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Abstract
Objectives: To propose a second-order locally- active memristor, a two-
component chaotic circuit resulting from this current-controlled generic mem-
ristor and an application in steganography. Methods/statistical analysis:
Using a one-state-variable first-order memristor, a model is proposed which is
obtained bymodifying a locally-activememristor based on a current-controlled
genericmemristor. Themodel has two internal state variables: a voltage stored
up in a capacitor and a current stored up in an inductor. With an external
inductor, 3D-two-component chaotic circuit is developed. Numerical studies
are made using MATLAB and confirmed by a field programmable gate array
(FPGA) based hardware implementation. Findings: A two-state-variable based
second-order memristor model is presented. The novel memristor configura-
tion leads to the design of a simple two-component chaotic circuit. By inves-
tigating the characteristics of the memristor, it is shown that the memristor
can be switched from a predominantly passive region to an active region with
a wide locally-active region. An application in steganography helps to hide a
secrete message inside an image. Application/improvements: The results
obtained in this investigation will enrich the literature of memristive circuits,
enhance the simplification of chaotic circuits and can be used to improve the
memristive circuit based applications inmany research domains such as secure
information in telecommunications, Random Number Generation (RNG) and
image encryption.
Keywords:Memristor; Two component circuit; Chaos; Local activity; FPGA;
Steganography

1 Introduction
Anumber of important applications would benefit from the design and implementation
of a locally-activememristor, which is defined to be anymemristor that exhibits negative
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differential memristance or memductance for at least a current or a voltage applied to the memristor (1). This is one of the
drives of this research work, to realize a locally active memristor that has a wide locally active region characteristics and for
some parameter values or frequencies of excitation is entirely active. Recently, the investigation of memristor chaotic circuits
and systems is a hot issue and many researchers are delving into such studies and many applications are being derived from
memristor based chaotic circuits (2,3).

Even though memristors have a promising future, solid-state samples are still unavailable and this constitutes a problem to
researchers.Thus, there have beenmany initiatives to developmemristor emulators and to study their behavior and the possible
applications (4,5). The emulation circuits are built to mimic the behavior of the memristor based on the modeling equations.

The analog memristor emulators are usually built using analog commercial off-the-shelter components (6). This is inefficient
for large scale applications that require a huge number of memristors such as neural networks. On the other hand, FPGA
implementations of the memristors are much more advantageous because they are easily programmable, reconfigurable,
controllable, precise and exhibit better performance (6).

Due to the unique electrical performances of the memristor, 3-element or N-element memristive circuits, especially the
chaotic circuits, have been widely explored and reported in recent years. Muthuswamy and Chua in 2010 (7) observed chaos
with an autonomous chaotic circuit that uses only three elements: a linear passive inductor, a linear passive capacitor and a
nonlinear active memristor.The circuit was modelled by a system of three differential equations. As of 2010, it was the simplest
chaotic circuit in literature. In 2012, Tchitnga et al. (8) showed evidence of chaos in an autonomous Hartley Oscillator made
simply of a JFET and a tapped coil. The authors modeled the system by four differential equations. In 2017, in a paper titled:
”A simple meminductor-based chaotic system with complicated dynamics”, (9) the authors proposed a three component chaotic
circuit made up of a resistor, a capacitor and a meminductor connected in parallel. The circuit is modeled in a three differential
equation system and shows complicated dynamics. Many more strives have been made of recent in an effort to simplify chaotic
systems in terms the number of elements used in the circuit (10–12). Recently, researchers are using not just the properties of
memristors, but memory devices (memdevices) to reduce the number of elements in a circuit that are required for chaotic
oscillations (13). This push has been ramped up with the advent of these memory devices.

A number of memristor models have been developed and their circuit emulators, however, most of these models are first-
order and utilized only a one-state-variable. This is a simplification which is not adequate for accurate modeling.

In this work, we exploit the ”actual simplest chaotic circuit” proposed byMuthuswamy and Chua in 2010 to develop a much
simpler chaotic circuitmade up of two components (thememristor and an inductor) andmodelled by three differential equation
having two nonlinear terms. Our memristor model has two internal state variable, its memristance can be positive, zero and
negative, has a wide range for local activity and will act like the memristor model in (7) for some parameter values. Since our
model has two state variables, we require just a single variable to satisfy the condition for the system to be chaotic. This third
variable is made available by a passive linear inductor which is added to our memristor model. The hardware implementation
of this generic charge controlled memristor and the two component chaotic oscillator is designed utilizing analogue circuitry
and FPGA.

