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Abstract
Objective: To introduce a one-inflated Binomial distribution (OIBD) and
discuss its applications.Methods: Study its distributional properties, reliability
characteristics, and estimation of its parameters using the method of moment
estimation (MM) andmaximum likelihood estimation (MLE). A simulation study
has been conducted to see the behaviour of the MLEs. Two real-life examples
are used to examine the pertinent of the proposed distribution. Findings : The
proposed one-inflated binomial distribution (OIBD) provides better fitting in
terms of AIC, BIC, and KS test comparison to the other known distributions.
Novelty: Develop a new statistical distribution to study the count data having
inflated frequency at count one, along with the different statistical properties.
The practical utility of the distribution is also discussed with real-life examples.

Keywords: One inflated Binomial distribution; MM; MLE; KS; AIC and BIC

1 Introduction
It has been observed that count data with a surplus amount of zero’s, one’s, two’s,
three’s, etc are common in studies related to health, insurance, agriculture, etc. (1,2).
These inflated frequencies may create trouble in data analysis due to over-dispersion
at a particular count. The already existed distributions developed for studying count
data may not be suitable in the presence of inflated frequency. Hence, inflated models
are generated to overcome such situation and to overcome workable irregularity in
parameter estimation (1). The inflated distribution is a mixture between a point mass
at a particular count and any other count distribution supported by non-negative
integers (3).

To overcome the situation of surplus zero’s Neyman (4) and Feller (5) first introduced
the idea of zero inflation. The structural properties and MLE’s of inflated discrete
distribution inflated at zero was studied by Gupta et al. (6) The results of Gupta et
al. (6) were extended by Murat and Szynal (7). They studied that discrete distributions
may inflate at any point say. Lambert (8) proposed a zero-Inflated Poisson regression
(ZIP) model with surplus zeroes with an example of a manufacturing defect. Ridout et
al. (9) furnishes an aspect of zero-inflated counts on creating contraption of happening
as well as acceptable designing structure by citing examples of sexual behaviour and
species abundance. By taking on themethodology of Lambert’s (8) ZIP regressionmodel,
Hall (10) derived a zero-Inflated Binomial Model. Two-inflated binomial distribution
was used by Singh et al. (11) to investigate the mechanism of son
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preference through the modelling of the pattern of male children in Uttar Pradesh, where family size and sex composition
are dominated by strong son preference. The parameters of a zero-inflated Poisson distribution were estimated by Beckett
et al. (12) and they modelled some natural calamities data using these parameters. Beckett et al. (12) also juxtapose MLEs and
MMEs regarding Standardized bias and standardizedmean squared error. Zero-inflated binomial distributionwas characterized
by Najundan et al. (13); Zero-inflated negative binomial distribution was characterized by Suresh et al. (14); Zero-inflated
Poisson distribution was characterized by Najundan et al. (15). Alshkaki (16) extended the zero-inflated Poisson distribution
to zero-one-inflated Poisson distribution and also studied its structural properties and estimates its parameters by method
of maximum likelihood and method of moments. Mwalili et al. (17) studied a zero-inflated negative binomial model to gratify
extravagant zeros, an extension of negative binomial distribution. Alshkaki (18) studied the structural properties and estimated
the parameters by the method of moments of zero-one inflated negative binomial distribution. Sakthivel and Rajitha (19)
proposed a probability based inflation estimator for zero-inflated Poisson model, which will be helpful for inferences about
the inflation parameter. Jornsation and Bodhisuwan (20) proposed a zero-one inflated negative binomial-beta exponential
distribution along with its distributional properties and estimate its parameters using method of maximum likelihood.

TheBinomial distribution is awell-knownnon-negative integer-valued discrete distributions.While sampling binomial data,
it is often observed that either the number of counts of zero or One or two has a higher frequency than that expected, which can
be explained by an appropriate inflated distribution, say, zero-inflated or one-inflated or two-inflated binomial distribution.

