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Abstract
Objectives: To find the direct product of an algebraic structure namely as GK
algebra.Methods/Findings: We derive some important results in which direct
product of two GK algebra is again GK algebra as a particular case and also,
derive the general case of the same then after investigate the direct product of
kernel of GK algebra.
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1 Introduction
BCK-algebras and BCI-algebras are abridged to two B-algebras. The BCK algebra was
coined in 1966 by the Japanese mathematicians, Y. Imai and K. Iseki (1). Two B-algebras
are created from twodifferent provenances. In 2007, the new algebraic structurewhich is
said to be BF algebra, was explored by Andrze J Walendziak (2) which is a generalization
of BCI/BCK/B-algebras. In 2008, the generalization of B algebra called as BG algebra
initiated by Kim & Kim (3). In 2009, another algebra which is generalization of BE
algebra and dual BCK/BCI/BCH algebras, namely CI algebra was initiated by Biao long
Meng (4).

Direct product plays an important role in algebraic structures. In 2019, Slamet
Widianto, Sri Gemawati, Kartini (5–7) were discussed about the Direct product of BG
algebra. Likewise, many authors have discussed this topic in their work. Motivated
by these, in this paper we discuss about direct product of GK algebra and obtain its
some interesting results. In 2018, we introduced the new algebraic structure namely GK
algebra (8) and discussed about its characteristics and investigated some results. In this
paper we discuss about the direct product of GK algebra and investigate its properties.

2 Direct product of GK algebra

2.1 Definition

Let (M,⊛,1M) and (N,⊛,1N) be GK algebras. Direct product M × N is defined as a
structure M×N = (M×N;⊗ ;(1M ; 1N)), where M×N is the set {(m,n)/m ∈ M,n ∈ N}
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and ⊗ is given by

(m1,n1)⊗ (m2,n2) = (m1 ⊛m2,n1 ⊛n2)

This shows that the direct product of two sets of GK algebra M and N is denoted by M×N, which each (m,n) is an ordered pair.

2.2 Theorem

Direct product of any two GK algebras is again a GK algebra.
Proof:
Let M and N be GK algebras, let m1,m2 ∈ M and n1,n2 ∈ N
We know that M×N = (M×N; ⊗ ;(1M ; 1N))
Since 1M ∈ M,1N ∈ N
This implies that (1M,1N) ∈ M×N
∴ M×N is non− empty.
Now let us prove it is GK algebra.
Let m1,m2 ∈ M and n1,n2 ∈ N

1. (m1,n1)⊗ (m1,n1) = (m1 ⊛m1,n1 ⊛n1)
= (1M,1N) by definition of GK algebra

2. (m1,n1)⊗ (1M,1N) = (m1 ⊛1M,n1 ⊛1N)
= (m1,n1) by definition GK algebra

3. If (m1,n1)⊗ (m2,n2) = (1M,1N) and (m2,n2)⊗ (m1,n1) = (1M,1N)
then (m1 ⊛m2,n1 ⊛n2) = (1M,1N)
=⇒ m1 ⊛m2 = 1M and n1 ⊛n2 = 1N
=⇒ m1 = m2 and n1 = n2 by definition GK algebra.

4. [(m2,n2)⊗ (m3,n3)]⊗ [(m1,n1)⊗ (m3,n3)]
=⇒ (m2 ⊛m3,n2 ⊛n3)⊗ (m1 ⊛m3,n1 ⊛n3)
=⇒{[(m2 ⊛m3)⊛ (m1 ⊛m3)]⊛ [(n2 ⊛n3)⊛ (n1 ⊛n3)]}
=⇒ (m2 ⊛m1,n2 ⊛n1)
=⇒ (m2,n2)⊗ (m1,n1).

5. [(m1,n1)⊗ (m2,n2)]⊗ [(1M,1N)⊗ (m2,n2)]
=⇒ [(m1 ⊛m2) ,(n1 ⊛n2)]⊗ [(1M ⊛m2) ,(1N ⊛n2)]
=⇒ ((m1 ⊛m2)⊛ (1M ⊛m2)] , [(n1 ⊛n2)⊛ (1N ⊛n2)]
=⇒ (m1 ⊛1M,n1 ⊛1N)
=⇒ (m1,n1)

Hence M×N is a GK algebra.

2.3 Theorem

Let {Mi /(Mi;⊛;1) : i = 1,2,3 . . . .n} and {Ni /(Ni;⊛;1) : i = 1,2,3 . . . .n} be the family of GK algebras and let ζi : Mi −→
Ni, i = 1,2,3 . . . ..n be the set of isomorphism.

