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Abstract
Objectives: To predict meteorological phenomena such as rain events
from sky status during rainy and non-rainy periods. Methods: The method
used here is based on brightness temperature ratio measurement at two
different frequencies, namely 23.8 GHz and 30 GHz respectively, using ground
based dual frequency radiometric data. The ratios of brightness temperature
readings obtained by the dual-frequency radiometer at the two above
mentioned frequencies are calculated for each simultaneously-taken pair of
measurements. Data obtained by the authors for the year 2009 at Cachoeira
Paulista in Brazil has been used for analysis. Findings: The major results
obtained from the analysis of data collected over a continuous period of
sevenmonths are used to construct corresponding histograms and cumulative
count graphs of brightness temperature ratios. The histograms and graphs
clearly show three peak values that could be interpreted as thresholds between
clear sky, cloudy sky and rainy sky conditions respectively. Novelty: The
study implements detection of rain events from sky status during rainy and
non-rainy periods using peak brightness temperature values obtained from
graphs generated using the observation data. The outlined technique can
therefore be used to clearly determine sky conditions and accurately predict
rain phenomena. The ratio of brightness temperatures at the two frequencies
is a unique parameter which is critical to the successful estimation of rain from
sky status. The results agree well with multi-channel radiometric data obtained
by other researchers at lower frequencies.
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1 Introduction
Tomeet the growing needs of higher data rates for present day communications andmultimedia systems, use of electromagnetic
spectrum above 10 GHz inmicrowave andmillimeter wave region is an obvious solution. However the signals in this frequency
range get impaired by rain that causes serious attenuation especially in tropical and equatorial countries that are characterized
by heavy rainfall. A ground based microwave radiometer (1,2) has proved its utility to monitor the atmosphere up to 10 Km
continuously by measuring very low level microwave radiation at some specific frequency channels in the microwave bands
dominated by atmospheric water vapor, cloud liquid water and molecular oxygen emissions. Geophysical observables such as
the total amount of water vapor (PWV), the non-precipitating cloud liquid content (LWC) and rain are have frequently been
used to develop models (3,4).

Applications of the ground-based microwave radiometer to measure meteorological parameters have been widely accepted
for years (5). Long-term analysis of sky thermal emissions (Tb’s), from single ground-based microwave radiometers during
massive measurement campaign or from radiometric-networks, could benefit from some analytic criterion to detect data
affected by rain events. Brightness temperatures (Tb’s) measured at the ground level, within the frequency range of 20-30 GHz
under rainy conditions are not appropriate to retrieve the above mentioned quantities (6).

Ulaby suggested that the brightness temperature given by ground based microwave radiometer obeyed the radiative transfer
equation under scatter-free conditions (7). The determination of rainfall signature requires some thorough insight into the
electromagnetic interaction between microwave radiation and the medium concerned, since radiometric response depends
on various radiative sources and the atmospheric inhomogeneity posed by hydrometeors in different phases.

The identification of rainy periods is of importance also for the telecommunication systems operating at Ka and Q/V bands,
where a major impairment derives from the effect of the lowest layers of the atmosphere on radio-wave propagation (8).

High values of power margin can be reduced if a priori information of atmospheric conditions along a propagation path is
known to us and favours the adoption of adaptive fade mitigation technique (9).

The idea of short term rain prediction by considering the pronounced increase of brightness temperature from two hours
before a rain event in the water vapour channel (10) gave impetus to the authors’ thoughts on finding an identifying demarcation
between no rain and rain events. Bosisio and Capsoni (11) devised a relation between the two brightness temperatures at
the frequencies 23 GHz and 31 GHz based on the radiative transfer forward model (12), through analysis of month-long
experimental data as a part of the Dutch CESAR project. Due to the response of microwave radiometric channels (at 20-30
GHz), which have a different sensitivity to the atmospheric constituents, a possible way to detect rainy radiometric data could
be based on the ratios between pairs of Tb’s.

The ratio between Tb’s appears more suitable as an indicator than the single channel brightness temperature itself to
discriminate sky conditions. In fact, a linear relationship between Tb’s jointly measured around 20 and 30 GHz exists under
clear sky conditions, while it becomes strongly non-linear in the presence of heavy clouds or rain events (13). Also, it is observed
that specific temperature ratio values can be related to different atmospheric scenarios, ranging from clear to rainy sky (11).

In recent years, a number of novel approaches to the problem have been proposed by authors. Machine learning-based
methods have been implemented in (14), while optical imaging has been employed with a suitable degree of success in (15). The
work presented in (15) is of specific interest as it does not employ radiometers; however the drawback of the work lies in the
limitations of accurate optical imaging for a number of different atmospheric conditions, especially for tropical regions. A
similar work presented in (16) is effective provided there are no obstructions, and the variation in meteorological parameters
is prominent and hence detectable by optical means with an acceptable degree of accuracy. The drawbacks of purely optical
imaging can be addressed through a hybrid systemwhich allows for radiometric sensing as well as optical imaging, used in deep
space exploration (17). Pyranometricmeasurement techniques have also been explored as a viable solution in (18). However recent
models employing brightness temperature measurements for meteorological estimation have been found to yield accurate
results for the 0.5-2 GHz band (19).