2 The Two State Locally-Active Generic Memristor Model

2.1 Circuitry and mathematical model

In (14,15), all memristors are classified into three classes including the ideal memristor, the generic memristor and the extended
memristor and presented the mathematical definitions of memristors. The ideal memristor is the simplest and most practical
model.The ideal memristor models developed by the HP Lab is widely used but does not fit the anticipated nonlinear behaviors
of a real memristor. The extended memristor is an extended form of ideal memristor and Chua generalized the memristor
concept to a much broader class of nonlinear dynamical systems and named it as memristive systems (16). The mathematical
definition of generic memristor model is given below.

v = R(y)i
dy
dt

= f(y, i)

}
(1)

This is for a generic current – controlled memristor, representing the state-dependent Ohm’s Law equation and the state
equation. y is an n-dimensional vector of the internal state variables and dy/dt is the time derivative of the state vector. In (7)

an active generic memristor is defined where n = 1; a voltage stored up in a capacitor inside the memristor.
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The circuit design and implemented memristor is given by the equation below:

vM = β IS
(
y2 −1

)
iM

dy
dt

=− ISiL1

RbCM
− y

RPCM
+

yISiL1

RaCM

 (2)

Where: iL1 = −iM. iL1 is the current through the external inductor used to measure the current entering memristor as seen
in (7).

This represents theMuthuswamy-Chuamemristormodel, which is a single state (first order) locally active genericmemristor.
To obtain a two state (second order) generic memristor, we introduced another state variable by connecting an inductor in

parallel with the capacitor CM in Figure 1, (we produce a tank circuit represented by RSTU). This second state variable is a
current which is stored up in the inductor, LM .

In the modified memristor, the first part of Eq. (2) is maintained, and the equations for the dynamics of the states of our
model is obtained by applying KCL at the junction A and KVL round loop RSTUR to obtain Eq. (3):

dy
dt

=
IsiM

RbCM
− y

RpCM
− yISiM

RaCM
− iLM

CM
diLM

dt
=

y
LM

− riLM

LM

 (3)

So our model of the memristor has two internal variables: (i) the voltage across the capacitor CM and (ii) the current through
the inductor LM . This makes it a second order memristor.

Fig 1.Detailed schematic of the modified memristor model.
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2.2 Transforming the Circuit Equations to System Equation

Let us choose the non-dimension time: τ = t
RaCm

;vM(t) = vM(τ);y(t) = y(τ);z(τ) = IsiM(t) .
The first part of Eq. (2) becomes: vM(τ) = β

(
y2 −1

)
iM(τ) .

To excite our memristor circuit, a sinusoidal current given by (4) is used.

iM(τ) = I0 sin(2π fdτ) (4)

where the real frequency in Hz, f = fd
RaCm

and the amplitude of the current in amperesis: Imax =
IS
I0
.

Eq. (3) becomes Eq. (5) as follow:

ẏ = PiM −αy− yiM − γz
ż = K1y−K2z

}
(5)

where:P= Ra
Rb
,α = Ra

RP
,γ = Ra

Is
,K1 =

RaCmIS
LM

,K2 =
RaCMr

LM
with the parameter values:P= 52α = 1,γ = 1,β = 1,K1 = 1,K2 = 0.1

and the initial conditions: y(0) = 0.1,z(0) = 0.1 , we investigate the fingerprints of this memristor model.

2.3 Memristor Characteristics

The next step is to prove that our model satisfies the definition of a memristor or memristive system and also verify the local
activity of our memristive system.

2.3.1 Pinched Hysteresis Loop of the Memristor
Any two-terminal device exhibiting a pinched hysteresis loop which always passes through the origin in the voltage-current
plane, when driven by any periodic input current source, or voltage source with zero DC component, is called a memristor (14).
Thus, the pinched hysteresis loop is always used as the characteristic fingerprint to identify the memristor (17). Moreover, the
pinched hysteresis loop should shrink to a single-valued function when the frequency tends to infinity (18).

Figure 2 shows the pinched hysteresis loops of the above generic memristor at different frequencies when it is driven by a
sinusoidal current with an amplitude of 1mA. Figure 2(a) shows the curve at frequencies: f = 0.25 kHz, 0.3 kHz, 0.4 kHz , 0.8
kHz; while Figure 2(b) shows the curve at frequency f = 0.85 kHz, 1 kHz, 2 kHz, and 10 kHz. By combining Figure 2(a) and
(b), we observe that the pinched hysteresis loop of memristor shrinks to a single-valued function as we increase the frequency
of input current. Notice that Figure 2(b) shows that the memristor has negative memristance region and also degenerates into
a linear negative memristance for frequencies greater than or equal to 10 kHz. The figures have been plotted separately for the
purpose of clarity; they can actually be plotted on the same graph. However, the larger amplitudes at lower frequencies will
dwarf the curves at higher frequencies.

