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Abstract
Background/Objectives: Density, performance, and design complexity of
integrated circuits are rapidly increasing specifically in 3-D integration where
multi-plane synchronization is required. The power and clock distribution
networks consume a large portion of the limited on-chip metal resources. In
order to reduce the metal overhead associated with the power, global clock,
and local clock distribution networks, the concept of an integrated power and
clock distribution network (IPCDN) was investigated and correct functionality of
combinational and sequential elements verified. This study discusses potential
power savings in IPCDNs achieved by reducing the central voltage at which
the signal oscillates. Methods/Statistical analysis: In this paper, an IPCDN
with differential power-clock signals centered at half the supply voltage is
proposed to further reduce the power consumption. The elements of the
proposed scheme including the LC differential power-clock driver, clamping
circuit, clock buffer, and voltage doubler have been simulated using Tanner
0.25 um CMOS technology at a frequency of 50 MHz and a supply voltage
of 2.5 V. Findings: Simulation results indicate that the proposed scheme
achieves 75.32% and 76.47% power reduction in the LC differential power-
clock driver and clock buffer, respectively. The effects of process, voltage
supply, and temperature (PVT) variations on the proposed scheme were also
investigated. Discussion: The IPCDN has a large capacitance and is heavily
loaded, thus reducing the central voltage of the resonant sinusoidal signal
flowing in this network enables significant reduction in power consumption.
Novelty/Applications: The proposed scheme enables power reductions in
the LC differential power clock driver and clock buffer. The effects of process,
voltage supply, and temperature (PVT) variations on all circuit elements of the
proposed scheme was investigated.
Keywords: resonant clocking; power reduction; routing complexity; LC clock
driver; clock buffer; clamping circuit; voltage doubler
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1 Introduction
The clock distribution network (CDN) distributes the clock signal which acts as a timing reference that controls and
synchronizes the flow of data.The CDN operates at high frequencies, is heavily loaded, and has a high capacitance.The CDN in
synchronous systems-on-chip (SOCs) and application-specific-integrated-circuits (ASICs) consumes a large amount of power
compared to thewhole system (1,2). In high performance processors,more than 30%of total power is consumed in theCDN (3–7).
In the IBM POWER4 1.3 GHz microprocessor, around 70% of total power is dissipated in the CDN and latches (8). Latest
developments in 3-D integrated circuits where multi-plane synchronization is required, indicate that the power consumption
and metal overhead associated with the CDN will remain at these high levels (9,10).

Energy recovery resonant clocking is an appealing scheme to reduce the power consumption of the CDN. The resonant
clocking scheme, unlike square-wave clocking, uses the capacitance of the clock network, an on-chip inductor, and a decoupling
capacitance to generate a resonant sinusoidal clock. Resonant CDNs reduces power by recycling and transforming the energy
between electrical andmagnetic form in the capacitor and inductor, respectively.The LC resonant clock driver implemented on
a 22 nmprocess node achieves 50%power reduction in the driver as compared to the non-resonant driver (11).ThemodifiedCell
Broadband Engine Processor incorporating a large resonant global clock network demonstrates a 6-8 Watt power savings (12).
Measurement results using intermittent resonant clocking (IRC) show that resonant clocking reduces the clock power by 36% at
980 kHz compared to conventional non-resonant clocking (13). Simulation results of 1024 clocked flip-flops through an H-tree
clock network driven by a resonant clock generator indicate total power savings of up to 83% and a power reduction of 90% on
the clock-tree as compared to the same implementation using conventional square-wave clocking (14). The distributed model
of a two-level resonant H-tree structure presented in (15) exhibits 84% decrease in power dissipation as compared to a standard
H-tree clock distribution network. AMD’s x86-64 resonant clock design for a power-efficient high-volume microprocessor
achieved a peak 25% power reduction in the global clock (16). Varying the operating frequency, LC tank placement, and sizes in
a 3-level resonant clock H-tree demonstrates that around 23% power reduction is achieved when the LC tank is placed on the
second level of the clock network (17). Implementing compensation capacitors to reduce the overhead of the on-chip inductor
and capacitor resources, resulted in a 12% reduction in passive device areawhile still achieving 49.9%power savings as compared
to traditional square-wave clock (18). In (19), a modeling and optimization method for resonant clocking using the mesh clock
structure was proposed since themesh clock structure has a higher power consumption as compared to H-tree.The experiment
demonstrated that the resonant clock mesh structure can save more than 80% of power consumption compared to the same
mesh structure without using the resonant LC tanks. A successful experiment on a test-chip in 130-nm CMOS technology at
1.56 GHz LC resonant clock directly driving 2x896 flip-flops illustrates that resonant clocking results in 57% lower clock power
and 15-30% lower total chip power as compared to conventional clocking (20).

