RESEARCH ARTICLE

OPEN ACCESS

Received: 13.07.2021
Accepted: 25.09.2021
Published: 31.10.2021

Citation: Kavitha J, Gowri R (2021) Direct Product of GK Algebra. Indian Journal of Science and Technology 14(35): 2802-2805. https://doi.org/ 10.17485/JST/v14i35.1308

* Corresponding author.
profjkdgvc@gmail.com
Funding: None
Competing Interests: None
Copyright: © 2021 Kavitha \& Gowri. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

ISSN

Print: 0974-6846
Electronic: 0974-5645

Direct Product of GK Algebra

J Kavitha ${ }^{1,2 *}$, R Gowri ${ }^{3}$
1 Assistant Professor, Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, India
2 Research Scholar, Department of Mathematics, Government College for women (Autonomous), Affiliated to Bharathidasan University, Kumbakonam, India
3 Assistant Professor, Department of Mathematics, Government College for women
(Autonomous), Kumbakonam, India

Abstract

Objectives: To find the direct product of an algebraic structure namely as GK algebra. Methods/Findings: We derive some important results in which direct product of two GK algebra is again GK algebra as a particular case and also, derive the general case of the same then after investigate the direct product of kernel of GK algebra.

Keywords: Direct Product; Kernel; isomorphism; Homomorphism; GK algebra

1 Introduction

BCK-algebras and BCI-algebras are abridged to two B-algebras. The BCK algebra was coined in 1966 by the Japanese mathematicians, Y. Imai and K. Iseki ${ }^{(1)}$. Two B-algebras are created from two different provenances. In 2007, the new algebraic structure which is said to be BF algebra, was explored by Andrze J Walendziak ${ }^{(2)}$ which is a generalization of $\mathrm{BCI} / \mathrm{BCK} / \mathrm{B}$-algebras. In 2008, the generalization of B algebra called as BG algebra initiated by $\operatorname{Kim} \& \operatorname{Kim}^{(3)}$. In 2009, another algebra which is generalization of BE algebra and dual $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$ algebras, namely CI algebra was initiated by Biao long Meng ${ }^{(4)}$.

Direct product plays an important role in algebraic structures. In 2019, Slamet Widianto, Sri Gemawati, Kartini ${ }^{(5-7)}$ were discussed about the Direct product of BG algebra. Likewise, many authors have discussed this topic in their work. Motivated by these, in this paper we discuss about direct product of GK algebra and obtain its some interesting results. In 2018, we introduced the new algebraic structure namely GK algebra ${ }^{(8)}$ and discussed about its characteristics and investigated some results. In this paper we discuss about the direct product of GK algebra and investigate its properties.

2 Direct product of GK algebra

2.1 Definition

Let $\left(\mathrm{M}, \circledast, 1_{M}\right)$ and $\left(\mathrm{N}, \circledast, 1_{N}\right)$ be GK algebras. Direct product $M \times N$ is defined as a structure $M \times N=\left(M \times N ; \otimes ;\left(1_{M} ; 1_{N}\right)\right)$, where $M \times N$ is the set $\{(m, n) / m \in M, n \in N\}$
and \otimes is given by

$$
\left(m_{1}, n_{1}\right) \otimes\left(m_{2}, n_{2}\right)=\left(m_{1} \circledast m_{2}, n_{1} \circledast n_{2}\right)
$$

This shows that the direct product of two sets of GK algebra M and N is denoted by $M \times N$, which each (m, n) is an ordered pair.

2.2 Theorem

Direct product of any two GK algebras is again a GK algebra.

Proof:

Let M and N be GK algebras, let $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$
We know that $M \times N=\left(M \times N ; \otimes ;\left(1_{M} ; 1_{N}\right)\right)$
Since $1_{M} \in M, 1_{N} \in N$
This implies that $\left(1_{M}, 1_{N}\right) \in M \times N$
$\therefore M \times N$ is non-empty.
Now let us prove it is GK algebra.
Let $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$