Fig 2.The relationship between current and voltage for the locally active memristor- pinched hysteresis loops varying with the frequency of
excitation. The loops switching from the predominantly passive region (a) to the active region (b), second and fourth quadrant where the
memristance is negative.
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It also worth noting that the nature of the hysteresis loops is also dependent on the parameters of the memrsitor. In Figure 3,
with changing values of the parameter P, at fixed amplitude (1mA) of excitation and fixed frequency (0.5 kHz), the area of the
hysteresis loops decreases with decrease in the value of P and also switches from predominantly passive to the active region.
With values of P less than or equal to 0.1, the loop degenerates into a linear negative memristance.

As we know, the pinched i–v hysteresis loops called fingerprints provide necessary and sufficient conditions for identifying
whether a device is a memristor or not. But the most general memristor identification scheme is the Coincident Zero- Crossing
Signatures, i.e. the waveform of the current v(t) associated with the voltage i(t) measured from a current-controlled memristor
must cross the time axis whenever i(t) = 0. However, observe fromFigure 3(b) that the zero-crossing points of v(t) include not
only all zero-crossing points of i(t), but also several additional zero-crossing points when i(t) ̸=0, which are shown with the
little black dots.

2.3.2 DC I-V Loci of the Memristor
TheDCVoltage-Current characteristic (DC I-V loci) is a smooth curve consisting of a set of points and a sufficient test to claim
that the memristor is locally-active (13). These points of DC I-V loci can be derived in steps (19) depending on the Eq. 5 and the
Ohm’s laws dependent equation.

To derive the dc characteristics, we set: ẏ = 0, ż = 0 in (5) since by definition at DC all derivatives are zero. We solve for
the internal state (y) of the memristor in terms of the current (worth noting that y is a function of z).

y =
PiM

α + iM +Ω
(6)

where: Ω = γK1
K2

.

Fig 3.Therelationship between current and voltage for the locally activememristor: (a) i-v pinched hysteresis loops varyingwith the parameter
P with f = 0.5 kHz. (b) time-domain waveforms of the current and voltage with f = 0.4 kHz, used to indicate that voltage and current do not
cross zero at the same time all the times (b)

This parameter brings in the contribution of the second state variable z. Substituting for y in the Ohm’s law dependent
equation, we obtain:

vM =−β iM

[
1− P2i2M

(α + iM +Ω)2

]
(7)

Using the parameters: α = 1,β = 1,P = 1,Ω = 1 , a plot of the (Im-VM) is shown in Figure 4 with the locally active region
highlighted. In Figure 4, we observe that the memristor system given by (5) is locally active. The same analysis method about
locally-active memristor is used in (20) and (21). We observe from the graphs that the parameters introduced by the second state
variable greatly influence the characteristics. For, Ω = 0.0 we obtain the Muthuswamy-Chua system and I-V characteristic as
shown in (7). To obtain the exact graph, we set α = 0.2 and β = 1.7 to obtain Figure 4(a).
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Fig 4. Plots of I-V DC curves for various values of W. Notice that most points lie in the locally-active region, marked in red

3 Novel Two Component Memristive Circuit
Based on the memristor model defined by the equations above and the poof of the characteristic signatures, a new chaotic
oscillator is designed as shown in Figure 5. Its peculiarity is the fact that it has only two components: a memristor and an
inductor. The inductor provides one state variable whereas the memristor provides two state variables. Hence we get a total of
three state variables, the minimum required for chaotic behavior in a continuous time smooth dynamical system

Fig 5. A two component memristor chaotic oscillator
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3.1 Circuit equations and mathematical model

From Kirchhoff ’s circuit laws, the following differential equations are obtained which govern the dynamics of the circuit.

diL1

dt
=− 1

L1

[
β IS

(
y2 −1

)
iL1 +RSiL1

]
dy
dt

=− ISiL1

RbCM
− y

RPCM
+

yISiL1

RaCM
− iLM

CM
diLM

dt
=

y
LM

− riLM

LM


(8)

Using the same transformation and time scale as above, we obtain equation (9), where:

B =
RaISCM

L1
,R =

RS

IS
,K1 =

RaISCM

L2
,K2 =

RaISCM

L2
P =

Ra

Rb
,α =

Ra

Rpo t
,β =

RD

R6
,T =

Ra

IS
.

We choose our parameters such that: B = 5;β = 1;R = 0.01;P = 0.5;α = 1;γ = 1 ; K1 = 1;K2 = 0.1 .
With these parameters and considering that R is small and does not affect the dynamics of the system, the system (8)

becomes:
dx
dτ

=−Bβ
(
y2 −1

)
x

dy
dτ

=−Px−αy+ xy− γz
dz
dτ

= K1y−K2z

 (9)

The system given by Eq. (9) has one cubic nonlinearity and one quadratic nonlinearity, making it a simple system in terms of
mathematical representation. This complements the fact that our system is indeed the simplest chaotic system; just two circuit
components and two nonlinear terms.