Various schemes have been proposed in the literature to enable further power reduction in the resonant clock distribution
network. Dual-edge triggered flip-flops operating with a resonant sinusoidal clock signal can achieve up to 58% reduction in
power consumption (21). Clock gating has been used to reduce the resonant clock power consumption (22,23). However, the global
clock distribution network driving the clock gates still consumes a large amount of total power (24,25). A resonant converter with
voltage doubler rectifier for wide output voltage with soft switching characteristics is presented in (26). A full-bridge rectifier
and voltage-doubler are employed for low-voltage and high-voltage output applications. Quasi-resonant clocking with voltage-
frequency scalable resonant clocking system was proposed in (27). The proposed scheme uses a timing control module to
control the assertion/de-assertion of the signals generated to ensure efficient operation. A two-phase synthesis algorithm for
resonant clock networks supporting dynamic voltage/frequency scaling is discussed in (28). The first phase in the algorithm is
the allocation and placement of the inductor and the second phase is the resizing of the driving buffers. Simulation results show
that resonant clock networks synthesized using the proposed algorithm achieve 17% reduction in power. In (29), a quadrature
resonant clock generatorwith tuning capacitors and amplitude control feedback loop is presented.Theproposed clock generator
enables 20 to 25% reduction in power as compared to conventional CMOS clock driver. A resonant clock driver for low-power
and low-voltage for IoT device was simulated in (30).The proposed clock driver operates under a low supply voltage and a voltage
doubler to reduce the on-resistance of the NMOS transistor.

Integrated circuits (ICs) density, performance, and design complexity are increasing specifically in 3-D integration (31–33),
which emphasizes the need for new techniques to supply the power, ground, and clock signals. A large portion of the limited on-
chip metal resources are consumed by the power and clock distribution networks (34). A novel 3DThrough-Silicon-Via (TSV)
based capacitor is investigated in (35) for LC resonant clocking in 3D ICs. Replacing conventional inductor and capacitor to TSV
based structures achieves a 2.2× and 16.3× reduction in area, respectively. A new scheme to use idle TSVs to form inductors
in LC resonant clock for 3D ICs to reduce the power consumption in the CDN was proposed in (36). Experimental results on
industrial designs show that the power consumption is reduced by up to 47.9% compared to square-wave conventional CDNs.
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A globally integrated power and clock (GIPAC) distribution network was proposed in (37) as a means of eliminating the
on-chip global clock distribution network. The power and clock signals are integrated in the GIPAC and then separated in
the local power and local clock networks using a low-pass and high-pass filters, respectively. The proposed approach does not
eliminate the need for the local clock distribution network.The authors of this paper had proposed the integration of the power
and clock distribution networks into one network called the Integrated Power and Clock Distribution Network (IPCDN) (38).
The proposed IPCDN combines the power and clock networks, thus reduces metal requirements at higher levels and decreases
routing complexity. This approach is most suitable for 3D integrated ICs since it significantly reduces the routing complexity
of the clock and power distribution networks and reduces the demand on the limited on-chip metal resources. The IPCDN
distributes a differential resonant sinusoidal power-clock signal, Pwr_Clk, centered at a DC offset that is equal to the supply
voltage, VDD. The resonant differential power-clock signals are generated using a differential LC Pwr_Clk driver. These signals
are connected to the VDD port of sequential and combinational circuits.The low voltage swing of the differential Pwr_Clk signals
leads to substantial decrease in the required driver strength as compared to full-swing resonant CDNs (39). A clock buffer is
needed in the IPCDN in order to extract a full-swing clock signal which supplies the clock port in sequential elements.

