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Abstract
Objectives: To verify the energy efficiency operation of electrified trains on
the certain metro line, in Vietnam by combining two solutions to recover
regenerative braking energy with on-board supercapacitors and tracking
the optimal speed profile. Methods: This study proposes an integrated
optimizationmethod: applying Pontryagin’smaximumprinciple (PMP) finds the
optimal speed profile with fixed running time and recuperating regenerative
braking energy by designing the control method — Current Mode Control
(CMC) to manage charge/discharge process of the on-board supercapacitor
energy storage system (SCESS) tracking the optimal speed profile. Findings:
With this approach, a considerable reduction in consuming energy obtained for
Cat Linh-Ha Dong metro line, Vietnam has been verified by simulation results
on MATLAB and MAPLE software indicating that applying PMP, the highest
operation energy saving is 10.15%, but if both solutions PMP and SCESS are
applied, the energy saving level increases up to 14.7% in comparison with
simulation results of the case of original speed profile. Novelty: Combining
two energy saving solutions simultaneously: applying PMP to determine the
optimal speed profile and using super-capacitors with CMC algorithm have
recuperated the regenerative braking energy. The level of energy saving is
higher than other saving solutions.
Keywords: Pontryagin’s Maximum Principle; Supercapacitor Energy Storage
System; Current Mode Control; EnergyEfficiency Operation; Timetable
Optimization

1 Introduction
While subway systems, as an important part of urban transport, carry passengers to
their destination safely, quickly, and conveniently, they also consume a lot of energy;
namely, 40% to 50% of the total energy consumed is for traction power (1). Therefore,
the studies of energy-saving in electric railways have an important economic value,
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many energy saving methods have been published by researchers, manufacturers worldwide, typically in recuperating
regenerative braking being able to reach upmore than 30% of the traction energy (2). Surplus energy in braking phases recovered
by the installation of onboard or wayside energy storage systems with designing controllers to control charge/discharge process
of SCESS suitable for operation characteristic of train. Studies, applications of super capacitor energy storage system with
tested to practical utilization (2–16). Iannuzzi et al (5) using onboard SCESS integrated with traction drive system saves energy
to 38%, reducing peak power up to 50% in accelerating regime, stabilizing voltage on DC bus to 1%, increasing power supply
distance among traction substations ; Dominguez et al released a study of energy consumption reduction to 24% in the Metro
deMadrid (7); Michael Steiner et al (8) shows Bombardier installed Mitrac energy saver being able to reduce the consumption of
the traction energy to 30% and line current peak and voltage drop by 50% ; Diego Iannuzzi, Flavio Ciccarelli, Davide Lauria (12)
use stationary ultra-capacitor storage device for improving energy saving and voltage profile of light transportation networks;
reversible substations (17,18); maximizing the regenerative energy exchange between trains by synchronizing their accelerating
and braking phases as much as possible (19–21), Fathy Ahmed et al. (22)applied parasitism-predation algorithm (PPA) in the
energy management strategy for hybrid photovoltaic/fuel cell/battery/supercapacitor to minimize the hydrogen consumption
of fuel cell; Jamadar Najimudin et al (23) developed regenerative braking system (RBS) and braking energy management
techniques, considering different driving situations and road conditions which employed in addition to mechanical braking
for increasing the braking efficiency of the electric vehicle system. Additionally, another energy saving approach which has
also attracted more attention from experts is to find optimal speed profile by two methods: the Mathematical and Optimal
theory (Maximum principle, Dynamic programming, Linear programming); the other one is the Computational Intelligence
(Fuzzy neural networks, Genetic Algorithm, Predictive control, Colony Optimization Algorithm) (24–26). A group of scientists
at the University of South Australia Howlett et al. (27,28), Vu (29), and Albrecht et al (30,31) systematically have researched optimal
strategies using mathematical approaches and optimal theory to propose control laws to detect optimal switching points, then
finding the optimal speed profile, and others, Khmelnitsky (32) attempted to solve the problem of optimal control by applying the
Pontryagin’s maximum principle and adjoint variables, which consider regenerative braking, Liu et al. (33) uses the maximum
principle for finding a set of optimal controls, the control switching graphs, and complementary conditions of optimality.
Bao Huy et al. (34) applied Pontryagin’s minimum principle to develop an optimal energy management strategy (EMS) for
battery/supercapacitor hybrid energy storage systems replaced Dynamic Programming (DP), and the proposed optimal EMS
is hundreds of times faster than DP with better results. The novel strategy is based on formulating the problem in terms of
power and energy which forms a state-constrained optimal control problem. PMP is then applied with a penalty function, in
which the inequality state constraints are reformulated to deduce a new state-unconstrained problem. The proposed optimal
EMS is hundreds of times faster than DP with better results. Moreover, the optimal solution is piecewise constant that could
give significant insights to develop real-time strategies in future studies. Shaofeng Lu (35) applied three optimization algorithms
(ColonyOptimization Algorithm, Dynamic Programming, GA) to search for the optimal speed trajectory, Dominguez et al. (36)
designed the speed profile giving guarantees of running time and consumption energy saving, thenDominguez et al. (7) designed
train operation speed profiles for anAutomatic TrainOperation System (ATO) to select the optimal speed profiles with reducing
energy consumption, Wong and Ho (37) used genetic algorithm, Açikba, Söylemez (38) utilized artificial neural networks and
genetic algorithms to determine the optimal coasting point, yet all studies have not mentioned fixed running time, as well
as combined solutions to enhance energy saving percentage in electric train operation. Therefore, in this paper, a combined
approach between the optimal control theory-Pontryagin’s maximum principle determining the optimal speed profile, fixed
running time and the onboard supercapacitor energy storage system recuperating regenerative braking energy with charging
or discharging of SCESS tracking the optimal speed profile is proposed.