Using the initial conditions as: x(0) = y(0) = 0.1, z(0) = 0.0 and the parameters above, the Lyapunov exponents can be
calculated as: LE1 = 0.165,LE2 ≈ 0.00,LE3 = −0.258 , using the algorithm proposed by Wolf et al. (22) . This means that
the system is chaotic. The phase portraits of system (9) are investigated by numerical simulation as shown in Figure 6. The
projections of phase portrait on z-y, y-x planes are shown in Figure 6(a) and 6(b) respectively. From the numerical simulation
results we know system (9) can generate a chaotic attractor.

Fig 6. Chaotic phase portraits of system (9) (a) Projection on z–y plane, (b) Projection on y–x plane

3.2 Equilibrium Point and Stability

To analyze the system, a good start is to find its equilibrium(s), and then to characterize the local dynamical behaviours of the
system orbits near these point(s). Distribution and local dynamical characteristics of the equilibrium(s) greatly influence the
nonlinear dynamics of the system.
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By solving the equilibrium system obtained from (9), we obtain 3 equilibrium points given by:

E0 = (0,0,0)T
2 E1 = (22,1,10)T ,S2 = (22/3,−1,−10)T

The Jacobian matrix of (9) with the parameters defined above is given by:

J =

 −5
(
y2 −1

)
−10xy 0

y−0.5 x−1 −1
0 1 −0.1

 (10)

The stability of equilibrium point can be judged by the eigenvalues of the characteristic equation det (λ I− J) = 0.
The eigenvalues of the first equilibrium point are given by: λ1,2 − 0.55 ± 0.89i,λ3 = 0.00 + 0.00i .This shows that the

equilibrium point E0 is a stable point. For the second equilibrium point E1 , the eigenvalues are given by: λ1,2 = 10.50 ±
0.86i, λ3 = −0.10 . The eigenvalues of the third equilibrium point E2 are given by: λ1,2 = 3.17± 10.05i, λ3 = −0.10 .
From the solutions of E1 and E2, there is one real eigenvalue and a pair of complex conjugate eigenvalues (a so- called index-2
saddle-focus), which are the criteria to generate a chaotic attractor (23,24).

4 FPGA Implementation of the Memristor Model and the Memristor-Based Chaotic
Circuit
In this section, we are going to implement practically the proposed memristor model and the memristor-based chaotic circuit
using an FPGA development board instead of an analogue discrete circuits as usually seen. The FPGA we are using is robust,
portable and re-configurable. It overcomes weaknesses of analogue devices (sensitivity to temperature, sensitivity to initial
conditions, etc.). With FPGA implementation, we have some flexibilities such as setting control parameters, frequency and
initial conditions accurately, reducing the system to a portable source code, realizing complicated mathematical operations or
algorithms.These benefits increase the number of realizablememristor chaotic circuits (25), making the implementation process
simple and accurate. In this work, the forward Euler method is used because of its execution speed and its low cost in term of
FPGA resources needed (26,27). The proposed memristor model (5) and the memristor-based chaotic circuit (9) are discretised
as follow:

yn+1 = yn +h(P(I sin(2π fn))−αyn
−yn (I sin(2π fn))− γzn)
zn+1 = zn +h(K1yn −K2zn)
in+1 = I sin(2π fn)
vn+1 = β

(
y2

n −1
)
(I sin(2π fn))

 (11)

xn+1 = xn +h
(
−B

(
βy2

n −1
)

xn
yn+1 = yn +h(−Pxn −αyn + ynzn − γzn)
zn+1 = zn +h(K1yn −K2zn)

 (12)

The step size of h = 0.001 is chosen to achieve a better accuracy.The calculations in the hardware implementation is done using
32 bits floating point of the IEEE754 standards then converted into signed-fixed. The outputs are adjusted to extract only the
decimal part of the signed-fixed value then converted into standard logic vector.Thedynamic state of each sample is sent out into
GPIO ports of the FPGA board. The discrete state of the equations (5) and (9) are directly describe using VHDL into Quartus
II 10.1 design software and the behavioral simulation is performed withModelSim-Altera 6.5e.The Altera chip of type Cyclone
IV E EP4CE115F29C7N is chosen as target device. The Register Transfer Level (RTL) schematic presented in Figure 7(a) is the
top-model of the implemented the proposedmemristormodel and the RTL schematic presented in Figure 7(b) is the top-model
of the implemented memristor-based chaotic circuit. Pin X and Y correspond to the current (i) and the voltage (V) respectively
for Figure 7(a) and Pin X, Y and Z in Figure 7(b) correspond to current through the inductor L1, the voltage across the capacitor
CM and the current through the inductor LM respectively.
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Fig 7. RTL view of: (a) the memristor model (b) the memristor-based chaotic circuit.