The IPCDN has a large capacitance, thus reducing the central voltage of the resonant sinusoidal signal flowing in the IPCDN
enables significant reduction in power consumption. In this paper, the authors investigate the power savings in the IPCDN
achieved by reducing the central offset voltage at which the Pwr_Clk signal oscillates. In the proposed scheme the central
offset voltage is reduced to VDD/2 as presented in section 2. Simulation results and analysis are discussed in section 3 and
the conclusion of the paper is given in section 4.

2 Proposed IPCDN with Differential Power-Clock Signals Centered at Half the
Supply Voltage
The IPCDN offers several advantages as compared to traditional CDNs. Combining the clock and power networks reduces
routing complexity and metal overhead. In addition, the reduced swing of the Pwr_Clk signals decrease the required LC driver
strength. In this paper, we investigate the feasibility of reducing the power consumption of the IPCDN by decreasing the DC
voltage at which the power-clock signals oscillate from VDD to VDD/2.

Figure 1 illustrates the IPCDN with power-clock resonant signals centered at high DC voltage, i.e., VDD. The generated
Pwr_Clk signals in this scheme will be referred to as HDC_Pwr_Clk signals. As shown in Figure 1, the HDC_Pwr_Clk signals
generated by the differential LC driver are connected directly to the VDD ports of sequential and combinational circuits. The
full-swing clock signal, Fswing_Clk, extracted by the clock buffer, feeds the clock port in sequential circuits.

Fig 1. IPCDN with Pwr_Clk signals centered at VDD

https://www.indjst.org/ 2673

https://www.indjst.org/


Esmaeili & Imdoukh / Indian Journal of Science and Technology 2021;14(33):2671–2683

The proposed IPCDN with Pwr_Clk signals centered at VDD/2 is presented in Figure 2. The differential LC driver generates
Pwr_Clk signals that are centered at a lower DC voltage, thus refereed to from hereon as LDC_Pwr_Clk. These signals will be
distributed by the IPCDN to reduce the power consumption in this network.TheLDC_Pwr_Clk signals are then fed to a clamping
circuit in order to restore the DC component back to VDD and generate the HDC_Pwr_Clk signals needed to supply the power
port in combinational and sequential circuits. The clock buffer generates a low-swing clock signal, Lswing_Clk, with a peak
voltage of VDD/2. A voltage doubler is used to generate a full-swing clock signal, Fswing_Clk, to be connected to the clock port
in sequential elements.

The generated HDC_Pwr_Clk signal presented in Figures 1 and 2 is given by the following equation:

HDC−Pwr−Clk(t) =
(

VOH −VOL

2

)
cos

(
2π f t − π

2

)
+VDD (1)

Fig 2. IPCDN with Pwr_Clk signals centered at VDD/2.

The equation for the LDC_Pwr_Clk signal shown in Figure 2 is given by:

LDC−Pwr−Clk(t) =
(
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)
cos
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)
+

VDD

2
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WhereVOH andVOL are the highest and lowest voltage levels of the generated Pwr_Clk signal and f is the resonant frequency.
The power dissipation of the IPCDN with a Pwr_Clk signal centered at VDD is given by (16,40,41):

PIPCDN−VDD =
π
Q

C fVDD
2 (3)

Where Q is the quality factor of the system, C is the capacitance of the IPCDN and f is the operating frequency.
Similarly, the power dissipation of the IPCDN with a Pwr_Clk signal centered at VDD/2 is given by:

PIPCDN−
VDD

2
=

π
4Q

C fVDD2 (4)
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Equations 3 and 4 demonstrate that the power consumption of the IPCDN is proportional to the square of the voltage at which
the Pwr_Clk resonant signal is centered. Reducing this voltage to half achieves a 75% reduction in the power consumption of the
IPCDN.Given that the capacitance associatedwith this global network is high, significant savings in the power consumption can
be achieved by the proposed approach. Additional area and power overhead are introduced on the other hand by the clamping
circuit and the voltage doubler circuit required to generate the HDC_Pwr_Clk and Fswing_Clk signals, respectively.

2.1 Differential Pwr_Clk Driver with Reduced Central Voltage

The LC differential Pwr_Clk driver used in the proposed scheme is shown in Figure 3. The VDD/2 node of the inductors
determines the central voltage or the DC component around which the generated Pwr_Clk signals, i.e., LDC_Pwr_Clk+ and
LDC_Pwr_Clk- oscillate. Reference pulses VREF1 and VREF2 feed the transistors MP1 and MP2 in order to pull-up the
differential Pwr_Clk signals to VOH . The outputs of the two inverters, alternately turn on transistors MN1 and MN2 to pull-
down the differential Pwr_Clk signals to VOL.