2 Urban Railway System Model
Urban electric railway system in Figure 1 consists of parts: traction substations, overhead lines or the third rail, feeders, trains
as electric loads, traction drive motors, and onboard supercapacitor energy storage system including a bank of supercapacitors
with bidirectional DC-DC converter. Modelling some main parts has been performed briefly.

2.1 Train model

The train using Onboard supercapacitor energy storage system is represented by the following continuous - space model (39–41)

dx
dt

= v

mv
dv
dx

= Ftv(v)+
Psc(t)

v
−Fbr(v)−W0(v)−Fgrad(x)
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Fig 1. General control structure for energy consumption of single train operation

Where v,t,x,m represent respectively train speed(m/s), operation time(s), train position (m), full load translating mass of
train (tone) and Ftr,Fb,W0,Fgrad are traction, electrical braking, resistance, gradient resistance forces applied on the train.
Furthermore, differing with the conventional continuous - space model of train is supercapacitor power Psc(t) in ences in
body same as Equation (1) Psc(t) accumulating/releasing energy by charging/discharging of supercapacitors tracks operating
characteristics of trains.Regenerative braking energy recuperation is possible when the electric train speed is greater than
10km/h in braking phase, while mechanical braking force only works at a speed less than 10km/h in braking phase energy
recover the mechanical braking force is omitted in equation (1).

Figure 2 describes discharge/charge process of SCESS accordance with operation of trains in three phases. The SCESS’s
discharging energy supports for operating trains in accelerating regime with Psc(t)being negative; the SESSs do not charge/
discharge in coasting regime with Psc(t) equal to 0kW, and charging regenerative braking energy in braking regime with Psc(t)
being positive.
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Fig 2. Characteristics of traction motor integrated with SCESS

2.1.1 Traction, braking forces
With characteristic curves of traction force, braking force performed by manufacturers, using the identification method: Least
Square Method to find equivalent polynomials.