The practical demonstration of the feasibility of the proposed memristor model and the memristor-based chaotic circuit
are done through the FPGA implementation shown by the set-up in Figure 9. Two R/2R resistors ladders are used as digital to
analog converter (DAC) and connected to the GPIO ports of the DE2 115 FPGA board. The resulting analog signals are then
filtered using capacitors. The filtered signals are then connected to the probe of oscilloscope to visualize the portraits.

Figure 8 shows the experimental relationship between current and voltage for the locally active memristor with varying
frequency of excitation.We observe that the loops switching from the predominantly passive region (a, b, c) to the active region
(d, e, f) for frequencies: f = 0.2 KHz, f = 0.3 KHz, f = 0.4 KHz, f = 0.85 KHz, f =1.0 KHz and f =10.0 KHz. We also notice that
for increasing frequencies, the pinched hysteresis of the memristor shrinks to a single valued function for f = 10 kHz.

Fig 8. Experimental relationship between current and voltage for the locally active memristor. The loops switching from the predominantly
passive region (a, b, c) to the active region (d, e, f) for frequencies: f = 0.2 KHz, f = 0.3 KHz, f = 0.4 KHz, f = 0.85 KHz, f =1.0 KHz and f =10.0
KHz.
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With the initial conditions, and the parameters used in the numerical simulation, we obtain the experimental phase portraits
of the two component chaotic system given by Eq. (9) as shown in Figure 9(a) and (b) representing the phase portraits in the
z-y and y-x planes respectively. As one can see the results obtained from the practical implementation are in accordance with
the numerical simulations.

Fig 9. Experimental phase portraits of memristor chaos system derived from the FPGA board.

5 An Application in Steganography
In this section, we proposed a method to hide a secret message inside an image using steganography and chaos encryption.
Steganography deals with the art of hiding information with an interesting property of hiding the mere existence of the secret
information (28). Steganography is different from cryptography. Cryptography is the practice of scrambling a message to an
obscured form to prevent others from understanding it while steganography is the study of obscuring the message so that it
cannot be seen (28). To make a steganography we require generally two files: the cover/carrier file and the secret file. However,
many multi-media carriers like, video, audio, image, text, etc. can act as a cover media to carry the secret message. Here, we
used an image and test file as cover file and secret message respectively.

Many algorithms and procedures, such as Least Significant Bit (LSB), have been written to hide text in an image. (29,30) LSB
method allows to start by passing both secret message and cover image into the encoder. The LSB embeds the secret message
encrypted in the least significant bits of pixel values of the cover image. The secret message is encrypted using an affine cipher
based on the two component memristor chaotic system. This with the support of the date of birth (DOB) keys. DOB key
enables to construct a key using birth day, month, and year of the sender and receiver. The Figure 10 shows us the scheme of
our proposed method.
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Fig 10. Cryptography and steganography system.

Weperformed an encryption of secretmessage before performing the steganography.This enables us to have a good integrity
of our message between the sender and receiver.

5.1 Affine cipher based on the two component memristor chaotic system and DOB

Ciphers convert the message by a rule, known only to the sender and the recipient, which change each individual letter (31).
An affine cipher is a combination of shift and multiplication cipher. E(.) and D(.) respectively the encryption and decryption
processes of affine cipher. For given message M, E(.) and D(.) are defined in (31) by:

E(M) = (l∗M)+m(mod p)
D(M) = l′ ∗ (E(M)−m)(mod p)

}
(14)

Where: l, m are parameters of affine cypher key k(k = (1,m)) , l’ is inverse of 1 modulo p and p is a positive integer.
To apply this method, we considered S and R in our cryptosystem as sender and receiver respectively. To exchange a secret

message, S and R have to generate their own secret key pair using DOB and fractional order hyper chaotic system. Consider
D = (D1,D2) be a pair of DOB of S and R who only shared between them. D1 is DOB of S and D2 is the DOB of R. They can
be represented as: D1 = DD−MM−YY and D2 = dd −mm− yy in the day, month, and year format.

a) S and R key generation
• S solves the two-component system (10) at time t and generates the equations (15) and (16)

K1 = DD∗x(t)+MM∗y(t)
+YY ∗z(t)(mod p)

}
(15)

K2 = dd∗x(t)+mm∗y(t)
+yy∗z(t)(mod p)

}
(16)

• R solves the two-component system (10) at time t and generates the Eq. (17) and (18)

L1 = DD∗x(t)+MM∗y(t)
+YY ∗z(t)(mod p)