The authors of this paper have used the relationship between Tb’s to gather information to discriminate between clear and
rainy atmospheric conditions from the output of a radiometer placed at the tropical location of Cachoeira Paulista (22.57 deg. S,
89 deg.W), INPE, Brazil.The ratio between Tb’s is seen as the critical factor which can be used to differentiate between different
sky conditions and consequently evaluate the occurrence of meteorological phenomena such as rain.

2 Methodology

Under clear sky, the brightness temperature Tb (K) at a radiometric frequency fi is given by Bosisio (3) (8).

Tb ( fi) = aiV +bi (1)
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Here ai (Kmm-1) and bi (K) are frequency and elevation angle dependent coefficients. The Precipitable water vapour (PWV) is
expressed by the term V (mm-1).

These coefficients are evaluated by linear curve fitting for a large radio sounding database and concurrent radiative transfer
forward modelling by Bosisio and Mallet (12). Under clear weather only considering the water vapour contribution to the
brightness temperature the above relation was put forwarded as a part of dual frequency algorithm.

In the present work, data for one year (2009) was obtained from Cachoeira Paulista in Brazil, where the variations in
meteorological phenomena showed variance equivalent to the observations expected at tropical locations in Asian countries
such as India. Thus the specific location allowed for more extensive modelling as well as helped to augment the statistical
validity of the results obtained through application of the model. The data obtained was not modified in any manner to ensure
generalizability of the results obtained, especially considering the fact that a slight change in the data might result in the loss
of significant information. The observed brightness temperatures at the two frequency channels 23.834 GHz and 30 GHz are
taken as Tb(23.8) and Tb(30) respectively and are related in the following equation 2,

Tb(30) = c0Tb(23.8)+ c1 (2)

Here, c0= Tb(30)/ Tb(23.8), c1= Tb(30)- c0 Tb(23.8)
The choice of frequency 23.834 GHz lies in the fact that it is far away from the pressure broadened water vapour resonance

line at 22.234 GHz; hence its independent nature with respect to pressure broadening can help in elimination of any unwanted
signal. The other one i.e. 30 GHz lies in weak water vapour attenuation region. It has also been found that the choice of this
frequency pair is optimal (4,20) for the measurement of vapour and liquid water.

So long as the sky remains clear the relation between the brightness temperatures at the chosen frequencies stands linear.
The building of cloud and rain events however causes a change in the nature of the relationship (13). With the passage of time,
as the liquid phase fills the atmosphere, the clear weather atmospheric path characteristics hidden in the ratio Tb(30)/Tb(23.8)
are no longer able to describe the phenomenon of signal variation, rather an idea of unbiased brightness temperature Tb’(30)
can be used in this situation.

Unbiased T ′
b(30) = Tb(30)− c1 (3)

Considering a change in the linear relationship between Tb(23.8) and Tb(30) when sky conditions change from clear to cloudy,
a ratio Tb(R) is proposed to discriminate between clear, cloudy and rainy weather.

Tb Ratio = T ′
b(30)/Tb(23.8) (4)

3 Results

Fig 1. (a) Co-located rain gauge data (b) measured brightness temperature at 23.834 and 30 GHz
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The time series presentation of brightness temperatures at the two frequencies 23.834 GHz and 30 GHz is shown in Figure 1.
The co-located rain gauge data is also shown in the same figure. It is to be mentioned here that the radiometer is recording data
throughout the year at a tropical location Cachoeira Paulista (22.57 deg. S, 89 deg. W), INPE. Here it is to be noticed that the
few minutes before raining the brightness temperatures underwent a marked increase.

The linear relation between the two brightness temperatures for the said frequencies are studied by plotting the brightness
temperatures(K) at two frequencies for a period of more than 225 days along with the entire event of rainy and non rainy period
of same length of time and is presented in Figure 2. During clear weather the brightness temperatures shows a linear relation
where the coefficients c0=0.41 (dimensionless ratio) and c1=4.944(K). The interaction of rain in liquid phase with the signal
along the radio path brings about a change in the values of brightness temperatures (K), which is observable during a spell of
rain. If the rain spell is of low intensity, the rise of brightness temperatures (K) is not as high as the rise observed corresponding
to a spell of intense rain. Hence, the presence of more rain in liquid phase is reflected in the strong interaction of the rain with
the signal.

Fig 2. Scatter plot of measured Tb at 23.834 and 30 GHz along with linear correlation

The ratio between the temperatures as described in equation 4 along with its time derivative for the time series of the
brightness temperatures (K) for the same length of time span are depicted in the Figure 3. As per the discussions in the above
paragraph as more and more rain liquid throngs the radio path, brightness temperature rises to a greater extent showing the
greater interaction of the signal with the rain liquid; correspondingly the ratio changes, exhibiting its sensitivity to the change
in brightness temperature.

