and also for lineament
mapping in the area.

Feature based Principal Component Analysis (FPCA) technique is a modified version of the PCA method developed by
Crosta and Moore (28). It allows application of PCA over selected combination of bands that provide crucial information about
a particular target object (29). The target was delineated based on the eigenvector loading of the most spectrally significant band
over the Principal components (29,30). Field studies as well as literature about kimberlite pipes exposed in the Eastern Dharwar
craton and around the globe had revealed that the Kimberlite pipes were marked by presence of red soil mixed with clay or
calcrete. Therefore, it was decided to target iron oxide, clay and carbonate minerals as a proxy for locating kimberlite pipes in
the study area. Band selection for FPCA was decided based on the spectral signature of the target minerals. From Figure 2, it
can be seen that the iron oxide has strong absorption in blue region, whereas it has high reflection in the red region. Similarly,
the hydroxyl ion bearing mineral (clay) exhibit diagnostic absorption spectrum around 2.2µm to 2.3µm and depending upon
the nature of the clay minerals strong reflection around 1.5µm region. The carbonate minerals exhibit diagnostic absorption
around 2.3µm. As the spectral resolution of the Landsat OLI image is moderate, the clay and carbonate absorption would have
been recorded in the SWIR2 band (LandsatOLI band 7) itself and could not be identified separately and hencemapped together.

In order to target hydroxyl/carbonate minerals, PCA transformations were applied over an image data that contain Landsat
8 OLI bands 2, 5, 6 and 7. In a similar way, PCA transformation were applied over an image that contained bands 2, 4, 5
and 6 to target iron oxide. The Eigen vector loading of each band on the Principal component were noted and the principal
component that has the highest loading was considered to map the target. The clay/carbonate minerals or iron oxides could be
distinguished by noting the eigenvector loading of corresponding bands having diagnostic spectral characteristics in the PC
component by careful examination of correlation matrix. The hydroxyl/carbonate minerals could be better distinguished by a
PC image with high or moderate eigenvector loadings for band 7, either in positive or negative sign; and a high or moderate
eigenvector loadings of the opposite sign for band 6. If band 7 loadings are positive, then the clay/hydroxyl/carbonate bearing
minerals will be highlighted as dark pixels in the PC image, these pixels can be made brighter by negation of the PC (28–34).
Similarly, for iron oxide, the magnitude of eigenvector loading of band 2 and 4 in the PCs has to be studied and it should be
moderate or strong with opposite signs.
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Fig 2. Reflectance spectra of calcite, clay and iron oxides representing the weathered Kimberlite products (source: USGS spectral library).
Lands at 8 bands (1 to 9) are overlaid over the spectral plot of minerals. The SWIR band 2 (Band 7) does not resolve between clay and
carbonate minerals.

The colour composite generated by combining the H/C, F components were useful in highlighting the regions rich in these
minerals (34). To create colour composite, a third band was also needed, and hence H/C and F images were added together to
produce F+H/C image which highlights the region having both iron oxide and hydroxyl/carbonate minerals. Colour composite
was prepared by assigning red colour to H/C image, green colour to F+H/C image and blue colour was assigned to F image (34).
Prior to generation of the colour composite image, the H/C, F and H/C +F images were rescaled to 256 grey levels to normalize
the values in each image.The resulting colour composite was comparedwith the locations of kimberlite pipe previously explored
by GSI and other agencies. ISODATA (51) unsupervised classification technique was applied over the colour composite to derive
the spectral classes representing kimberlite, hereafter referred to as Kimberlite Classes. In order to narrow down the kimberlite
class, it was decided to incorporate structural control in emplacement of kimberlite. In the same context, the lineament buffer
zone was generated to mark the zone of influence and incorporated while finalizing the kimberlite probable zones. The results
were cross verified with kimberlite pipe positions as well as field observations