}
(17)
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L2 = dd∗x(t)+mm∗y(t)
+yy∗z(t)(mod p)

}
(18)

b) Encryption and decryption message
• S wants to send a message M to R secretly, he encrypts M using E(.) function given by (19)

E(M) = (M∗K1)+K2(mod p) (19)

• When R receives a message from S and want to recover an original message M, he uses the D(.) function given by

D(M) = (E(M)−L2)
∗ L−1

1 (mod p) (20)

5.2 Steganograph

In this part, we have to hide the secretmessage into cover image using LSBmethod. Consider a color image that we decomposed
into 3 sub images component (Red, Green and Blue). Each pixel of components assumes a value between [0, 255] and
represented with 8 bit. We replaced the least significant bit of some pixels of components by each bits of the secret message.This
technic performed with good efficient because does not affect human perception.

5.3 Example

The Figure 11 shows us our 2 covers image with size [512 x 512] that we used to hide the secret message encrypted. Let choice
the secret message as M = MY NAME IS STEGANO .When we apply the encryption E(.) to the messageMwith the following
parameters: DD = 10,MM = 06 , YY = 1990;dd = 22,MM = 10,YY = 1984;p = 128;x = 10.093,y = 0.63,z = 5.63, we
obtain the encrypted message M’=����”����. The stegano images are represented in Figure 12.

Fig 11. Cover Images

In the Figures 11 and 12, we observe that the cover image have the same visual aspect with stegano image. To see the difference
between these images, we have to calculate the Peak Signal to Noise ratio (PSNR). The PSNR is given in (27) by Eq. (21).

PSNR = 10log10

(
2552

MSE

)
(21)

The PSNR gives an objective measure of the distortion introduced by the steganography. It is expressed in decibels (dB). We
found the PSNR of Lena and Flower equal to 59.28 dB and 62.01 dB respectively. Table 1 and Figure 13 show the evolution of
PSNR between cover and stegano images according to length of secret message.
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Fig 12. Stegano images

Table 1 and Figure 13 show how the message length influence the quality of stegano image. We see that the proposed
steganography algorithm achieves high stegano image quality.

In fact, in Table 1 and Figure 13, we observe the PSNR is maximum when the message length equal to 150. And when M
increase, PSNR decrease slowly. This proof that our chaotic cipher adapted very well the LSB method for steganography.

The experimental results reveal the practicability and superiority of the presented technique.

Fig 13. PSNR of Lena and Flower according to length of M

Table 1. PSNR between cover and stegano images according to length of M
Length ofM 18 50 100 150 200 250 300 350 400
Parameter PSNR (dB)
Lena 59.28 59.92 60.79 61.36 61.31 60.72 60.53 60.43 60.29
Flower 62.01 63.32 65.41 67.22 66.59 64.72 64.35 64.20 64.07

6 Conclusion
In this work, we proposed a locally activememristor based on a current-controlled genericmemristor that has two internal state
variables- a second order memristor. The characteristics of the memristor were investigated and the memristor shown to have
a wide locally active region and for properly chosen parameter values, the memristor can be switched from a predominantly
passive region to an active region. A memristor-based chaotic circuit is presented, which only consists of a memristor and an
inductor. The memristor model and the two component circuit were numerically simulated using MATLAB and the hardware
implementation was designed using FPGA.The experimental results are consistent with the software simulations. For exploring
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the potential application of the circuit, an application in steganography is includedwherewe proposed amethod to hide a secrete
message inside an image using steganography and chaos encryption.

Acknowledgement

The authors received no financial support for the research, authorship, and/or publication of this article.

References
1) Ying J, Wang G, Dong Y, Yu S. Switching Characteristics of a Locally-Active Memristor with Binary Memories. International Journal of Bifurcation and

Chaos. 2019;29(11). Available from: 10.1142/S0218127419300301.
2) Wang S, Wang X, Zhou Y, Han B. A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization. Entropy.

2016;18(2):58. Available from: 10.3390/e18020058.
3) Luo J, Xu X, Ding Y, Yuan Y, Yang B, Sun K, et al. Application of a memristor-based oscillator to weak signal detection. The European Physical Journal

Plus. 2018;133(6). Available from: 10.1140/epjp/i2018-12041-y.
4) Alharbi AG, Fouda ME, Khalifa ZJ, Chowdhury MH. Electrical Nonlinearity Emulation Technique for Current-Controlled Memristive Devices. IEEE

Access. 2017;5:5399–5409. Available from: https://dx.doi.org/10.1109/access.2017.2695402.
5) Zhao Q, Wang C, Zhang X. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos: An Interdisciplinary

