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Abstract
Objectives: Massive Multiple-Input and Multiple-Output (MIMO) is the opti-
mum way to enhance the bandwidth issue, in which the feedback overhead is
a challenging concern when tested with Frequency Division Duplex (FDD) sys-
tems. Conventional greedy search algorithms like Matching Pursuit (MP) and
Orthogonal Matching Pursuit (OMP) are based on the prior knowledge of the
signal sparsity, which enhances overhead. So, the objective of this study is to
develop a method with low complexity channel estimation and reduced feed-
back overhead.Methods: The proposed method is based on the residual vec-
tor which is updated after iteration and a threshold-based approach is utilized
to decide the stopping criteria thereby controlling the number of iterations. The
evaluation parameters used in the experimental analysis are NormalizedMean
Square Error and channel capacity. Findings: The proposed method improves
the effectiveness in signal recovery and reconstruction along with signal spar-
sity it also reduces the complexity of the estimation process and limits the feed-
back. This results in a high data rate and can be used in a massive MIMO sys-
tem to optimize the channel estimation.Novelty : The proposedmodel is inde-
pendent of the sparsity in the input vector and improves the effectiveness of
the signal recovery and reduces the feedback burden. The proposed method
is suitable for a 5G massive MIMO systems.

Keywords: Feedback overhead; CSI; OMP; Residue vector

1 Introduction
TheMassive Multiple-Input Multiple-Output (MIMO) system is equipped with a large
array of antennas in the base station, which provides a high degree of freedom of space.
This can effectively improve energy efficiency and spectrum efficiency, and become one
of the key technologies in the 5G mobile communication (1,2). To avail the advantage of
the spatial gain of a massive MIMO system, the channel state information of the sender
is necessary. In the time division duplexing (TDD) system, the downlink channel status
information can be transferred from the uplink channel state information (CSI)
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according to the reciprocity of the channel. However, in the TDD system, the frequency calibration error of the radio frequency
link is relatively large. Generally, it is impossible to obtain accurate CSI (3). But in the FDD system, Channel reciprocity does not
exist, FDD system downlink can be directly transferred from the uplink channel. For channel estimation, the uplink requires
channel feedback technology. Therefore, we study the massive MIMO system in FDD mode.

The uplink channel estimation and uplink channel feedback schemes have high research investigation value. Channel
training and channel feedback schemes are mainly divided into three categories:

1. Limited feedback technology based on channel statistics
2. Codebook-based Limited feedback technology
3. Limited feedback technology based on compressed sensing

In limited feedback technology (4) and the codebook based feedback technology, accuracy is low and the complexity is high.
Based on the compressed sensing method Channel estimation and feedback scheme can effectively decrease system feedback
overhead.

In recent years, limited feedback technology methodologies based on compressed sensing have been proposed (5,6). L.
Daietal. (7) first designed a non-orthogonal pilot, and then proposed an adaptive structured compressed sensing algorithm,
which effectively improved the channel estimation accuracy, but the feedback link overhead was still large. In (8) compressed
sensing channel estimation scheme based on beam block is presented, which effectively reduces the downlink feedback
overhead, but it cannot obtain a high channel estimation effect in a limited pilot sequence. W. Shenetal. (9) designed a joint
channel estimation and feedback differential channel estimation feedback scheme. The scheme used the characteristics of the
channel impulse response of adjacent time slots so that the channel impulse response does not changemuch, and the differential
channel impulse response is used to a certain extent. The channel estimation accuracy is improved, and the feedback scheme
effectively reduces the piloting overhead.

Stefan Schwarz et al. (10) proposed a novel CSI quantization and feedback technique based on a dual-stage Grassmannian
product quantization framework. The proposed method exhibits better performance particularly when the channel is
decomposed in the angular domain. So that, thisDFT-based codebook provides efficient CSI compression in themassiveMIMO
system.The proposed dual-stage codebook design is compared with single-stage quantization and it reveals small degradation
in the performance. However, to improve the reduction in feedback overhead inmassiveMIMO, the development of the hybrid
method is considered as a future scope.

According to FengZheng et al. (11), dual-polarized antennas arewidely used inmassiveMIMOsystems.When these antennas
are utilized inmassiveMIMO, polarization leakage is a critical issue.Most of the existing CSImethods are not considering these
polarization issues. In this article, polarization leakage is considered into account and a CSI method is developed. Similarly, two
novel CSI feedback schemes were introduced which are: explicit and implicit feedback schemes. In an explicit feedback scheme,
the feedback operation performs explicitly to determine the eigenvectors of the channels. In the implicit feedback scheme, the
two feedback of the two channels is based on a predetermined codebook.