3 Results and Discussion

3.1 FPCA Analysis to target Kimberlite pipe locations

FPCA facilitates targeting a particular object by observing the eigenvector loading of the most spectrally significant band
over the Principal components (33). Iron oxides and Clay/Carbonate can be distinguished by noting the eigenvector loading
of corresponding bands having diagnostic spectral characteristics in the PC component by careful examination of correlation
matrix. Iron oxide was targeted by applying FPCA transformations over OLI bands2, 4, 5 and 6. The eigenvector loading of
each band on the Principal component are given in Table 2. Iron oxide shows higher reflectance in red band (band 4) and less
reflectance in blue band (band 2). Therefore, the magnitude of eigenvector loading of band 2 and 4 in the PCs were studied. The
PC band that have eigenvector loading of these bands in moderate or strong with opposite signs was considered for targeting
Iron oxide. Table 2 revealed that the eigenvector loading for the first principle component image (PC1) of bands 2, 4, 5 and 6 has
positive values for all corresponding bands. The high positive values represent the albedo component and hence neglected (29).
Eigenvector loadings for PC2 andPC3 are high for Band 5 compared to other bands (0.575 and 0.613) and hence the bright pixels
in PC2 and PC3 were considered as Vegetation. Eigenvector loading for the PC4 show that band 4 has high negative loading
(-0.862), whereas band 2 has moderate loading with opposite sign (+0.369), therefore the iron oxide would be represented as
dark pixels. To highlight these pixels as bright pixels, the PC4 was negated and the resulting image corresponds to “Ferric iron
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image” (Figure 3 A).

Table 2. PCA Eigenvector values of Band 2,4,5,6 (Blue, Red, NIR, SWIR1) Landsat 8 data
Eigenvector Band 2 Band 4 Band 5 Band 6 Eigen value Eigenvalue (%) Inference
PC1 0.331 0.400 0.541 0.661 229493504 98.64 Aldedo
PC2 0.470 -0.065 0.575 -0.670 2035563 0.87 Vegetation
PC3 -0.730 -0.297 0.613 0.043 959521 0.41 Vegetation
PC4 0.369 -0.864 -0.003 0.342 165700 0.07 Iron Oxide

Table 3. PCA Eigenvector values of Band 2,5,6,7 (Blue, NIR, SWIR1, SWIR2) Landsat 8 data
Eigenvector Band 2 Band 5 Band 6 Band 7 Eigenvalue Eigen value (%) Inference
PC1 0.310 0.508 0.624 0.506 258722941 98.51 Albedo
PC2 0.427 0.671 -0.368 0.481 2841320 1.08 Vegetation
PC3 0.835 -0.489 -0.169 0.188 942489 0.36 Vegetation
PC4 -0.158 0.229 -0.678 0.690 141112 0.05 Hydroxyl/Carbonate

Clay/Carbonate minerals were targeted by applying FPCA transformations over OLI bands 2, 5, 6 and 7 and the eigenvector
loading of each band on the Principal component is given in Table 3. Clay/Carbonateminerals exhibit strong reflection in SWIR
band 1 (band 6) and strong absorption in SWIRband 2 (bands 7).Therefore, clay/carbonateminerals can be better distinguished
by a PC image with high ormoderate eigenvector loadings for band 7, either in positive or negative sign; and a high ormoderate
eigenvector loadings of the opposite sign for band 6. If band 7 loadings were positive, then the clay/hydroxyl/carbonate bearing
minerals would be highlighted as dark pixels in the PC image. These pixels could be highlighted by negation of the PC. It was
observed that the eigenvector loadings of band 6 and band 7 in PC4 were high compared to other bands, and in opposite signs
(-0.6679 and +0.6903 respectively), and highlights hydroxyl/carbonate minerals as dark pixels. Since band 7 has +ve loading,
PC4 image was negated to derive Hydroxyl/carbonate minerals as a Bright pixel and represents “Hydroxyl/Carbonate (H/C)
image” (Figure 3B). H/C image highlights regions that have both clay rich region as well as carbonate rich region in the study
area.