The maximum traction force corresponding to the speed is

Ftr =


13.2

(
0 ≤ v ≤ 32

)
−2.5×10−5v3 +0.007× v2

−0.66v+28.35 (32 < v80)
(2)

The maximum braking force corresponding to the speed is

Fbr =


14.7 (0 ≤ v ≤ 65)
−0.254v+31.21 (65 < v75)
−0.2027v+27.36 (75 < v80)

(3)

Fig 3.Maximum traction characteristic curve per motor
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Fig 4.Maximum braking characteristic curve per motor

2.1.2 Basic resistance, and gradient forces
Forces acting on the train in which the basic resistance force w0(v) consisting of the air resistance, the friction resistance is
represented in David’s formula (42).

w0 =
W0

m
= a+bv+ cv2 (4)

Where a,b,c are coefficients of train’s resistance force.
The gradient force Fgrad caused by slope of road

Fgrad = mgsinα (5)

Where g, a are the gravity acceleration and the rail track slope respective.

2.2 Supercapacitor energy storage systemmode

The energy storage system consists of an interleaved bidirectional DC-DC converter with an on-board supercapacitor bank, as
shown in Figure 5.

The DC-DC converter being able to exchange energy bi-directionally placed between high voltage DC bus and low voltage
SCESS operates in buck or boostmode: In boostmode, SBS andDBS are the operating switches, and the low-voltage side delivers
energy to the high-voltage side (DC bus); super-capacitor modules get discharged by low voltage. In buck mode, SBK and DBK
are the operating switches, and the high voltage side transfers energy to the low voltage side; the super-capacitor modules get
charged from the DC bus.

Averaged model of bidirectional DC-DC converter is shown in Figure 6, switches are replaced by an ideal transformer with
d(t) being transformer factor, and u1(t) = d(t)u2(t), i2(t) = d(t)i1(t)


L

diL
dt

=−rLiL +duDC −uSC

C
duDC

dt
=−diL + iinv

(6)

3 Control Design for Urban Railway System
The target is to minimize train operation energy by two solutions: using PMP finds optimal speed profile, and using SCESS
recovers regenerated braking energy; so does control design.
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Fig 5. Power electric scheme of a three phase Interleaved DC-DC converter

Fig 6. Equivalent circuit of averaged model of bidirectional DC-DC converter Averaged model of DC-DC bidirectional converter shown
average model is (43)

3.1 Optimal Speed Profile determination based on PMP

Many solutions for the energy effective control are outlined to detect the optimal speed profile withminimizing train’s operation
energy consumption, ensuring fixed trip time as well. In the part 3, utilizing PMP computing optimal switching points of
operation modes of speed trajectory applies for the train model recuperating regenerative braking energy by the onboard
supercapacitor energy storage system.

3.1.1 Problem formulation
In proposed method, regenerative braking energy has recovered by SCESS. Train motion equation is rewritten:

dt
dx

=
1
v

v
dv
dx

= utr ftr(v)+
psc(t)

v
−ubr fbr(v)−w0(v)− fgrad(x)

(7)
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Where utr,ubr are defined traction and braking control variables of train, both of which are restrained by
utr Î[0,1];ubr Î[0,1]; ftr, fbr, fg gad are forces per unit mass; traction force applied at the wheels, braking force, gradient force
acting on the train.

Boundary conditions are given by

0v(x)V (x) (8){
v(0) = 0;v(X) = 0
t(0) = 0; t(X) = T (9)

Where V(x) is the maximum allowable speed, X is the terminal of the train operation; v(0), v(X) are the speed at the beginning,
at the end of the route; T is duration of the trip is also given by the timetable.

Assume that accelerating phase happens between {t1, t2} ; coasting phase happens between {t2, t3} ; regenerative braking
phase happens between {t3, t4} , thus supercapacitor power per unit mass psc(t) is given

Psc(t) =


−psc(t) t1tt2(discharge time)
0 t2 < tt3 (coastingtime)
psc(t) t3 < tt4 (charge time)

(10)

To ensure absolute schedule time, objective function is defined as:

J =
∫ x

0

[
µtr ftr(v)+

psc(t)
v

]
dx+λT → min (11)

Where T = Tactual (X)−Tdemand (X),λ is an unknown Lagrange multiplier.
Given

Tactual (x) =
∫ x

0
dx
v

(12)

Finding the value of Lagrange multiplier λ is to deliver the required running time Tdem and (X),Tactual is actual running time of
train.