If ζ f rom ∏n
1 Mi −→ ∏n

1 Ni given by ζ (mi),(i = 1,2,3 . . .n) = ζi (mi) , i = 1,2,3 . . .n, then ζ is also an isomorphism.
Proof :
Let {Mi /(Mi;⊛;1) : i = 1,2,3 . . . .n} and {Ni /(Ni;⊛;1) : i = 1,2,3 . . . .n} be the family of GK algebras and let

ζi : Mi −→ Ni, i = 1,2,3 . . . ..n be the set of isomorphism.
Let ζ f rom ∏n

1 Mi −→ ∏n
1 Ni given by ζ (mi),(i = 1,2,3 . . .n) = ζi (mi) , i = 1,2,3 . . .n.

We have to prove ζ is an isomorphism.
If (mi,ni) ∈ ∏n

1 Mi then ζ [(m1,m2, . . . ..mn)⊗ (n1,n2, . . . . . .nn)]
= ζ [m1 ⊛n1,m2 ⊛n2 . . . . . .mn ⊛nn]
= (ζ1(m1 ⊛n1),ζ2(m2 ⊛n2) . . . . . .ζn(mn ⊛nn))
= ((ζ1(m1)⊛ζ1(n1)), (ζ2(m2)⊛ζ2(n2)) . . . . . .(ζ n(mn)⊛ζn(nn))
= (ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] ⊗ (ζ1(n1) , ζ2(n2), . . . . . . . ζn(nn)]

= ζ (m1,m2, . . . ..mn) ⊗ ζ (n1,n2, . . . . . .nn)
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This implies that ζ is a homomorphism.
We have to prove ζ is onto, we have ζi is onto, where i=1,2,3….n.
Let (n1,n2, . . . . . .nn) ∈ N1 ×N2 × . . . .×Nn
=⇒ Since ζ is onto, ni ∈ Ni, there exists mi ∈ Mi such that ζi (mi) = ni f or i = 1,2,3 . . .n
=⇒ (n1,n2, . . . . . .nn) = [(ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] = ζ (m1,m2, . . . ..mn)
=⇒ ζ is onto.
Now, to prove ζ is 1−1.
ζ (m1,m2, . . . ..mn) = ζ (n1,n2, . . . . . .nn)
[(ζ1(m1) , ζ2(m2), . . . . . . . ζn(mn)] = [(ζ1(n1) , ζ2(n2), . . . . . . . ζn(nn)]
=⇒ ζi (mi) = ζi(ni)
=⇒ mi = ni , where i=1,2,3….n , since ζi is 1-1.
=⇒ (m1,m2, . . . ..mn) = ( n1,n2, . . . . . .nn)
=⇒ ζ is 1−1.
Hence ζ is an isomorphism.

2.4 Theorem

Let Mi,Ni, i = 1,2 be GK algebras. consider the mapping ζ1 : M1 −→ N1 and
ζ2 : M2 −→ N2 where ζ1,ζ2 are homomorphisms. If the map ζ : M1 ×M2 −→ N1 ×N2 given by
ζ (m1,m2) = (ζ 1 (m1) ,ζ2(m2)), then

1. ζ is a homomorphism.
2. Ker ζ = kerζ1 × kerζ2.

Proof:
Let us consider the mapping ζ1 : M1 −→ N1 and ζ2 : M2 −→ N2 where ζ1,ζ2 are homomorphisms.
If the map ζ : M1 ×M2 −→ N1 ×N2 given by ζ (m1,n1) = (ζ1 (m1) ,ζ2 (n1)),
for m1,m2 ∈ M1 and n1,n2 ∈ M2 then

• ζ [(m1,n1)⊗ (m2,n2)] = ζ (m1 ⊛m2,n1 ⊛n2)
= (ζ1 (m1 ⊛m2) ,ζ2 (n1 ⊛n2))
= (ζ1 (m1)⊛ζ1(m2) ,ζ2 (n1)⊛ζ2(n2))
= (ζ1 (m1) ,ζ2 (n1)) ⊗ (ζ1 (m2) ,ζ2 (n2))
= ζ1(m1,n1)⊗ζ2(m2,n2)

Therefore ζ is a homomorphism.

• Let (m,n) ∈ kerζ ⇔ ζ (m,n) = (1M1 ,1M2)
⇐⇒ ( ζ1 (m),ζ2(n)) = (1M1 ,1M2)
⇐⇒ ζ1 (m) = 1M1 ,ζ2(n) = 1M2
⇐⇒m ∈ kerζ1 , n ∈ kerζ2
⇐⇒ (m,n) ∈ kerζ1×kerζ2.

Hence Ker ζ = kerζ1 × kerζ2.

3 Conclusion
In this article we discussed about the concept of the direct product of GK algebra. We derived the finite form of direct product
of GK algebra is isomorphism and also, we investigated and applied the concept of direct product of GK algebra in GK
homomorphism and GK kernel, then obtained interesting results.
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