Haoran Sun et al. (12) proposed two novel approaches for channel estimation to handle the feedback burden in the massive
MIMO system. The first approach was developed based on iterative optimization which is a low-rank sensing method. The
second approach is based on a deep neural network framework for channel recovery in real-time. These two methods are
compared with existing optimization methods to evaluate their effectiveness. The main drawback of the second approach is:
the huge computational time is required for training.

Yong Liao et al. (13) uses the spatial correlation of massive MIMO and proposed a channel simulation compression feedback
method to obtain better feedback performance with smaller power and shorter time. In this work a CSI compressed feedback
algorithm is developed based on Laplacian eigenmaps. The authors reported that, by using the proposed method, the feedback
overhead burden is greatly reduced when compared with the Discrete Cosine Transform (DCT) based sparse compression
method. However, the computational complexity of this method is increased.

Yong Liao et al. (14) describes the importance of feedback overhead reduction in FDDmassiveMIMO. To overcome feedback
overhead, a Modified Sparse Adaptive Matching Pursuit (M-SAMP) method is proposed.The authors combine the parameters
of the conventional SAMP algorithm to precisely construct the sparse signal.The combined considered parameters are variable
step size, signal segmenting, and primary estimation of the sparsity signal. This proposed work is compared with other
algorithms such as OMP, subspace tracking (SP), and conventional SAMP. However, in this work, quantization error and
complexity of the proposed method are not discussed. Darshankumarand Himanshu, (15) presented an approach to improve
the channel estimation using the Kalman filter, however, this approach may not be the optimum to find the directivity in real-
time applications. Nivedita and Manoj (16) proposed a method to enhance the channel estimation using DWT Technique; this
approach cannot find extensive use in MIMO systems because it lacks to find directivity. Ahmed et. al (17) proposed a method
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in which the authors try to improve the downlink performance of massive MIMO systems using the pre-coding technique.
However, this methodmay not be optimum in the real-time application as pre-coding causes overhead and enhances delay, as a
result of which PDR is reduced. Lee and Song (18) demonstrated a technique to improve beamforming by reducing the feedback
overhead using the nonlinear quantization principle. This technique increases the overhead due to more no of bits combined
along with the frame, hence may not be the optimum for real-time applications. Borges et. al (19) gives a survey of Massive
MIMO techniques.Mashhadi and Deniz (20) presented a technique in which authors use deep learning concept to optimize the
CSI, however, environmental condition varies for seasons, hence cannot be used to improve beamforming which is an essential
parameter to improve channel estimation

Sincemost of the current channel estimation and feedback schemes have the problemof low channel estimation accuracy and
large feedback overhead, it is very significant to study algorithms to improve channel estimation accuracy and reduce feedback
link overhead. So this paper proposes a low complexity channel estimation algorithm based on the traditional OMP approach
which effectively improves the channel estimation and gives a better performance with reference to the packet delivery ratio
(PDR).The proposed approach reduces the complexity and reduces the delay, thus is well suited for massiveMIMO systems for
real-time applications.

The organization of the paper is as follows: In section-2, the conventional greedy algorithms are being presented, in section
3 we present our proposed model, section 4 presents the results and discussion. And we conclude our paper in section 5.

2 Conventional Greedy Algorithms
The function of a greedy search algorithm is to sequentially find the support of the signal to be reconstructed through an iterative
method, and find one or more constituent elements of the signal to be estimated at a time based on a certain greedy criterion.
The greedy algorithm represented byMatching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) searches for the idea of
‘x′ signal support that is, each iteration uses the columnwith the largest absolute value element ΦTy as the supported candidate,
and one iteration determines one selected column vector. The MP (21) and OMP algorithms are described in algorithms 1 and
2 respectively.

Algorithm 2.1:MP algorithm

• Initialize redundant vector r0 = y, iteration count t = 1;
• Find the index entry λt ,

λt = arg min j=1,2, ...,N (1)

• Calculate the new approximation at and redundant rt :

at =
⟨
rt−1,Φλt

⟩
, rt = rt −at (2)

• t = t +1, if t < k return to step 2

The MP algorithm and the OMP algorithm have the same optimal column vector selection strategy. Each iteration column
vector with the largest inner product in the measurement matrix Φ and the current redundant vector rt−1 are used as
the supported candidate for the signal to be estimated. However, these two different vectors are in the residual update
method.TheMP algorithm guarantees the convergence of the algorithm by the orthogonality

⟨
rt−1,Φλt

⟩
=
⟨
rt−1 −at ,Φλt

⟩
=

0 between its latest error Φλt and the currently selected column vector Φλt . However, this point only guarantees the
orthogonality of the redundant vector rtand Φλt , but cannot guarantee the orthogonality of r, and the selected column vector
set

(
Φλ1 , Φλ2 , . . . , Φλt

}
, which makes the approximate solution obtained by MP. K terms are all sub-optimal in the sense

of approximation, which is why the MP algorithm requires more iterations to ensure convergence. The OMP algorithm (22)

recursively orthogonalizes the set of selected column vectors to find the orthogonal projection Pt , and use the residual update
method for rt = y−Pty to overcome the sub-optimality of the MP algorithm.

