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Abstract
Objective: To prepare Cu doped Mg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15,
0.2 and 0.25) spinel ferritesmaterials and study the structure, morphology, and
magnetic properties. Methods: Cu doped Mg-Zn spinel ferrites are magnetic
and highly resistive materials. They were synthesized by the method of
solid-state reaction and characterized by x-ray diffraction (XRD), field effect
scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), and
vibrating sample magnetometer (VSM) for their structural, compositional,
morphological, functional properties. They are with spinel structure under Fd-
3m space group. Their crystallite size was 44.58 nm to 31.02 nm range after
calcined at 1000 oC. Their spinel structure was confirmed with FT-IR analysis,
whose absorption bands were 598.84 – 580.40 cm-1 and 405.35 - 402.15 cm-1

range for higher and lower frequency, respectively. The value of coercivity is in
the range 146.33 - 9.427 Oe with the variation of content. The lower values
of the coercivity indicated the soft ferrimagnetic nature of the synthesized
materials. Findings/ Application: Substitution of non-magnetic Cu2+ ions
strongly influenced the structural and magnetic properties of magnesium
ferrites.

Keywords: Cu doped MgZn ferrite; XRD; FTIR; FESEM; Coercivity

1 Introduction
In the spinel ferrites family, magnesium ferrite (MgFe2O4) has a spinel structure with
inversion mode that depends on the synthesis method used in memory and switching
circuits. Magnesium ferrite is used in heterogeneous catalysis, adsorption, sensors, and
magnetic technologies (1–4).Thenon-magnetic Cu resides in a tetrahedral (A) sitewhose
doping can modify the structural, electrical, and magnetic properties (5–7). Doping of
Al (8,9), Ge (10), Cu (11), Ni (12), Cr (13), Sm-Gd (14), Ce-Gd (15) on magnesium ferrite and
their effects on the electrical, dielectric and magnetic properties were studied (16–18).
However, solid-state synthesis was rarely used, which has a different impact on the
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sample size (19).
In the present study, the spinel ferrite with the generic formula Cu doped Mg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15,

0.2, and 0.25) was prepared by the standard ceramic method. The structural and magnetic properties were investigated using
x-ray diffraction, field effect scanning electron microscopy, infrared spectroscopy, and vibrating sample magnetometer.

2 Materials and Methods
MgO, ZnO, CuO, and Fe2O3 were mixed in appropriate stoichiometric ratio, finely grounded for 3-4 h, pre-sintered at 800 ◦C
for 5 h, again reground for 3-4 h and finally calcined at 1000 ◦C for 6 h and prepared Cu dopedMg0.5−xCuxZn0.5Fe2O4 (x = 0.0,
0.05, 0.1, 0.15, 0.2 and 0.25) under solid-state reactionmethod.The discs-shaped pallet was prepared from the resultant powder
with the hydraulic press’s help under 6 ton/cm2 pressure and finally sintered at 1200 ◦C for 4 h, and measured the magnetic
properties. Every heating process was followed by cooling.

The structural data were studied XRD (PANalytical XPert PRO diffractometer with CuKα radiation and λ = 1.5402 Å also
with a continuous scan step size of 0.008). The morphology data were studied Scanning Electron Microscope (Carl Zeiss,
EVOMA 15, Oxford Instruments, Inca Penta FETx3.JPG instrument). The chemical bonding data were examined FTIR (IR
Prestige21 Shimadzu). Finally, magnetic properties were studied VSM (1T).

3 Results and Discussion

3.1 X-ray diffraction studies

The structure of Cu doped Mg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2 and 0.25) ferrite samples were characterized
by x-ray diffraction technique in the 2θ range of 20-80 degree with Cu-Kα radiation of wavelength λ = 1.5406 Å at room
temperature shown in Figure 1. Bragg’s law was used for indexing the XRD patterns related to planes (220), (311), (400), (422),
(511), and (440), it’s found the single-phase cubic spinel structure of all the samples (20).The crystallite size and lattice parameter
are listed in Table 1.Thus, the synthesizedmaterials are in the nanoscale range, exhibiting the nanoparticle behaviors applicable
in different technological outputs. The highest lattice parameter with the least crystallite size and such parameters impact not
only the structure but also the magnetic and electrical properties.

Fig 1. XRD patterns of Cu doped Mg-Zn-Cu ferrites
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Table 1. Lattice constant (a) and Crystallite size (D) of Cu doped Mg-Zn ferrite
Compounds Lattice constant a (Å) Crystallite size (nm)
0.0 8.413 44.58
0.05 8.417 42.12
0.1 8.419 39.54
0.15 8.421 36.49
0.2 8.424 33.85
0.25 8.429 31.02

The lattice constants (a) of the samples were calculated using standard relation (21),

1
d2 =

h2 + k2 + l2

a2

where (d) is inter-planar spacing; (h k l) is Miller Indices.
The lattice constant is increasing gradually with Cu content due to the larger ionic radius of the Cu2+ (0.70 Å) than that of

the Mg2+ (0.65 Å) as shown in Figure 2 and agrees with previous literature (22). The crystallite size of the synthesized Cu doped
Mg-Zn ferrite powders was evaluated with the help of Debye- Scherrer’s relation (23),

D =
Kλ

β cosθ

where λ , β , and θ are the radiation’s wavelength, the full width half maximum (FWHM) of the XRD peak, and Bragg’s angle.