Fig 3.Results of the FPCA applied over Landsat8 OLI image. A) Ferric Ion (F) Image; B) Hydroxyl/Carbonate(H/C)Image; C) F+H/C, Image;
D) Colour composite image (R:H/C, G:F+H/C+F, B:F)
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F+H/C image (Figure 3C) highlights area that have higher Iron oxide, hydroxyl bearing or carbonate minerals. The colour
composite image prepared by assigning RGB colours to H/C, F+H/C and F image bands respectively (Figure 3D) exhibits
various colours ranging fromwhite, dark blue, cyan, red and orange colour depending on the concentration of dominant factor.
For example, pixels having white colour indicate region of these pixels that were enriched in both iron oxide and clay/carbonate
minerals. Pixels with dark red to orange colour represent areas with higher abundance of clay/carbonate minerals than iron
oxide, dark blue pixel represents iron oxide dominant areas, cyan to bluish tone indicate varying amount of iron oxide and
clay/carbonates.

While correlating the colour composite image with the geological map and known Kimberlite pipe locations, it was noted
that the pixel corresponding to the black soil show orange colour, granites show dark blue colour, whereas the area covering
Kimberlite pipes exhibit light blue to cyan colours. From this, it can be inferred that pixels corresponding to Kimberlite
pipes have both iron oxide as well as clay/carbonate minerals. Spectrally, iron oxide and hydroxides are dominant than the
clay/carbonate minerals (34) and hence the actual concentration of iron oxide might be less than what it appears. However, it
was difficult to attribute one single colour to the kimberlite pipe as there was a varying shades of blue, corresponding to varying
amount of the carbonate/ clay and iron oxides covering the kimberlite pipe. The observation matches with the field observation
also, where the calcrete was seen mixed with red soil and the concentration of iron oxide and clay may vary from place to place.

3.1.1 ISODATA classification
In order to further narrowdown the regions of possible occurrence ofKimberlite pipe, ISODATA (51) unsupervised classification
of the colour composite was carried out. The Isodata classification resulted in generation of 16 classes. It was observed that the
known Kimberlite pipes do not fall in one single class; instead they are found to occur in class8, 9, 11and 12. All the above four
classes that coincide with the known Kimberlite location were retained to produce a Kimberlite classification map representing
the regions with chance of occurrence of Kimberlite pipes(Figure 4). The classification map shows a large area as kimberlite,
which was over representation and could be attributed to the false positive identification.The situationmight have raised due to
lower spatial and spectral resolution of Landsat image aswell as occurrence of surfacematerial which has similarity to kimberlite
weathering products. In such case, the mapping needs to be refined by taking help of other factors such as structural control or
morphology and hence, influence of lineament over the emplacement of kimberlite pipes was considered to narrow down the
Kimberlite classification map.

Fig 4. Result of unsupervised classification overlaid over the standard FCC of the study area. Class 8, 9, 11 and 12 represents the Kimberlite
classes. Locations of the kimberlite pipes are marked for reference.
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3.2 Lineaments Mapping

Lineaments in the study area were generated from Landsat 8 OLI False Colour Composite. Lineaments were interpreted by
visual interpretation technique and onscreen digitization was carried out in ArcGIS. Image enhancement techniques such
as application of directional filters were applied to highlight the invisible lineaments. To eliminate the cultural lineaments
such as roads, railway network etc. the data was compared with Survey of India toposheets and high resolution Google
Earth images. Lineament map of Wajrakarur Kimberlite Field is shown in Figure 5. Many of the lineament are marked by
intrusion of mafic dykes. Kimberlite pipes in the study area are generally found to be emplaced along regional scale weak zones,
particularly intersection of the E-W Lineaments with N-S trending lineaments are more probable locations for the Kimberlite
emplacement (17,18). Kimberlite pipes are also observed to fall in between two set of parallel E-W trending lineaments and
intersection of N-S lineament.