Algorithm 2.2: OMP algorithm

• Initialize redundant vector r0 = y, index set Λ0 = ϕ , iterative count number t = 1;
• Find index λt such that:
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λt = argmin
j=1,2,...,N

∣∣⟨rt−1,Φ j
⟩∣∣

• Ordinance Λt = Λt−1 ∪{λt}
• Calculate the orthogonal projection Pt of {Φλ : λ ∈ Λt} into the space
• Calculate the new approximation a and redundant r : at = Pty, rt = y−at ;
• t = t +1, if t < m returns to step 2;
• To obtain estimates of ŝλ in the indexΛmmembered non-zero position, and in this position, measurement vector is

approximated as am = ∑λ∈Λm ŝλ Φλ

The common short coming of OMP and MP is the non-optimality of the column vector selection mechanism relative to the
new redundancy error, once the candidate column vector enters the supported candidate, it will be permanently added and will
not be deleted again. It lacks the idea of ”backtracking”. Here ”backtracking” means that in the steps of the current iteration,
the column vector selected in the last iteration are still synchronized, and if they still meet the current optimal significance,
they will be retained otherwise they will be eliminated as the next candidate. The significance lies in the global optimality of
reconstruction can be guaranteed to the greatest extent, because the column vector that meets the greedy condition in a certain
iteration cannot guarantee that they can still be reached in the subsequent iteration steps. All column vectors should be ”deleted”
and ”added” freely. This idea has been widely used in a variety of subsequent greedy algorithms.

3 Proposed Approach (i e Modified OMP algorithm)
The procedure of iterative algorithm OMP can illustrate using the below steps:

Step 1: Initialized the residual r = y and index set Sĝ =∅ and t=0;
Step 2: Increased the iteration of the algorithm.

Step 3: Threshold:While the norm of residual is bigger than ∈ and t is less than
−
L, we iterated the residuals and continued

the other steps. ”∈” will be a boundary to get a small error when finding an acceptable measurement matrix. After that, OMP
would recover the original signal with high probability. Moreover, we limited the iteration number with feedback overload.

pt = QHrt (4)

Step 5: Max probability of active path indexes determine using sparse vector ĝ. Its minimum noise, maximum correlation, and
mean could provide

n∗t = argmax j=1,2,....G
(∣∣pt, j

∣∣) (5)

Step 6: In an index set, the active paths’ indices were added and augmented the index set.

Sĝ = SĝUn∗t (6)

Step 7: Until the iteration end, the estimation could continue after initializing the computed sparse vector.

ĝsĝ = 0 (7)

ĝsĝ = QH
:,Sĝ

y (8)

Step 8: The received signal new approximation and the new residual was estimated.

r = y−Qĝ (9)

Step 9: If the limit exceeds the loop breaking and the process ends, the algorithm will return to step 3 during the process while

t <
−
L.
The residual r is orthogonal to the Q columns always. The feedback technique applies with quantizing non-zero elements of

ĝ with index set and associated to the sparse interaction matrix Ĝ after the estimation sparse vector. The method of max Lloyd
scalar quantizing applies as compressed sensing for quantization of ĝ. Then, Ĝ obtains with the reshaping of sparse ĝ vector.
The receiving bits are relevant to the non-zero indices of ĝ.

H ≈ ÂRGÂH
T (10)
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3.1 Lloyd Scalar Quantization for Limitation

The regions related to the codeword are categorized by the input field, which associates with each quantizer. To determine the
portion rule and codebook, the quantities design to minimize the measure of overall average distortion.

To design the quantizer, two necessary conditions are required. Primarily, the center condition is needed to optimize the
codebook. That means the measure of average decay over the region or the optimal codeword should select for the local mean
distortion minimization. The second condition is the nearest neighbor rule for optimizing the channel space partition. All
input vectors allow near to the code word that assigns to more regions or neighbors compared to another code word.These two
conditions have been re-examined by the generalized Lloyd algorithm to determine the channel space partition and optimal
codebook. The steps of this algorithm are mentioned below:

Step 1: The valid codebook initializes (ĝ).
Step 2: The nearest neighbor rule applies for finding the optimal regions for ĝ.
Step 3: The optimal codewords determine by applying the center condition for optimal regions.
Step 4: Until convergence, these steps have continued.
The overall average distortion has reduced monotonically due to the nearest neighbor rule and center condition. The sparse

channel non-zero elements can estimate the iteration. Based on the known thresholds, the sparse vector can dequantize at BS
after quantization.