Therefore, object function is

J =
∫ X

0

[
uy ft(v)+

px(t)
v

+
λ
v

]
dx → min (13)

3.1.2 Solution
Pontryagin’s Maximum Principle is applied to solve the train energy-efficient operation problem by seeking optimal switching
points of the train’s operation modes.

Combining (7)-(13), the Hamiltonian function can be expressed in the form as follow:

H =−
(

utr ftr(v)+
psc(t)

v
+

λ
v

)
+ p1

1
v
+ p2

(
utr ftr(v)+ psc(t)/v−ubr fbr(v)−w0(v)− fgrd(x)

v

)
(14)

Where p1, p2 are adjoint variables. Adjoint variable differential equations are reformed:

d p1

dx
=−∂H

∂ t
=

1
v

d psc(t)
dt

− p2

v2

(
d psc(t)

dt

)
d p2

dx
=−∂H

∂v
=

[
utr

∂ ftr
∂v

− psc

v2 −ubr
∂ fbr

∂v
− λ

v2

]
+

p1

v2 +
p2

v2

[
utr ftr(v)+ psc(t)/v−ubr fbr(v)−w0(v)− fgrad(x)

]
− p2

v

[
utr

∂ ftr
∂v

− psc

v2 −ubr
∂ fbr

∂v
− ∂w0

∂v

]
(15)
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Substitute p = p2
v

d(p · v)
dx

= p
dv
dx

+ v
d p
dx

=
d p2

dx
⇒ v

d p
dx

=
d p2

dx
− p

dv
dx

(17)
d p2

dx
=−∂H

∂v

dv
dx

=
utr ftr +

psc

v
−ubr fbr −w0 − fgral

v

(19)

Hamiltonian function is reformulated as:

H = (p−1)utr ftr +(p−1)
psc

v
− pubr fbr

− p
(
w0 + fgrad

)
− λ

v
+

p1

v

(20)

Therefore, Hamiltonian function is maximized by the following values of utr and ubr

utr = 1 if p > 1
utr ∈ [0,1] if p = 1
utr = 0 if p < 1
ubr = 0 if 0 < p < 1
ubr ∈ [0,1] if p = 0
ubr = 1 if p < 0

(21)

From the above analysis, five optimal control laws are designed:
Full power (FP): utr = 1,ubr = 0 when p > 1
Partial power (PP): (PP) : utr ∈ [0,1],ubr = 0 when p = 1
Coasting (C): utr = 0,ubr = 0 when 0 < p < 1
Full braking (FB): utr = 0,ubr = 1 when p < 0
Partial braking (PB): utr = 0,ubr ∈ [0,1] when p = 0
Substitute (16), (19) in (18), finding the differential
equation for p(x).

d p
dx

=
(1− p)

v
utr f ′tr(v)+

(p−1)
v3 psc(t)+

p
v

ubr f ′br(v)

+
p
v

w′
0(v)−

λ
v3 − p1

v3

(22)

Full power mode: p > 1,ubr = 0,utr = 1
finding accelerating time ta, accelerating distance xa .
Using equation (22)

d p
dx

=
(1− p)

v
f ′tr(v)+

(p−1)
v3 psc(t)+

p
v

w′
0(v)−

λ
v3 − p1

v3
(23)

From (7) finding the differential equation to determine xa, ta:
dx
dv

=
v2

v ·utr ftr(v)+ psc(t)− v ·w0(v)− fgral(x) · v
dt
dv

=− v
v ·utr ftr(v)+ psc(t)− v ·w0(v)− fgrad(x) · v

(24)

With initial conditions: x(0) = 0, t(0) = 0.
Partial Power mode: p = 1,ubr = 0,0 < utr < 1,, so d p

dx = 0, finding multiplier λ .
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Using equation (23):