1. $\left(m_{1}, n_{1}\right) \otimes\left(m_{1}, n_{1}\right)=\left(m_{1} \circledast m_{1}, n_{1} \circledast n_{1}\right)$
$=\left(1_{M}, 1_{N}\right)$ by definition of GK algebra
2. $\left(m_{1}, n_{1}\right) \otimes\left(1_{M}, 1_{N}\right)=\left(m_{1} \circledast 1_{M}, n_{1} \circledast 1_{N}\right)$
$=\left(m_{1}, n_{1}\right)$ by definition GK algebra
3. If $\left(m_{1}, n_{1}\right) \otimes\left(m_{2}, n_{2}\right)=\left(1_{M}, 1_{N}\right)$ and $\left(m_{2}, n_{2}\right) \otimes\left(m_{1}, n_{1}\right)=\left(1_{M}, 1_{N}\right)$
then $\left(m_{1} \circledast m_{2}, n_{1} \circledast n_{2}\right)=\left(1_{M}, 1_{N}\right)$
$\Longrightarrow m_{1} \circledast m_{2}=1_{M}$ and $n_{1} \circledast n_{2}=1_{N}$
$\Longrightarrow m_{1}=m_{2}$ and $n_{1}=n_{2}$ by definition GK algebra.
4. $\left[\left(m_{2}, n_{2}\right) \otimes\left(m_{3}, n_{3}\right)\right] \otimes\left[\left(m_{1}, n_{1}\right) \otimes\left(m_{3}, n_{3}\right)\right]$
$\Longrightarrow\left(m_{2} \circledast m_{3}, n_{2} \circledast n_{3}\right) \otimes\left(m_{1} \circledast m_{3}, n_{1} \circledast n_{3}\right)$
$\Longrightarrow\left\{\left[\left(m_{2} \circledast m_{3}\right) \circledast\left(m_{1} \circledast m_{3}\right)\right] \circledast\left[\left(n_{2} \circledast n_{3}\right) \circledast\left(n_{1} \circledast n_{3}\right)\right]\right\}$
$\Longrightarrow\left(m_{2} \circledast m_{1}, n_{2} \circledast n_{1}\right)$
$\Longrightarrow\left(m_{2}, n_{2}\right) \otimes\left(m_{1}, n_{1}\right)$.
5. $\left[\left(m_{1}, n_{1}\right) \otimes\left(m_{2}, n_{2}\right)\right] \otimes\left[\left(1_{M}, 1_{N}\right) \otimes\left(m_{2}, n_{2}\right)\right]$
$\Longrightarrow\left[\left(m_{1} \circledast m_{2}\right),\left(n_{1} \circledast n_{2}\right)\right] \otimes\left[\left(1_{M} \circledast m_{2}\right),\left(1_{N} \circledast n_{2}\right)\right]$
$\Longrightarrow\left(\left(m_{1} \circledast m_{2}\right) \circledast\left(1_{M} \circledast m_{2}\right)\right],\left[\left(n_{1} \circledast n_{2}\right) \circledast\left(1_{N} \circledast n_{2}\right)\right]$
$\Longrightarrow \quad\left(m_{1} \circledast 1_{M}, n_{1} \circledast 1_{N}\right)$
$\Longrightarrow\left(m_{1}, n_{1}\right)$
Hence $M \times N$ is a GK algebra.

2.3 Theorem

Let $\left\{M_{i} /\left(M_{i} ; \circledast ; 1\right): i=1,2,3 \ldots n\right\}$ and $\left\{N_{i} /\left(N_{i} ; \circledast ; 1\right): i=1,2,3 \ldots n\right\}$ be the family of GK algebras and let $\zeta_{i}: M_{i} \longrightarrow$ $N_{i}, i=1,2,3 \ldots . . n$ be the set of isomorphism.

If ζ from $\prod_{1}^{n} M_{i} \longrightarrow \prod_{1}^{n} N_{i}$ given by $\zeta\left(m_{i}\right),(i=1,2,3 \ldots n)=\zeta_{i}\left(m_{i}\right), i=1,2,3 \ldots n$, then ζ is also an isomorphism.
Proof :
Let $\left\{M_{i} /\left(M_{i} ; \circledast ; 1\right): i=1,2,3 \ldots n\right\}$ and $\left\{N_{i} /\left(N_{i} ; \circledast ; 1\right): i=1,2,3 \ldots n\right\}$ be the family of GK algebras and let $\zeta_{i}: M_{i} \longrightarrow N_{i}, i=1,2,3 \ldots . n$ be the set of isomorphism.