Fig 3.The LC differentialPwr_Clk driver with reduced central voltage

2.2 Clamping Circuit

The clamping circuit used in the proposed scheme (Figure 2) is shown in Figure 4. The clamping circuit utilizes a diode
connected transistor, MN1, with a suitable DC voltage, V1, and capacitor, C1, to pull up the central voltage of the Pwr_Clk
differential signals from VDD/2 to VDD.

Fig 4.The clamping circuit used to pull-up the central DC voltage from VDD/2 to VDD.

2.3 Clock Buffer

The differential low-swing clock signals, Lswing_Clk and Lswing_ClkB are extracted from the LDC_Pwr_Clk differential signals
using the clock buffer presented in Figure 5. The buffer utilizes two cross-coupled CMOS inverters. The first inverter is
implemented by MP2 and MN2. The second one is implemented by MP3 and MN3. The gate of each inverter is connected
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to the LDC_Pwr_Clk signals using pass transistors MN5 and MN6. The voltage difference between nodes X and Y shown in
the figure is amplified and fed to the two inverters at the output stage implemented by transistors MP1/MN1 and MP4/MN4,
respectively, to generate the Lswing_Clk and Lswing_ClkB signals with sharp edges.

Fig 5.The clock buffer

2.4 Voltage Doubler

The voltage doubler proposed in (42,43) and shown in Figure 6 is used to generate full-swing differential clock signals, Fswing_Clk
from the low-swing clock signals, Lswing_Clk.The full-swing clock signals are connected to the clock port in sequential elements.

Fig 6.The voltage doubler

3 Simulation Results and Analysis
All circuits discussed in the previous section were implemented using Tanner 0.25 µm CMOS technology and simulated with
a supply voltage, VDD of 2.5 V. The network capacitance, C was chosen to be equal to 8 pF, for which a 1.267 µH is needed in
order to generate a Pwr_Clk signal with a resonant frequency of 50 MHz.
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3.1 IPCDN with Pwr_Clk Signals Centered at VDD

The LC differential Pwr_Clk driver with VDD as the central voltage in the scheme shown in Figure 1 was simulated. In the
simulation, the width of the used NMOS devices was 0.3 µm and the width of the used PMOS devices was 0.975 µm. This
sizing of the transistors was selected to ensure that the inverter in the LC differential Pwr_Clk driver is a matched inverter. As
for the clock buffer, the width of the used PMOS devices and NMOS devices in the simulation was 0.3 µm. The differential
HDC_Pwr_Clk signals generated by the LC driver and resonating around a central voltage of 2.5 V are presented in Figure 7.The
outputs of the clock buffer, i.e., Fswing_Clk and Fswing_ClkB are shown in Figure 8.

Fig 7.The differential HDC_Pwr_Clk signals with 2.5 V as the central voltage

Fig 8.The differential clock signals generated by the clock buffer

3.2 Proposed IPCDN with Pwr_Clk Signals Centered at VDD/2

The LC differential Pwr_Clk driver with VDD/2 as the central voltage in the scheme shown in Figure 3 was simulated. In the
simulation, the width of the used NMOS devices was 0.3 µm and the width of the used PMOS devices was 2.175 µm. This
sizing of the transistors was selected to ensure that the inverter in the LC differential Pwr_Clk driver is a matched inverter. The
differential LDC_Pwr_Clk signals generated by the LC driver and resonating around a central voltage of 1.25 V are presented in
Figure 9.

The clamping circuit was simulated using a 100 kΩ resistance, a 1.2 nF capacitance, and a 3.625 V voltage source. The diode
connected transistor (MN1 in Figure 4) has a width of 0.5 um.The HDC_Pwr_Clk signals generated by the clamping circuit are
shown in Figure 9.