1
v

w′
0(v)−

λ
v3 − p1

v3 = 0 (25)

Where vh- hold speed is chosen previously.
Easily, from (15), p1 is chosen by 0

So λ = v2w′
0 (26)

T here, λ = v2(b+2cv) (27)

If l is chosen previously, solve to find the hold-speed vh .
Coastingmode: utr = 0,ubr = 0,0 < p < 1 ; finding braking speed vb , coasting time tc , coasting distance xc . Coasting speed

vbis calculated as following (24,44)

vb =
ψ (vh)

φ ′ (vh)
(28)

Where φ = v ·w0(v),ψ = v2 ·w′
0(v)

From (7) finding the differential equation to determine xc, tc
dx
dv

=
v

−w0(v)− fgrad(x)
dt
dv

=− 1
w0(v)+ fgrad(x)

(29)

with t (v = vh) = ta;x(v = vh) = xa
Partial braking mode: utr = 0,0 < uor < 1, p = 0 , finding.
Using equation (23):

− 1
v3 psc(t)−

λ
v3 − p1

v3 = 0 (30)

T here f ore, λ =−psc(t)− p1 (31)

Full braking mode: utr = 0,ubr = 1, p < 0 finding braking time tb,braking distance xb .
Using equation (23)

d p
dx

=
(p−1)

v3 psc(t)+
p
v

f ′br(v)+
p
v

w′
0(v)−

λ
v3 − p1

v3
(32)

From (7) finding the differential equation:
dx
dv = v2

−v×ubr fbr(v)−v×w0(v)+psc(t)−v× fgrad(x)
dt
dv = 1

ubr fbr(v)−w0(v)+
psc(t)

v − fgrad(x)

with t (v = vb) = tb,x(v = vb) = xb

3.2 Control Design For DC-DC Interleaved Converter

The charge/discharge of SCESS tracking the optimal speed profile is performed by designing controllers based on the principle
CMC for DC-DC interleaved converter. CMC is shown in Figure 7 with the dual-loop control structure.
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Fig 7. Cascaded loop control structure of the bidirectional DC-DC converter

The inner loop-the current loop captures the inductor current dynamics; namely, managing charge or discharge of super-
capacitor system,while the outer loop - the voltage loop is designed to keepDC-link voltage at a certain constant value regardless
of the variations of load and input voltage.

3.2.1 Design of the PI current-loop control algorithm

Fig 8. Current-loop control structure

From the first equation of (6), setting

dĩL(t)
dt

=−RL

L
ĩL(t)+

1
L

(
d̃(t)UDC−linte +DũDC−lint(t)

)
−1

L
ũSC(t)

(34)

In steady state, usc may be considered as constant and therefore acts as constant disturbance for the control loop. It can be
compensated by feed-forward control.

Therefore, the transfer function relating the inductor current with the duty cycle d(t) is computed:

Gpi(s) =
ĩL(s)
d̃(s)

=
UDC−li nh/RL(

L
RL

s+1
) =

k
T s+1 (35)

Where k = UDC− linke
RL

,T = L
RL
.

The corresponding PI current controller transfer function is given by:

Gpi(s) =
ĩL(s)
d̃(s)

=
UDC−li nh/RL(

L
RL

s+1
) =

k
T s+1 (36)

The closed-loop transfer function is shown in (38)

GSi(s) =
1+TIs

(TIIT/kpik)s2 +TIi [1+(1/kpk)]s+1
(37)
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A first-order transfer function with the gain equal to 1 is stable, having static error equal to 0 and short transient process if
inertia time constant is small, so authors determined in order to closed-transfer function (38) can be defined as (39):

GSi(s) =
1+TIis

(TIiT/kpik)s2 +TIi [1+(1/kpk)]s+1
□ 1

T ′s+1
(38)

Where T’ - the smaller is the better
The best PI controller performance was gained when the plant’s dominant pole was cancelled by the controller (39).
Thus, the zero at - 1

TIi
was assigned to the time constant of the plant, which was TIi = T = L

rL
, and T

kpik
= 2×10−4(s), so TIi =

L
RL
,kpi =

L×104

2×UDC− inke

3.2.2 Design of the PI voltage-loop control algorithm
For the small perturbations, the current loop acts extremely fast, and it can be assumed ideally with a gain of unity.