The number of feedback bits is the non-zero elements of the ĝ:

−
L = log2G+2Q (11)

Where 2Q is the quantization bit number where one Q is real part and another is imaginary part of the CSI, and G is the

dictionary member’s multiplication (GRGT) and
−
L is related to directly OMP algorithm for limitation of feedback bits.

4 Results and Discussion
The proposed modified OMP model is evaluated in this section. The evaluation parameters used in the experimental analysis
are Normalized Mean Square Error and channel capacity, described in sections 4.1 and 4.2 respectively.

4.1 Normalized Mean Square Error(NMSE) Calculation

In this work, the recovery performance of the CS-based OMP-SQ technique, average NormalizedMean Squared Error (NMSE)
and sum capacity are investigated under different quantization bits.

In literature, there are several calculation techniques for NMSE. One of them calculates NMSE between the perfect channel
and the reconstructed channel. And, the other one calculates NMSE regarding the reconstructed channel. ||.|| represents the
L2-norm. NMSE between the estimated channel and perfect channel can be represented as

NMSE =
∥(H̃ −H)∥2(

H̃m ×Hm

) (12)

∣∣∣∣∣∣(H̃ −H)
∣∣∣∣∣∣2 =

1
N

N

∑
i=1

(H̃ −H)2 (13)

Where H̃ reconstructed channel and H is the perfect channel, H̃m represented the average reconstructed channel and Hm
represented the average of a perfect channel.

4.2 Capacity Calculation of Reconstructed and Perfect Channel for Performance Analysis

Shannon Capacity of a MIMO Channel:

Cr = log
[

det
(

IMR +
SNR
MT

H̃ × H̃H
)]

(14)
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Cp = log
[

det
(

IMR +
SNR
MT

H ×HH
)]

(15)

Cer = log
[

det
(

IMR +
SNR
MT

H ×HH
er

)]
(16)

Where Cr is the estimated channel capacity and Cp is perfect channel capacity and Cer is error channel capacity, and can be
represented by Mr×Mr in identity matrix.

The capacity of a channel highly relies on the matrix structure H. The perfect, estimated, and error channel capacities were
calculated using the Eq. (14), (15), and (16) respectively and they were related to the SNR directly.

Due to the non-similarity of matrix dimensions, the normalized mean-squared error (NMSE) is used to examine the
difference between non-perfect, perfect, and estimated channels.

4.3 Simulation Results

We consider the error-free uplink feedback channel and simulation parameters which are represented in Table 1 .

Table 1. Simulation Parameters
S.No Parameters metrics
1 Number of Transmitting Antennas 128
2 Number of Receiving Antennas 2
3 Carrier frequency 2GHz
4 Speed of light 3x108

5 Carrier wavelength(m) 0.15
6 max directional gain 8db
7 degree 3dB beamwidth 55
8 front to back ratio 30
9 Transmitting angular resolution 140
10 Receiving angular resolution 16

Based on Mt , the channel was established and is directly relevant to NMSE. The relation between Mt and NMSE can be
viewed from Figure 1 . While increasing the Mt , NMSE is decreasing as it is expected according to Eq. (12) and (13). Also, after
256 transmitter antennas number, NMSE is maintaining the same value, so 128 is an optimum number of antennas.

Fig 1.NMSE vs Mt (Number of transmit antennas)

In Figure 1, the proposed OMP algorithm is compared with traditional OMP and BJOMP (23) algorithms. The proposed
method reduces the channel estimation period by sacrificing the length of observation; as a result the burden in feedback bits
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estimation has been reduced. From Figure 1, 20% of the mean error rate is reduced when compared with the existing method
reported in (23).

The effect of the quantization level of the Lloyd algorithm has been shown in Figure 2 . The feedback channel limits the
feedback burden, and decreases the NMSE using the proposed algorithm. Figure 2 represents the Signal to Noise Ratio (SNR)
versus capacity.

Fig 2. SNR vs Capacity

Figure 2 shows that with the increased SNR values, the capacity increases according to Eq. (14), (15),= and (16). The red
line shows the estimated capacity of a channel and it is lower than the channel error. As the error reduces the channel capacity
improves, the upper and lower bounds of the channel capacity are 3 and 13 bits/Hz for 0- and 25-dB SNR.This results in a high
data rate MIMO system that can be accommodated in the available bandwidth.

5 Conclusions
The presented approach optimizes the feedback and reduces the complexity. Our approach minimizes the delay and is well
suited for massive MIMO real-time applications. This method provides the base to the research community to improve the
massive MIMO system. Simulation results validate our results. The results show that feedback overhead is reduced and the
normalized mean square error is reduced by 20%.
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