The clock buffer was simulated with NMOS and PMOS devices sized carefully to achieve correct functionality. Figure 11
presents the outputs of the clock buffer, i.e., Lswing_Clk and Lswing_ClkB.
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Fig 9.The differential LDC_Pwr_Clk signals with 1.25 V as the central voltage

Fig 10.TheHDC_Pwr_Clk signals generated by the clamping circuit

Fig 11.The low-swing differential clock signals generated by the clock buffer
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The voltage doubler was simulated using a 1 pF capacitance, and a 1.35 V voltage source. The width of the used NMOS
devices is 0.5 µm and the width of the used PMOS devices is 0.3 µm. The high swing clock signals generated by the voltage
doubler are shown in Figure 12 .

Fig 12.The full-swing clock signals generated by the voltagedoubler

3.3 Power Consumption Analysis

The power consumption of the LC differential HDC_Pwr_Clk driver, LDC_Pwr_Clk driver, and clock buffer in each scheme are
presented in Table 1 . Centering the Pwr_Clk signals at VDD/2 in the proposed scheme reduces the LC differential Pwr_Clk driver
power consumption by 75.32% which is consistent with what was previously calculated based on a comparison of equations (3)
and (4). Furthermore, the proposed scheme enables a 76.47% reduction in the power of the clock buffer. The clamping circuit
and the voltage doubler circuit used by the proposed scheme add additional area and power overhead. The topology of the
IPCDN and the number of clamping circuits and voltage doubler circuits needed to drive every section of the IPCDN need to
be carefully examined in order to optimize power savings.The area and power overhead introduced by the clamping circuit and
the voltage doubler circuit can be reduced by sharing these circuits between several combinational and sequential elements.

Table 1. Power analysis of the two schemes
HDC_Pwr_Clk Power (µW) LDC_Pwr_Clk Power (µW) Reduction in Power

LC driver 547
LC driver 135 75.32%
+ Clamping circuit 95 57.95%

Clock buffer 255
Clock buffer 60 76.47%
+ Voltage doubler 8 73.33%

3.4 Process, Supply Voltage, and Temperature (PVT) Variation Effects Analysis

This section discusses the effects of process, supply voltage, and temperature variations (PVT) on the proposed scheme.
Simulations were conducted for all of the circuits in the proposed scheme, i.e., the LC differential Pwr_Clk driver, the clamping
circuit, the clock buffer, and the voltage doubler using minimum sized transistors. The supply voltage was varied by ±10%
of VDD/2 (44). Figures 13 and 14 present the outputs of the LC clock driver and the clock buffer, i.e., the LDC_Pwr_Clk and
Lswing_Clk signals, respectively under supply voltage variations. The results obtained illustrate that the clock buffer in the
proposed scheme is susceptible to drops in the supply voltage. Based on these results, variations in the supply voltage should be
carefully considered and tested to ensure correct functionality of IPCDNs.

The proposed IPCDNwith low central voltage was simulated at 0 ◦C, 27 ◦C, and 100 ◦C (44).The simulation results are shown
in Figures 15 and 16 .The simulation results demonstrate correct functionality of the proposed scheme at low temperature, and
at high temperature.
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Fig 13.The LC differential driver output with±10% variations of VDD/2

Fig 14.The clock buffer output with±10% variations of VDD/2

Fig 15.The LC differential driver output under temperature variations
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Fig 16.The clock buffer output under temperature variations

4 Conclusion
In this paper, an IPCDN with differential power-clock signals centered at half the supply voltage as a mean to enable power
reduction in this network is proposed. All of the components associatedwith the proposed network including the LCdifferential
power-clock driver, the clock buffer, the clamping circuit, and the voltage doubler circuit were simulated using Tanner 0.25
µm technology at a frequency of 50 MHz. Simulation results verify correct functionality of all the components under the
proposed scheme. Power reductions of 75.32% and 76.47% were achieved in the LC differential power-clock driver and clock
buffer, respectively. The effects of process, voltage supply, and temperature (PVT) variations on the proposed scheme were
also investigated. The results show that the components of the proposed scheme are immune to process, supply voltage, and
temperature variations, except for the clock buffer which is susceptible to power supply variations. The clamping circuit and
the voltage doubler circuit used by the proposed scheme add additional area and power overhead which can be reduced by
sharing these circuits between several combinational and sequential elements. Future work will concentrate on implementing
this scheme at advanced technology nodeswith higher frequencies and lower supply voltage.Alternative designswill be explored
to reduce circuit complexity and additional overhead of the components used.
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