Journal of Nonlinear Science. 2019;29(013141). Available from: 10.1063/1.5081076.
6) Tolba MF, Fouda ME, Hezayyin HG, Madian AH, Radwan AG. Memristor FPGA IP Core Implementation for Analog and Digital Applications. IEEE

Transactions on Circuits and Systems II: Express Briefs. 2019;66(8):1381–1385. Available from: https://dx.doi.org/10.1109/tcsii.2018.2882496.
7) Muthuswamy B, Chua LO. Simplest Chaotic Circuit. International Journal of Bifurcation and Chaos. 2010;20(05):1567–1580. Available from: https:

//dx.doi.org/10.1142/s0218127410027076.
8) Tchitnga R, Fotsin HB, Nana B, Fotso PHL, Woafo P. Hartley’s oscillator: The simplest chaotic two-component circuit. Chaos, Solitons & Fractals.

2012;45(3):306–313. Available from: https://dx.doi.org/10.1016/j.chaos.2011.12.017.
9) Xu B, Wang G, Shen Y. A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dynamics. 2017;88(3):2071–2089. Available

from: 10.1007/s11071-017-3363-y.
10) Talla FC, Tchitnga R, Kengne R, Nana B, Fomethe A. Didactic model of a simple driven microwave resonant T-L circuit for chaos, multistability and

antimonotonicity. Heliyon. 2019;5(10):e02715. Available from: https://dx.doi.org/10.1016/j.heliyon.2019.e02715.
11) Deng Y, Li Y. Amemristive conservative chaotic circuit consisting of a memristor and a capacitor. Chaos: An Interdisciplinary Journal of Nonlinear Science.

2020;30(1):013120. Available from: 10.1063/1.5128384.
12) Negou AN, Kengne J. Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: Reversals of period doubling,

offset boosting and coexisting bifurcations. AEU - International Journal of Electronics and Communications. 2018;90:1–19. Available from: https:
//dx.doi.org/10.1016/j.aeue.2018.04.003.

13) Yuan F, Li Y. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos: An Interdisciplinary Journal of Nonlinear Science.
2019;29(10):101101. Available from: 10.1063/1.5125673.

14) Chua L. Everything You Wish to Know About Memristors but Are Afraid to Ask. In: In Handbook of Memristor Networks. Springer. 2019;p. 89–157.
Available from: 10.1007/978-3-319-76375-0_3.

15) Khalid M. Review on various memristor models, characteristics, potential applications, and future works. Transactions on Electrical and Electronic
Materials. 2019;20(4):289–298. Available from: 10.1007/s42341-019-00116-8.

16) Chua LO, Kang SM. Memristive devices and systems. Proceedings of the IEEE. 1976;64(2):209–223. Available from: https://dx.doi.org/10.1109/proc.1976.
10092.

17) Sah MP, Yang C, Kim H, Muthuswamy B, Jevtic J, Chua L. A Generic Model of Memristors With Parasitic Components. IEEE Transactions on Circuits
and Systems I: Regular Papers. 2015;62(3):891–898. Available from: https://dx.doi.org/10.1109/tcsi.2014.2373674.

18) Adhikari SP, Sah MP, Kim H, Chua LO. Three Fingerprints of Memristor. IEEE Transactions on Circuits and Systems I: Regular Papers. 2013;60(11):3008–
3021. Available from: https://dx.doi.org/10.1109/tcsi.2013.2256171.

19) Chua L. If it’s pinched it’sa memristor. Semiconductor Science and Technology. 2014;29(10):104001. Available from: 10.1088/0268-1242/29/10/104001.
20) Ascoli A, Tetzlaff R, Chua LO. The first ever real bistable memristor. IEEE International Symposium on Circuits and Systems (ISCAS). 2016;p. 2896–2896.

Available from: 10.1109/ISCAS.2016.7539199.
21) Ascoli A, Slesazeck S, Mahne H, Tetzlaff R, Mikolajick T. Nonlinear Dynamics of a Locally-Active Memristor. IEEE Transactions on Circuits and Systems

I: Regular Papers. 2015;62(4):1165–1174. Available from: https://dx.doi.org/10.1109/tcsi.2015.2413152.
22) Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985;16(3):285–317.

Available from: https://dx.doi.org/10.1016/0167-2789(85)90011-9.
23) Negou AN, kengne J, Tchiotsop D. Periodicity, chaos andmultiple coexisting attractors in a generalizedMoore–Spiegel system. Chaos, Solitons & Fractals.

2018;107:275–289. Available from: https://dx.doi.org/10.1016/j.chaos.2018.01.011.
24) Talla FC, Tchitnga R, Fotso PHL, Kengne R, Nana B, Fomethe A. Unexpected Behaviors in a Single Mesh Josephson Junction Based Self-

Reproducing Autonomous System. International Journal of Bifurcation and Chaos. 2020;30(07):2050097. Available from: https://dx.doi.org/10.1142/
s0218127420500972.