Fig 9. Voltage-loop control structure

Form the second equation of (6) the transfer function relating the voltage uDClink with the inductor current is computed:

dũDC−link(t)
dt

=
1
C

ĩinv(t)−
1
C
· Usce

UDC−linke
ĩL(t)−

1
C
·d(t) · ILe (39)

GVi(s) =
ũDC−link(s)

ĩL(s)
=

Usce

CUDC−linkes
=

Ku

s
(40)

With Ku =
Usce

CUDC− linke
The transfer function of outer loop is type of the integral form. However, the system still exists disturbance, so digital PI

controller may be effectively used to ensure both zero steady-state error and controlled bandwidth.
The transfer function of PI

Gcv(s) = kpv

(
1+

1
Tivs

)
(41)

The closed- loop transfer function of Figure 9 is shown:

Gkin−da(s) =
GCV (s)GPV (s)

1+GCV (s)RPV (s)

=
k1TIV · s+ k1

s2 + k1TIV · s+ k1

(42)

Using Symmetry Optimal Method with norm function finds values of kPV ,TIV

Fkl(s) =
k1 ·TV · s+ k1

s2 + k1 ·TIV · s+ k1
□ 2.ξ ·ωn · s+ω2

n

s2 +2 ·ξ ·ωn · s+ω2
n

(43)

Where wn —Oscillation cycle, x- Damping ratio (select x=0.71)

⇒
{

k1 = ω2
n

k1TIV = 2.ξ .ωn
⇔


k1 =

kPV · ku

TIV
= ω2

n

TIV =
2.ξ ωn

ω2
n

=
2.ξ
ωn

⇔


kPV =−

ω2
n Tiu ·CUDC−linke

Usce

TIV =
2.ξ
ωn

(44)
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4 Simulation Result and Analysis
To verify the effectiveness of the control strategy, a simulation is formulated. The train parameters and line in the simulation
are based on the data of Cat Linh-Ha Dong metro line, Vietnam. There are 12 stations, 01 depot, 06 traction substations, and
two-side power supply mode (45).

Table 1. Train parameters of Metro line Cat Linh - Ha Dong.
Parameters of metro train Unit Value
Train formation 2M2T
Number of electrical traction units 08
Max acceleration/braking rates 0.94/1
Maximum speed km/h 80
Base speed km/h 32

Table 2. Route data from Cat Linh to LaThanh station
Parameters of route Unit Value
Length of simulation route m 12661
Running time 992

David’s coefficients of train’s resistance
a = 1.19×10−2

b = 2.56×10−3

c = 1.54×10−4

Table 3. Simulation parameters of train
Parameters of metro train unit value
Train gand-up 2M2T
Full load translating mass [kg] 246700
Number of electrical traction unit (N) 08
Max speed (Vmax) km/h 80
Base speed (Vb) km/h 40
Dwell time 30
Max acceleration/braking rates m/s2 0.94/1
Wheel diameter (Dwh) [m] 0.84
Parameters of super-capacitor BMOD0063 P125 B08 63F/125V

Operation modes of electrified train includes: Accelerating (R) Coasting (R) Braking.
Depending on track conditions, constraints, the speed from a station to another station is different, but it is always smaller

than limit speed 80km/h. While the train runs in Optimal speeds slower than in original ones from 1 to 3 km/h, optimal
switching points change, so do optimal accelerating, coasting, braking distances significantly, but keeping running time
unchanged as in Figures 11 and 12. Tables 4 and 5 show that saving energy for train operation in optimal speed trajectory
applied PMP up to 10.15% in comparison with original speed trajectory, level of energy saving if combining two solutions PMP
and SCESS increases up to 14.7%, higher than that of energy saving of original speed only using PMP.