The probability distribution of the number of successes, so obtained is called the Binomial Probability distribution. The
binomial distribution is a discrete distribution as X can take only the integral values, viz. 0,1,2,3,4…,n

A random variable X is said to follow binomial distribution if it assumes only non-negative values and its probability mass
function is

P(x;n, p) = P(X = x) =


(

n
x

)
px(1− p)n−x; x = 0,1,2, . . . ,n

0; otherwise
(1)

It is denoted by B(n, p)
The Zero-Inflated Binomial Distribution (ZIBD) was proposed by Hall (10). Let X ∼ B(n, p) as given in (1), let α ∈ (0,1) be

an extra proportion added to the proportion of zero of the random variable X, then the random variable X defined by

P(x;n, p,α) = P(X = x) =


α +(1−α)(1− p)n ; x = 0

(1−α)

(
n
x

)
px(1− p)n−x ; x = 1,2,3,4, . . . ,n

0 ; otherwise

where 0 < α < 1, 0 < p < 1

(2)

is said to have a zero-inflated binomial distribution and it is denoted by X ∼ ZIBD(n, p,α)
Note: If α → 0, then the above distribution reduces to standard binomial distribution (1).
The Two-Inflated Binomial Distribution (TIBD) was proposed by Singh et al. (11). Let X ∼ B(n, p) as given in (1), let

α ∈ (0,1)be an extra proportion added to the proportion of two of the random variable X, then the random variable X defined
by

P(x;n, p,α) = P(X = x) =


α +(1−α)

(
n
2

)
p2(1− p)n−2 ;x = 2

(1−α)

(
n
x

)
px(1− p)n−x ;x = 0,1,3,4, . . . ,n

0 ; otherwise

(3)

Where 0 < α < 1, 0 < p < 1, is said to have a two inflated binomial distribution and it is denoted by X ∼ T IBD(n, p,α)
Note: If α → 0, (3) reduces to standard binomial distribution (1).
Here in this paper, the researchers propose a one-inflated binomial distribution along with its distributional properties,

reliability characteristics and consider the method of moment estimation (MM) andmaximum likelihood estimation (MLE) to
estimate its parameters. A simulation study has been conducted to see the behaviour of the MLEs. Here two real-life data sets
are used to examine the pertinent of the proposed distribution.
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2 One Inflated Binomial Distribution (OIBD)
Let X ∼ B(n, p) as given in (1), let α ∈ (0,1)be an extra proportion added to the proportion of one of the random variable X,
then the random variable X defined by

P(x;n, p,α) = P(X = x) =


α +n(1−α)p(1− p)n−1 ; x = 1

(1−α)

(
n
x

)
px(1− p)n−x ; x = 0,2,3,4, . . . ,n

0 ; otherwise

(4)

Where 0 < α < 1, 0 < p < 1, is said to have one-inflated binomial distribution and in the rest of the article it will be denoted
by OIBD(n, p,α)

Some particular cases: When

1. α → 0, OIBD(n, p,α) reduces to B(n, p).
2. α → 0, n → ∞, p is very small and np =⋋( f inite), OIBD(n, p,α) reduces to Poisson distribution.
3. α → 0, n → ∞, and p is very small , OIBD(n, p,α) reduces to Normal distribution.

The pmf plots of OIBD (n, p,α) with different choice of parameters values of n, p and α to study the variety of shapes are
provided in Figure 1.

Fig 1. Shape of OIBD(n, p,α) with different choice of parameters
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3 Distributional Properties

3.1 Moments

Theorem 1: If X ∼ OIBD(n, p,α), then its rth order moments about zero is as follows

µ ′
r = E (X r) = α +(1−α)∑r

j=0
S(r, j)n!pr

(n− r)!
(5)

Proof: If X ∼ OIBD(n, p,α) then the rth order moments about zero is

µ ′
r = E (X r)

=
n

∑
x=0

xr p(X = x)

= α +
n

∑
x=0

xr(1−α)

(
n
x

)
px(1− p)n−x

= α +(1−α)
n

∑
x=0

xr
(

n
x

)
px(1− p)n−x

= α +(1−α)
r

∑
j=0

S(r, j)n!pr

(n− r)!
n

∑
x=0

xr
(

n
x

)
px(1− p)n−x =

r

∑
j=0

S(r, j)n!pr

(n− r)!