Fig 5. Lineament overlain over the Landsat 8 OLI colour composite image (R:7 G:5 B:4)

3.3 GIS analysis and field validation

The present study attempts to locate the probable locations of kimberlite pipes occurrence in the Wajrakarur Kimberlite Field
(WKF) using multispectral remote sensing image. Field observation had revealed that fresh kimberlite outcrops were rare and
pipes in the study areawere of smaller dimension. Since the spatial extent of Landsat 8OLI is 30m, the pipeswere usually covered
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by a few pixels and hence it was difficult to discern the smaller dimension kimberlite pipes. Most of the kimberlite pipes were
deeply weathered and often covered by few meter thick calcrete or transported soil. The calcrete which was developed over the
kimberlite couldnot be spectrally resolved from the pedogenic calcrete developed over granitoid/granitic gneiss, thus resulted
in false positives. The problem was compounded by the large spatial extent of the pixel which results in the mixed pixel. Based
on the analysis of ASTER image of Narayanapeta kimberlite field, Guha et al. (12) concluded that calcrete cannot be detected
from a mixed pixel of granite/granodiorite and calcrete with the later making up less than 10 weight percentage of the mixture.
Hence results of the spectral based mapping technique to target kimberlite needs to be viewed with caution. Constraining the
image analysis results by taking inputs from tectonic and geomorphic setting of kimberlite emplacement might reduce the false
positives and enhance the results. (12)

Kimberlite emplacement in the study area was found to be structurally controlled, as majority of the kimberlites pipes were
found to be in the vicinity of deep-rooted regional scale lineament, particularly where the NE-SW/E-W trending lineament
intersects withNW-SE/N-S trending lineaments (8). Hence, the result of image analysis was refined by considering the lineament
control over kimberlite emplacement. The zone of influence of the lineament on the kimberlite pipe emplacement was noted by
overlaying the pre-explored pipe locations on the lineament map in the GIS environment. Most of the kimberlite pipes, except
a few were found to occur at distance of few meters to 1000 m from the lineament. Accordingly, a buffer zone of about 1000 m
around the lineament was considered to narrow down the Kimberlite emplacement zone.

Four Kimberlite Classes derived from Isodata Classificationweremerged together to a single class, whichwas later converted
to vector format and stored in GIS geodatabase along with lineament buffer zone. Integration overlay analysis was carried out in
ARCGIS to retain the Kimberlite class that occur within the buffer zone of lineaments and were considered as high probabilistic
of Kimberlite emplacement zones (Figure 6). The results of GIS analysis were validated by comparing them with the geological
map, and field observation.

Fig 6. The kimberlite map derived using Isodata classification restricted to the lineament buffer zone. The location of previously explored
kimberlite pipes are overlaid over the map. 1,2, and 3 marks the locations of the field photographs shown in Figure 7
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From Figure 6, it was noted that incorporation of the structural control over the kimberlite mapping brought down the
kimberlite class area drastically; thus reducing the false positive. Overlaying the known kimberlite pipes over the refined
kimberlite classification map, showed that most of the existing kimberlite pipes fall within refined Kimberlite classification.
During field validation, previously known kimberlite pipe locations [Figure 7] and six new locations were visited. The pre-
explored kimberlite pipe locations matched with kimberlite class derived from Landsat OLI and GIS analysis. Of the other six
places visited, four locations had development of calcrete cover. Further detailed study such as rock sample analysis, geophysical
exploration would be needed to verify the results.

Fig 7. Field Photos A. Kimberlite boulders and Calcrete observed at Kalyandurg (marked as 1in Figure 6) B. Calcrete mixed with red soil in
a field observed at Chiggicherla(marked as 2 in Figure 6) C. Clay and calcrete observed in a pit where Kimberlite was dug out at Lattavaram
( marked as 3 in Figure 6 )

4 Conclusion
This study attest to feasibility of using Landsat 8 OLI data to locate the weathered kimberlite pipe exposed in a semi-arid region.
Through FPCA technique, it was possible to locate the iron oxides and the clay or carbonate minerals, the pathfinder minerals
for targeting the kimberlite pipe. Though lower spatial and spectral resolution of Landsat data resulted in few false positive
signature, constraining with the known kimberlite locations and structural control (lineaments) was observed to enhance its
efficiency in mapping of kimberlite. The refined map may be given as input in further GIS analysis which will aid in preparation
of Kimberlite prediction map in any given area.
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