Fig 2. Variation of lattice constant and crystallite size of Cu-dopedMgZn ferrites

3.2 FESEM studies

Theroom temperaturemorphological study of the presentCudopedMg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.5, 0.1, 0.15, 0.2 and 0.25)
synthesizedmaterials was carried out using a scanning electronmicroscopy.The obtained FESEMmicrographs are presented in
Figure 3. Using these images, grain size for all the samples was obtained. Further, a more significant part of pores is on the scale
of grain size and located among them (24). Some aggregates are also observed in the micrographs. From micrographs exhibited
cubic crystals of uniform size with average values between 2.7 to 4.6 Ωm.
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Fig 3. FESEM images of Cu doped Mg-Zn ferrite samples

3.3 FTIR studies

The infrared spectra of all the Cu dopedMg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2 and 0.25) are presented in Figure 4.
They all have two prominent absorption bands ν1 and ν2, in 600 and 400 cm-1, due to stretching of tetrahedral metal ion-
oxygen bonding and vibrations of oxygen perpendicular to the axis joining the tetrahedral ion-oxygen respectively, as listed in
Table 2. In the present system, the band ν1 is found in the range of 598.84–580.40 cm-1, and the lower band is in the range of
405.35-402.15 cm-1. The band positions obtained in the present case are found to be in the reported range (25). Slight variation
in the band positions is due to the present samples’ preparation, grain size, and porosity. Further, the absorption bands ν1
assigned to the tetrahedral site (A) are shifted towards the lower frequency side with an increase in the Cu substitution. The
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band positions’ variation can be attributed to the estimated cation distribution of the present ferrite samples (26).

Fig 4. Infrared spectra Cu doped Mg-Zn ferrites

Table 2. Absorption bands of Cu doped Mg-Znferrites
Concentration (x) Tetrahedral υ1(cm-1 ) Octahedral υ2(cm-1 )
0.0 580.40 402.15
0.05 582.85 403.48
0.1 585.92 404.46
0.15 591.05 407.85
0.2 598.84 405.35

3.4 Magnetic properties study

The ceramically prepared Cu doped Mg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2 and 0.25) ferrite particles’ magnetic
properties were studied using vibrating sample magnetometer (VSM) (27). All the measurements of the magnetic properties
were carried out at room temperature. The hysteresis loops are shown in Figure 5.

Fig 5.Hysteresis loops Cu doped Mg-Zn ferrites
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The saturation magnetization (Ms) and coercivity (Hc) were obtained from the hysteresis loops, and the obtained values
as listed in Table 3 and variation are shown in Figure 6. The table shows that the saturation magnetization increases with an
increase in Cu substitution x = 0.1 and decreases x = 0.25.The highest saturation magnetization for magnesium ferrite is found
to be 53.51 emu/g (x = 0.1). The coercivity is found to reduce from 146.33 Oe to 9.427Oe with the substitution of Cu. This
implies that Neel’s model could explain the observed magnetic behaviour of the Cu doped Mg-Zn samples.

Table 3.Ms and Hc values of Cu doped Mg-Zn ferrites
Concentration Ms (emu/g) Hc (Oe)
0.0 19.66 146.33
0.05 24.26 112.05
0.1 53.51 69.56
0.15 40.86 43.25
0.2 36.02 29.48
0.25 33.81 9.427

Fig 6. Variation of saturation magnetization andcoercivity of Cu doped Mg-Zn ferrites

Neel’s theory of ferrimagnetism suggests that the cations present on various sublattices in spinel structure have attractive
minutes oppositely adjusted.The inverse spinel ferrites of the net magnetic moment mainly depend on the number of magnetic
ions that occupy the tetrahedral and octahedral sites (28).The Cu2+ ions substituted in synthesized samples have a direct bearing
on the coercivity. Ongoing investigations proposed that coercivity was influenced by microstrain, size dissemination, magneto
crystallinity, attractive area size, and anisotropy (29,30).

4 Conclusions
Cu dopedMg0.5−xCuxZn0.5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2 and 0.25) ferrite are prepared by solid-state reaction method.The
samples were of single-phase, cubic spinel structure according to XRD.The gradual increase in lattice constant values with Cu
substitution is obviously due to the Cu’s larger ionic radius than the Mg. SEMmicrographs exhibited cubic crystals of uniform
size with average values between 2.7 to 4.6 Ωm. Infrared spectroscopic studies supported the spinel structure of all the ferrites.
VSM studies revealed that the saturation magnetization is increased with increased Cu substitution from their highest values,
53.51 emu/g to 19.66 emu/g, respectively. On the other hand, the coercivity decreases from 146.33 Oe to 9.427 Oe with an
increase in substitution.Thus, the substitution of non-magnetic Cu ions in magnesium has strongly influenced the magnesium
ferrite’s structural and magnetic properties.
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