Where S(r, j) is the first kind of Stirling number.
Proved.
In particular, the first four moments of OIBD(n, p,α) can be obtained as

µ ′
1 = E(X) = α +(1−α)np (6)

µ ′
2 = E

(
X2

)
= α +(1−α)np(np+1− p) (7)

µ ′
3 = E

(
X3

)
= α +(1−α)

(
n(n−1)(n−2)p3 +3n(n−1)p2 +np

)
(8)

µ ′
4 = E

(
X4

)
= α +(1−α)

(
n(n−1)(n−2)(n−3)p4+
6n(n−1)(n−2)p3 +7n(n−1)p2 +np

)
(9)

Therefore,

Variance, V (X) = (1−α)
[
(np−1)2α +np(1− p)

]
(10)

The plots of mean and variance of the proposed distribution with different choice of parameters to study their variations are
shown in the Figures 2 and 3.
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Fig 2.Mean against n for different values of p and α

Fig 3. Variance against n for different values of p and α

From the Figure 2 it is clear that as α decreases and p and n increases, the mean of the proposed distribution increases.
From the Figure 3 it is clear that as α decreases, the variance of the proposed distribution decreases.
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3.1.1 Coefficient of Skewness
If X ∼ OIBD(n, p,α) the Pearson’s β1 coefficient is as follows

β1 =
µ2

3

µ3
2
=

[
µ ′

3 −3µ ′
2µ ′

1 +2µ ′3
1

]2

[
µ ′

2 −µ2
1

]3

=

 np2((n−1)(3+(n−2)p)−3(α(2α −3)+1))
+np3(1−α)(2(1−α)−3n(n−1))+α

(
1−3(n−1)np2 −2α

)
+np(1−6α(1−α))

2

(1−α)[np(1−2α + p(n−2+α))+α ]3

(11)

The plots of coefficient of skewness of the proposed distribution for different choice of parameters are shown in the Figure 4

Fig 4. β1 against n for different values of p and α

From the Figure 4 it is observed that

1. As p = 0.5 and α ≥ 0.5,β1 decreases
2. As p ≥ 0.5 and α < 0.1,β1 increases
3. As p < 0.5 and α < 0.1,β1 decreases
4. As p ̸= 0.5 and 0.1 ≤ α ≤ 0.4 & 0.6 ≤ α ≤ 0.9, β1 increases
5. As α = 0.5,β1 decreases for p(0 < p < 1)

Remark 1

• As α → 0 and p = 0.5 and then the coefficient of skewness β1 → 0 i.e. the proposed distribution tends to symmetric
distribution.
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3.1.2 Coefficient of Kurtosis
If X ∼ OIBD(n, p,α) the Pearson’s β2 coefficient is as follows

β2 =
µ4

µ2
2
=

[
µ ′

4 −4µ ′
3µ ′

1 +6µ ′
2µ ′2

1 −3µ ′4
1

]
[
µ ′

2 −µ ′2
1

]2

=


(n−1)np2(7+(n−2)p(6+(n−3)p))
+α

(
4(n−1)np2(3+(n−2)p)+3α

(
1−2(n−1)np2

)
−3α2

)
+np2(1−α)

(
3p2(1−α)2 +4+6np2(1−α)
−6n2 p2(1−α)−18(1−α)α

)
+4(1−α)n2 p3

(
n2 p+3n(1− p−α)− (3−2p−3α)

)
−np(1−2α)(

1−6(1−α)α +6p2(1−α)2
)


(1−α)[np(1−2α + p(n−2+α))+α]2

(12)

The plots of coefficient of Kurtosis of the proposed distribution for different choice of parameters are shown in the Figure 5

Fig 5. β2 against n for different values of p and α

From the Figure 5 it is observed that
1. As p ≥ 0.5 and α = 0.1,β2 > 3 for large n
2. As α > 0.1,β2 < 3 for large n
Remark 2

1. As α → 0,0 < p < 1, then the coefficient of kurtosis β2 → 3 for large n i.e. the proposed distribution tends to normal.