25) Ding Q, Pang J, Fang J, Peng X. Designing of chaotic system output sequence circuit based on FPGA and its applications in network encryption card.
International Journal of Innovative Computing, Information and Control. 2007;3(2):449–456.

26) Sadoudi S, Azzaz MS, Djeddou M, Benssalah M. An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications.
International Journal of Nonlinear Science. 2009;7(4):467–474.

27) Rajagopal K, Guessas L, Karthikeyan A, Srinivasan A, Adam G. Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive
Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization. Complexity. 2017;2017:1–19. Available from:
https://dx.doi.org/10.1155/2017/1892618.

https://www.indjst.org/ 2270

10.1142/S0218127419300301
10.3390/e18020058
10.1140/epjp/i2018-12041-y
https://dx.doi.org/10.1109/access.2017.2695402
10.1063/1.5081076
https://dx.doi.org/10.1109/tcsii.2018.2882496
https://dx.doi.org/10.1142/s0218127410027076
https://dx.doi.org/10.1142/s0218127410027076
https://dx.doi.org/10.1016/j.chaos.2011.12.017
10.1007/s11071-017-3363-y
https://dx.doi.org/10.1016/j.heliyon.2019.e02715
10.1063/1.5128384
https://dx.doi.org/10.1016/j.aeue.2018.04.003
https://dx.doi.org/10.1016/j.aeue.2018.04.003
10.1063/1.5125673
10.1007/978-3-319-76375-0_3
10.1007/s42341-019-00116-8
https://dx.doi.org/10.1109/proc.1976.10092
https://dx.doi.org/10.1109/proc.1976.10092
https://dx.doi.org/10.1109/tcsi.2014.2373674
https://dx.doi.org/10.1109/tcsi.2013.2256171
10.1088/0268-1242/29/10/104001
10.1109/ISCAS.2016.7539199
https://dx.doi.org/10.1109/tcsi.2015.2413152
https://dx.doi.org/10.1016/0167-2789(85)90011-9
https://dx.doi.org/10.1016/j.chaos.2018.01.011
https://dx.doi.org/10.1142/s0218127420500972
https://dx.doi.org/10.1142/s0218127420500972
https://dx.doi.org/10.1155/2017/1892618
https://www.indjst.org/


Alombah et al. / Indian Journal of Science and Technology 2021;14(27):2257–2271

28) Wu MY, Ho YK, Lee JH. An iterative method of palette-based image steganography. Pattern Recognition Letters. 2004;25(3):301–310. Available from:
10.1016/j.patrec.2003.10.013.

29) Shehab G, Jawar ZM, Khami M. Matlab Coding For Text Steganography System By Using LSB Insertion Method With Key. Basrah journal of science.
2015;33(2):37–51. Available from: https://iraqjournals.com/article_105863_4adf62c29da0c6082e9e167ada785ad5.pdf.

30) Cheddad A, Condell J, Curran K, Kevitt PM. Digital image steganography: Survey and analysis of current methods. Signal Processing. 2010;90:727–752.
Available from: https://dx.doi.org/10.1016/j.sigpro.2009.08.010.

31) Muthukumar P, Balasubramaniam P, Ratnavelu K. Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its
application to an affine cipher using date of birth (DOB). Nonlinear Dynamics. 2015;80(4):1883–1897. Available from: https://dx.doi.org/10.1007/s11071-
014-1583-y.

https://www.indjst.org/ 2271

10.1016/j.patrec.2003.10.013
https://iraqjournals.com/article_105863_4adf62c29da0c6082e9e167ada785ad5.pdf
https://dx.doi.org/10.1016/j.sigpro.2009.08.010
https://dx.doi.org/10.1007/s11071-014-1583-y
https://dx.doi.org/10.1007/s11071-014-1583-y
https://www.indjst.org/

	Introduction
	The Two State Locally-Active Generic Memristor Model
	2.1 Circuitry and mathematical model
	2.2 Transforming the Circuit Equations to System Equation
	2.3 Memristor Characteristics
	2.3.1 Pinched Hysteresis Loop of the Memristor
	2.3.2 DC I-V Loci of the Memristor


	Novel Two Component Memristive Circuit
	3.1 Circuit equations and mathematical model
	3.2 Equilibrium Point and Stability

	FPGA Implementation of the Memristor Model and the Memristor-Based Chaotic Circuit
	An Application in Steganography
	5.1 Affine cipher based on the two component memristor chaotic system and DOB
	a) S and R key generation
	b) Encryption and decryption message

	5.2 Steganograph
	5.3 Example

	Conclusion
	Acknowledgement