A statistical analysis of the number of rain events over Cachoeira Paulista (CP, 220 S), Brazil during the year 2009 reveals that
the total number of rain events observed is above 50 (shown in Figure 4 (a)). Out of the total number of observations obtained
for these events cumulatively, the number of occurrences goes beyond 200 for rain rates up to 15mm/hr but quite interestingly it
is observed also that the number of occurrences suddenly falls to 70 considering rain rates between 15-25 mm/hr.This suggests
that at the place of experiment, the most abundant rain rate was up to 25 mm/hr as shown in Figure 4(b).

Scatter plot of the ratio R and the brightness temperature (K) for rainy events {light rain, medium/heavy rain and all rainy
events} are presented in Figure 5. The TbRatio can explain all these curves by mentioning a threshold of rainy situation value
to establish a transitional point to indicate the status of the sky.

The regression analysis of light rain (Tb30<65) shows the linear relationship corresponding to the regression relation shown
below in equation 5.

Tb Ratio = 0.17724+0.00836Tb30 (5)

The correlation coefficient corresponding to the regression relationship depicted in equation 5 is 0.894. Similarly, for medium
and heavy rain (Tb30>65) the regression relationship has a non-linear nature, which is shown in the following equation 6.

Tb Ratio = 0.34265+0.00688Tb30−1.60598E−5Tb302 (6)
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Fig 3. Discrimination capabilities of Tb Ratio: from top to bottom, Tb ratio time series, Tb ratio time derivative, Tb23.834 and Tb30 time
series.

Fig 4. (a) Time series of measured brightness temperature at 30 GHz for non rainy (black line) and rainy (red line) periods, (b)-Histogram
of rain rate (mm/hr) over Brazil, in the year 2009.

Fig 5. Scatter plots between TbRatio and unbiased Tb30 during rainy events: (from left to right) light rain event; medium/heavy rain event;
all rainy events.
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The correlation coefficient corresponding to the above equation is 0.923.
The plot of the histogram of TbRatio in the following Figure 6c shows 3 peak values that could be interpreted as thresholds

between clear sky, cloudy sky and rainy sky, respectively (see Table 1). These three different regions are also visible in the
histogram of Tb30 values shown in Figure 6d. The Cumulative Distribution Function (CDF) plots reveal these thresholds in
term of different slope regions seen in Figure 6a and Figure 6b respectively.

Table 1. Sky conditions:Tb Ratio and Tb 30 threshold values
TbRatio Tb 30(K)

Clear sky 0.321-0.459 13.75-29.75
Cloudy sky 0.459-0.768 29.75-65.25
Rainy sky >0.768 >65.25

Fig 6. Statistical characteristics (a): CDF ofTb 30 (b): CDF of Tb Ratio (c): Histogram of Tb 30 (d): Histogram of Tb Ratio.

4 Discussions
The ratio of radiometric brightness temperatures at two different frequencies seems to be a good tool for identifying the sky
status. In this paper brightness temperature data corresponding to 23.8 and 30 GHz is used to determine sky conditions
by differentiation of clear, cloudy and rainy sky Tb Ratio value ranges of 0.321-0.459, 0.459-0.768 and greater than 0.768
respectively. Considering the analyzed data, sky status indicator has been associated at clear, cloudy and rainy sky conditions
assuming values up to 0.39, between 0.4 to 0.88 and greater than 0.88, respectively. A validation of the said parameter
classification capability has been performed using concurrent brightness temperatures at 15 GHz, collected by an independent
radiometric unit with the ability to sense emission processes. The validation, although limited, has indicated that the proposed
indicator has a very good potential for correctly assessing sky conditions to adjust communication systems accordingly. A
significant level of similarity was found in the findings presented in this work and the results obtained in (19) at much lower
frequencies for ice measurements. However, the use of brightness temperature in the present work is novel and allows for
comparatively greater accuracy of the corresponding statistical model, since the dual frequency measurements allow for
smoothing of theCDF.This leads tomoremeaningful statistical results. Also, since a simple quadratic curve-fittingmethodology
is outlined in the work, the corresponding algorithm is expected to run in linear time, that is, with an O(n) time complexity.
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5 Conclusion
Sky status is important for designing fade margins for satellite communication systems. Advantages in the use of the sky
status indicator for optimal functioning of satellite communication systems are in the easy software implementation of the
measurement and sky status determination algorithm and in the online system performance monitoring capability so that
dynamic fade mitigation techniques could be designed and systems set up, to contrast possible degradation of a satellite
propagation channel due to scattering processes arising from rain. The determination of the brightness temperature ratio as
a critical factor in the estimation process is a major contribution of the present work.This allows for greater statistical accuracy
of the proposed model with fairly linear time complexity for quadratic model establishment, which can allow distributed
simultaneous estimation to be implemented using IoT based devices, in future.The accurate estimation of sky status is therefore
made possible. As a consequence, through application of the technique illustrated in this paper, rain events can be accurately
predicted from sky status, which in turn can allow communication systems to adjust signal parameters accordingly to mitigate
rain related effects. In the future, the authors intend to implement the technique outlined in the work on a distributed platform,
with the estimation technique enhanced by the application of low time-complexity machine learning algorithms, which are
expected to significantly increase the efficacy of the proposed technique.
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