Let ζ from $\prod_{1}^{n} M_{i} \longrightarrow \prod_{1}^{n} N_{i}$ given by $\zeta\left(m_{i}\right),(i=1,2,3 \ldots n)=\zeta_{i}\left(m_{i}\right), i=1,2,3 \ldots n$.
We have to prove ζ is an isomorphism.
If $\left(m_{i}, n_{i}\right) \in \prod_{1}^{n} M_{i}$ then $\zeta\left[\left(m_{1}, m_{2}, \ldots . . m_{n}\right) \otimes\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right)\right]$
$=\zeta\left[m_{1} \circledast n_{1}, m_{2} \circledast n_{2} \ldots \ldots m_{n} \circledast n_{n}\right]$
$=\left(\zeta_{1}\left(m_{1} \circledast n_{1}\right), \zeta_{2}\left(m_{2} \circledast n_{2}\right) \ldots \ldots \zeta_{n}\left(m_{n} \circledast n_{n}\right)\right)$
$=\left(\left(\zeta_{1}\left(m_{1}\right) \circledast \zeta_{1}\left(n_{1}\right)\right),\left(\zeta_{2}\left(m_{2}\right) \circledast \zeta_{2}\left(n_{2}\right)\right) \ldots \ldots\left(\zeta_{n}\left(m_{n}\right) \circledast \zeta_{n}\left(n_{n}\right)\right)\right.$
$=\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(m_{2}\right), \ldots \ldots . \zeta_{n}\left(m_{n}\right)\right] \otimes\left(\zeta_{1}\left(n_{1}\right), \zeta_{2}\left(n_{2}\right), \ldots \ldots . \zeta_{n}\left(n_{n}\right)\right]$
$=\zeta\left(m_{1}, m_{2}, \ldots . m_{n}\right) \otimes \zeta\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right)$

This implies that ζ is a homomorphism.
We have to prove ζ is onto, we have ζ_{i} is onto, where $\mathrm{i}=1,2,3 \ldots \mathrm{n}$.
Let $\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right) \in N_{1} \times N_{2} \times \ldots \times N_{n}$
\Longrightarrow Since ζ is onto, $n_{i} \in N_{i}$, there exists $m_{i} \in M_{i}$ such that $\zeta_{i}\left(m_{i}\right)=n_{i}$ for $i=1,2,3 \ldots n$
$\Longrightarrow\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right)=\left[\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(m_{2}\right), \ldots \ldots \zeta_{n}\left(m_{n}\right)\right]=\zeta\left(m_{1}, m_{2}, \ldots . . m_{n}\right)\right.$
$\Longrightarrow \zeta$ is onto.
Now, to prove ζ is $1-1$.
$\zeta\left(m_{1}, m_{2}, \ldots . m_{n}\right)=\zeta\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right)$
$\left[\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(m_{2}\right), \ldots \ldots . \zeta_{n}\left(m_{n}\right)\right]=\left[\left(\zeta_{1}\left(n_{1}\right), \zeta_{2}\left(n_{2}\right), \ldots \ldots . \zeta_{n}\left(n_{n}\right)\right]\right.\right.$
$\Longrightarrow \zeta_{i}\left(m_{i}\right)=\zeta_{i}\left(n_{i}\right)$
$\Longrightarrow m_{i}=n_{i}$, where $\mathrm{i}=1,2,3 \ldots \mathrm{n}$, since ζ_{i} is $1-1$.
$\Longrightarrow\left(m_{1}, m_{2}, \ldots . m_{n}\right)=\left(n_{1}, n_{2}, \ldots \ldots n_{n}\right)$
$\Longrightarrow \zeta$ is $1-1$.
Hence ζ is an isomorphism.

2.4 Theorem

Let $M_{i}, N_{i}, i=1,2$ be GK algebras. consider the mapping $\zeta_{1}: M_{1} \longrightarrow N_{1}$ and $\zeta_{2}: M_{2} \longrightarrow N_{2}$ where ζ_{1}, ζ_{2} are homomorphisms. If the map $\zeta: M_{1} \times M_{2} \longrightarrow N_{1} \times N_{2}$ given by $\zeta\left(m_{1}, m_{2}\right)=\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(m_{2}\right)\right)$, then

1. ζ is a homomorphism.
2. $\operatorname{Ker} \zeta=\operatorname{ker} \zeta_{1} \times \operatorname{ker} \zeta_{2}$.