When the train operates in braking phase, surplus energy is absorbed by SCESS, and this kind of energy which is released
to support the train in accelerating phase is represented by supercapacitor power shown Figure 10. In Figure 10 described
discharge/charge process of SCESS from Cat Linh to LaThanh station (with other stations, discharge/charge process of SCESS
is similar). The SCESS can discharge energy in 32 s (from 0 to 32th second) with equal to -225kW, the SESS does not charge/
discharge within 31s of coasting phase (from 33th second to 63th second), and charge in regenerative braking phase in 16s
(from 63th second to 79th second) with equal to 447kW. From 80th second to 88th second, electric train speed is slower than
10km/h, so the regenerative braking energy is not recuperated.
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Fig 10.Discharge/charge power of supercapacitor energy storage system

Fig 11. A Comparison of Optimal speed profile and original speed profile

Fig 12. A Comparison of Optimal time profile and original time profile without dwell time

Table 4. Results of a comparison of energy consumption with/ without PMP
Inter-station length Distance

(m)
Trip time
(s)

Practical energy con-
sumption (kWh)

Energy consumption opti-
mization applied PMP (kWh)

Energy
saving (%)

Cat Linh-LaThanh 931 88 8.31 7.50 9.75
LaThanh-Thai Ha 902 78 10.20 9.40 7.84
Thai Ha-Lang 1076 91 10.20 9.86 3.33
Lang-Thuong Dinh 1248 103 11.73 10.60 9.63
Thuong Dinh- Ring Road 3 1010 79 13.41 12.23 8.80
Ring Road 3-Phung Khoang 1480 104 16.75 15.82 5.55
Phung Khoang-Van Quan 1121 86 13.85 12.66 8.59
Van Quan- Ha Dong 1324 97 15.74 14.17 9.97
Ha Dong-La Khe 1110 84 14.30 13.18 7.83
La Khe-Van Khe 1428 101 16.75 15.53 7.28
Van Khe-Yen Nghia 1032 81 13.40 12.04 10.15
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Table 5. Results of a comparison of energy consumption with / without energy optimal solutions (PMP and SCESS)
Inter-station length Distance

(m)
Trip time
(s)

Practical energy con-
sumption (kWh)

Energy consumption optimiza-
tion applied PMP and onboard-
SCESS (kWh)

Energy saving
(%)

Cat Linh-LaThanh 931 88 8.31 7.16 13.84
LaThanh-Thai Ha 902 78 10.20 8.91 12.65
Thai Ha-Lang 1076 91 10.20 9.41 7.75
Lang-Thuong Dinh 1248 103 11.73 10.18 13.21
Thuong Dinh- Ring Road 3 1010 79 13.41 11.59 13.57
Ring Road 3-Phung Khoang 1480 104 16.75 15.19 9.31
Phung Khoang-Van Quan 1121 86 13.85 12.05 13.00
Van Quan- Ha Dong 1324 97 15.74 13.57 13.79
Ha Dong-La Khe 1110 84 14.30 12.54 12.31
La Khe-Van Khe 1428 101 16.75 14.90 11.04
Van Khe-Yen Nghia 1032 81 13.40 11.43 14.70

5 Conclusion
The paper proposed two integrated solutions to minimize total input energy of metro network: using the optimal speed profiles
and onboard-SCESSwith charging/discharging processes tracking the optimal speed profile.The simulation results with studied
cases for Cat Linh - Ha Dong metro line, Vietnam show that the biggest saving energy of trains’ operation tracking the
optimal speed profile is the highest about 10%, while if applying both solutions (tracking optimal speed profiles, and recovering
regenerated braking energy by SCESS), energy saving increases significantly to 14.7%. Furthermore, this paper also has provided
the foundation research for enhancing levels of energy-efficient operation by applying integrated energy saving methods which
are feasible and efficient in Urban railways of Vietnam in the near future.
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