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Abstract
Background/Objectives: This study gives an extended and the new kinds of
super root cube of cube difference labeling of some graphs are obtained.
Methods/ Findings: We derive super root cube of cube difference labeling of
path related graph and analyzed cycle related graphs.
Keywords: Triangular Snake T_n; Cycle graph C_n; Crown C_n©K_1; pendent
edge to both sides of each vertex of a path Pn; supr root cube of cube
difference labeling of graphs.

1 Introduction
All graphs G = (V (G),E(G)) with p vertices and q edges we mean a simple connected
and undirected graph. In 2012, J. Shiama (1), studied square difference labeling of some
graphs. In 2013, J. Shiama (2), introduced the concept of cube difference labelings and
investigated the labelings for certain graphs. S.Sandhya et.al (3), was initiated the concept
of root square mean labeling of graphs. In 2016, M. Kannan et.al (4), introduced the
concept of super root square mean labeling of disconnected graphs are discussed. In
2017, R.Gowri and G.Vembarasi (5), was discussed root cube mean labeling of graphs.
R.Gowri andG.Vembarasi (6), extended the new concept of root cube difference labeling
of graphs are introduced in 2018. In 2019, S.Kulandhai Theresa and K.Romila (7), was
discussed the concept of cube root cube mean labeling of graphs are introduced. In
2020, R.Gowri andG.Vembarasi (8) recently introduced the concept of root cube of cube
difference labeling of graphs. Likewise, many authors have discussed this topic in their
work. In this study we discuss about the super root cube of cube difference labeling and
investigate certain families of graphs.

2 Preliminaries

Definition 2.1 (5)

The graph obtained by joining a simple pendent edge to each vertex of a path is called a
Comb graph.

Definition 2.2 (5)

A walk in which vertices are called a path. A path on n vertices is denoted by Pn.
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Definition 2.3 (5)

The product graph P2 ×Pn is called a Ladder and it is denoted by Ln .

Definition 2.4 (9)

AgraphGwith p vertices and q edges then f : V (G)→{1,2, . . . , p+q} be an injective function. For each edge e=uv . Let f ∗(e=

uv) =
[√

f (u)2+ f (v)2

2

]
(or)

[√
f (u)2+ f (v)2

2

]
then f is called a super root square mean labeling if f (v)∪{ f ∗(e) : e ∈ E(G)} =

{1,2, . . . , p+q} . A graph that admits a super root mean labeling is called a super root mean graph.

Definition 2.5 (2)

Let G = (V (G),E(G)) be a graph. G is said to be a cube difference labeling if there exists a injective function f : v(G) →
{0,1, . . . , p−1} such that the induced function f ∗ : E(G)→ N is given by f ∗(uv) =

∣∣[ f (u)]3 − [ f (v)]3
∣∣ is injective.

Definition 2.6 (6)

Let G = (V (G),E(G)) be a graph. G is said to be a cube difference labeling if there exists a injective func-
tion f : v(G) → {0,1, . . . , p − 1} such that the induced function f ∗ : E(G) → N is given by f ∗(uv) =[√

| [ f (u)]3 − [ f (v)3] | (or)
⌊√

|[ f (u)]3 − [ f (v)]3|
]
is injective.

3 Super Root Cube Of Cube Difference Labeling of Graphs

Definition 3.1

A graph G with p vertices and q edges then f : V (G)→ {1,2, . . . , p+ q} be an injective function. For each edge e = uv . Let

f ∗(e= uv) =
[√∣∣∣( f (u)3 − f (v)3)

1
3

∣∣∣] (or) [√∣∣∣( f (u)3 − f (v)3)
1
3

∣∣∣] , then f is called a super root cube of cube difference labeling
if f (v)∪{ f ∗(e) : e ∈ E(G)}= {1,2, . . . , p+q} . A graph is called a super root cube of cube difference labeling.

Theorem 3.2

Triangular Snake Tn is a super root cube of cube difference labeling of graph.
Proof : A Triangular Snake Tn is obtained from a path u1,u2, . . . ,un by joining ui and ui+1 to a new vertex vi for 1 ≤ i ≤ n

That is every edge of a path is replaced by a triangularC3 . Define the function f : V (G)→{1,2, . . . , p+q} by

f (ui) = 2i, for 1 ≤ i ≤ n
f (vi) = 2i−1, for 1 ≤ i ≤ n.

And the induced edge labeling function f ∗ : E(G)→ N defined by

f ∗(e = uv) =

[√∣∣∣( f (u)3 − f (v)3)
1
3

∣∣∣]

Then the edge sets are,

f ∗ (uiui+1) =

√∣∣∣(24i2 +24i+8)
1
3

∣∣∣, for 1 ≤ i ≤ n−1

f ∗ (un−1un) =

√∣∣∣(24n2 −24n+8)
1
3

∣∣∣
f ∗ (uivi) =

√∣∣∣(12i2 −6i+1)
1
3

∣∣∣, for 1 ≤ i ≤ n

f ∗ (unvn) =

√∣∣∣(12n2 −6n+1)
1
3

∣∣∣
https://www.indjst.org/ 2779
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f ∗ (ui+1vi) =

√
| (36i2 +18i+9)

1
3 | for 1 ≤ i ≤ n

f ∗ (un+1vn) =

√∣∣∣(36n2 +90n+63)
1
3

∣∣∣
Hence the graph G is a Super root cube of cube difference labeling.