Proof:

Let us consider the mapping $\zeta_{1}: M_{1} \longrightarrow N_{1}$ and $\zeta_{2}: M_{2} \longrightarrow N_{2}$ where ζ_{1}, ζ_{2} are homomorphisms.
If the map $\zeta: M_{1} \times M_{2} \longrightarrow N_{1} \times N_{2}$ given by $\zeta\left(m_{1}, n_{1}\right)=\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(n_{1}\right)\right)$,
for $m_{1}, m_{2} \in M_{1}$ and $n_{1}, n_{2} \in M_{2}$ then

- $\zeta\left[\left(m_{1}, n_{1}\right) \otimes\left(m_{2}, n_{2}\right)\right]=\zeta\left(m_{1} \circledast m_{2}, n_{1} \circledast n_{2}\right)$
$=\left(\zeta_{1}\left(m_{1} \circledast m_{2}\right), \zeta_{2}\left(n_{1} \circledast n_{2}\right)\right)$
$=\left(\zeta_{1}\left(m_{1}\right) \circledast \zeta_{1}\left(m_{2}\right), \zeta_{2}\left(n_{1}\right) \circledast \zeta_{2}\left(n_{2}\right)\right)$
$=\left(\zeta_{1}\left(m_{1}\right), \zeta_{2}\left(n_{1}\right)\right) \otimes\left(\zeta_{1}\left(m_{2}\right), \zeta_{2}\left(n_{2}\right)\right)$
$=\zeta_{1}\left(m_{1}, n_{1}\right) \otimes \zeta_{2}\left(m_{2}, n_{2}\right)$
Therefore ζ is a homomorphism.

```
- Let }(m,n)\in\operatorname{ker}\zeta\Leftrightarrow\zeta(m,n)=(\mp@subsup{1}{\mp@subsup{M}{1}{}}{},\mp@subsup{1}{\mp@subsup{M}{2}{}}{}
    \Longleftrightarrow(\zeta
    \Longleftrightarrow \zeta
    \Longleftrightarrowm\inker\zeta}\mp@subsup{\zeta}{1}{},n\inker\mp@subsup{\zeta}{2}{
    \Longleftrightarrow(m,n) \in ker\zeta}\mp@subsup{\zeta}{1}{}\timesker\mp@subsup{\zeta}{2}{}
```

Hence $\operatorname{Ker} \zeta=\operatorname{ker} \zeta_{1} \times \operatorname{ker} \zeta_{2}$.

3 Conclusion

In this article we discussed about the concept of the direct product of GK algebra. We derived the finite form of direct product of GK algebra is isomorphism and also, we investigated and applied the concept of direct product of GK algebra in GK homomorphism and GK kernel, then obtained interesting results.

References

1) Imai Y, Iséki K. On axiom systems of propositional calculi, XIV. Proceedings of the Japan Academy, Series A, Mathematical Sciences. 1966;42(1):19-22. Available from: https://dx.doi.org/10.3792/pja/1195522169.
2) Walendziak A. On BF-algebras. Mathematica Slovaca. 2007;57(2):119-128. Available from: https://dx.doi.org/10.2478/s12175-007-0003-x.
3) Kim CB, Kim HS. On BG-algebras. Demonstratio Mathematica. 2008;41(3). doi:10.1515/dema-2013-0098.
4) Meng BL, Ci-Algebras. CI-algebras. Scientiae Mathematicae Japonicae. 2009;p. 695-701. Available from: https://www.jams.jp/scm/contents/e-2009-8/ 2009-72.pdf.
5) Widianto S, Gemawati S, Kartini. Direct product in BG-algebras. International Journal of Algebra. 2019;13(5):239-247. Available from: https://dx.doi.org/ 10.12988/ija.2019.9619. doi:10.12988/ija.2019.9619.
6) Teves RC, Endam JC. Direct product of BF-algebras. International Journal of Algebra. 2016;10:125-132. Available from: https://dx.doi.org/10.12988/ija. 2016.614.
7) Setiani A, Gemawati S, Deswita L. Direct Product of BP-Algebra. International Journal of Mathematics Trends and Technology. 2020;66(10):63-69. Available from: https://dx.doi.org/10.14445/22315373/ijmtt-v66i10p510.
8) Gowri R, Kavitha J. The Structure of GK Algebras. International Journal for Research in Applied Science and Engineering Technology. 2018;6(4):1208-1212. Available from: https://www.ijraset.com/fileserve.php?FID=15330.