Example 3.3

Super root cube of cube difference labeling of T4 is given below.

Fig 1.

Theorem 3.4

The Cycle graphCn is a Super root cube of cube difference labeling.
Proof : A closed path is called a cycle. A cycle on n vertices is denoted byCn graph with vertices u1,u2, . . . ,un and the edges

e1,e2, . . . ,em Define the function f : V (G)→{1,2, . . . , p+q} by

f (ui) = i for 1 ≤ i ≤ n

And the induced edge labeling function f ∗ : E(G)→ N defined by

f ∗(e = uv) =

[√∣∣∣( f (u)3 − f (v)3)
1
3

∣∣∣]

Then the edges labels are,

f ∗ (uiui+1) =

√
(3i2 +3i+1)

1
3 , for 1 ≤ i ≤ n−1

f ∗ (un−1un) =

√
(3n2 −3n+1)

1
3

f ∗ (unu1) =

√
(n3 −1)

1
3

Hence the graphCn is a Super root cube of cube difference labeling.
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Example 3.5
The following is an example forC7 is a Super root cube of cube difference labeling of graph.

Fig 2.

Theorem 3.6
The crownCnΘK1 is a Super root cube of cube difference labeling of graph.

Proof: Let Cn be the Cycle u1u2..unu1 and vi be the pendant vertices adjacent to ui,1 ≤ i ≤ n . Define the function
f : V (CnΘK1)→{1,2, . . . , p+q} by

f (ui) = i,
for 1 ≤ i ≤ n
f (vi) = i+6,
for 1 ≤ i ≤ n.

And the induced edge labeling function f ∗ : E(G)→ N defined by

f ∗(e = uv) =

[√∣∣∣( f (u)3 − f (v)3)
1
3

∣∣∣]
Then the edge sets are,

f ∗ (uiui+1) =

√∣∣∣(24i2 +24i+8)
1
3

∣∣∣, for 1 ≤ i ≤ n−1

f ∗ (un−1un) =

√∣∣∣(24n2 −24n+8)
1
3

∣∣∣
f ∗ (uivi) =

√∣∣∣(12i2 −61+1)
1
3

∣∣∣, for 1 ≤ i ≤ n

f ∗ (unvn) =

√∣∣∣(12n2 −6n+1)
1
3

∣∣∣
f ∗ (ui+1vi) =

√∣∣∣(36i2 +18i+9)
1
3

∣∣∣, for 1 ≤ i ≤ n

f ∗ (un+1vn) =

√∣∣∣(36n2 +90n+63)
1
3

∣∣∣
Hence the graph G is a Super root cube of cube difference labeling.
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Example 3.7

Super root cube of cube difference labeling ofCnΘK1is given below.

Fig 3.

Theorem 3.8

Let G be a graph obtained by attaching a pendant edge to both sides of each vertex of a path Pn. Then G is a Super root cube of
cube difference labeling of graph only if n ≥ 5. .

Proof: Let G be path Pn. The graph obtained by attaching pendant edges to both sides of each vertex. Let xi,yi and zi for 1 ≤
i ≤ n be the new vertices of G. Define the function f : V (G)→{1,2, . . . , p+q} by

f (xi) = 3i−1 for 1 ≤ i ≤ n

f (yi) = 3i for 1 ≤ i ≤ n

f (zi) = 3i−2 for 1 ≤ i ≤ n

And the induced edge labeling function f ∗ : E(G)→ N defined by

f ∗(e = uv) =
[

1
√
( f (u)3 − f (v)3)

1
3 |
]

Then the edge sets are,

f ∗ (xixi+1) =

√
| (81i2 +27i+9)

1
3 |, for 1 ≤ i ≤ n−1

f ∗ (xiyi) =

√∣∣∣(27i2 −9i+1)
1
3

∣∣∣, for 1 ≤ i ≤ n

f ∗ (xizi) =

√∣∣∣(27i2 −27i+7)
1
3

∣∣∣, for 1 ≤ i ≤ n

Hence the graph G is a Super root cube of cube difference labeling.
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Example 3.9

The graph obtained P5 is given below.

Fig 4.

4 Conclusion
In this article we discussed the concept of Super Root Cube of Cube Difference Labeling of Graphs are initiated and also some
graphs are introduced and characterized.Then the relative results between path, cycle related graphs are discussed. Here all the
edge values are distinct and the resulting edge values do not exceed the vertex value.
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