3.2 Probability Generating Function

Theorem 2 : If X ∼ O IBD(n, p,α), then its Probability Generating Function(p.g.f), Px(S) is as follows

Px(S) = αs+(1−α)(1− p+ ps)n (13)

https://www.indjst.org/ 1845
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Proof: If X ∼ O IBD(n, p,α) then, the probability generating function Px(S)

Px(S) = E (Sx)

=
n

∑
x=0

P(X = x)sx

= αs+(1−α)
n

∑
x=0

(
n
x

)
(ps)x(1− p)n−x

= αs+(1−α)(1− p+ ps)n

Proved.
Remark 3
Putting S = et in equation (13), the Moment Generating Function (m.g.f), Mx(t) of OIBD(n, p,α) is as follows

Mx(t) = αet +(1−α)
(
1− p+ pet)n

Remark 4
Putting S = et in equation (13), the Characteristic Function, φx(t) of OIBD(n, p,α) is as follows

φx(t) = αeit +(1−α)
(
1− p+ peit)n

3.3 Cumulative Distribution Function (CDF)

Theorem 3: If X ∼ O IBD(n, p,α), then its CDF of X is as follows

F(x) = P(X ≤ x) = α +(1−α)Iq(n− x,1+ x)

Proof: If X ∼ O IBD(n, p,α), then its CDF is as follows

F(x) = P(X ≤ x)

=
x

∑
t=0

P(X = t)

= α +
x

∑
t=0

(1−α)

(
n
t

)
ptqn−t

= α +(1−α)
x

∑
t=0

(
n
t

)
ptqn−t

= α +(1−α)Iq(n− x,1+ x)

Where q = 1− p and ∑x
t=0

(
n
t

)
ptqn−t = Iq(n− x,1+ x)

Where Iq(n− x,1+ x) is an incomplete beta function.
Proved.
The plots of CDF of OI BD(n, p,α) with different choice of parameters n, p and α are provided in Figure 6.
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Fig 6. Shape o f CDF with di f f erent choice o f parameters n, p and α

4 Reliability Characteristics

4.1 Survival Function (SF)

Theorem 4 : If X ∼ OIBD(n, p,α) , then its Survival Function (SF) of X is as follows

S(x) = P(X ≥ x) = α +(1−α)Ip(x,n− x+1) (14)

Proof: If X ∼ O IBD(n, p,α), then its Survival Function (SF) is as follows

S(x) = P(X ≥ x)

=
n

∑
i=x

P(X = t)

= α +
n

∑
t=x

(1−α)

(
n
t

)
ptqn−t

= α +(1−α)
n

∑
i=x

(
n
t

)
ptqn−t

= α +(1−α)Ip(x,n− x+1)

Where q = 1− p and ∑n
t=x

(
n
t

)
ptqn−t = Ip(x,n− x+1)

Where Ip(x,n− x+1) is an incomplete beta function.
Proved.
The plots of Survival Function (SF) of OIBD(n, p,α)with different choice of parameters n, p and α are provided in Figure 7.

4.2 Failure Rate (FR)

Let x1,x2,x3, . . . ,xn be a random sample from one-inflated binomial distribution as given by (4)

https://www.indjst.org/ 1847
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Fig 7. Shape o f SF with di f f erent choice o f parameters n, p and α

Define Y be the number of Xis taking the value 1. Then equation (4) can be inscribe as follows

P(X = xi) =
[
α +n(1−α)p(1− p)n−1]Y

[
(1−α)

(
n
xi

)
pxi(1− p)n−xi

]1−Y

and using s(x) from equation (14)
The failure rate (FR) of OIBD(n, p,α) is given by

R(x) =
p(x)
S(x)

=

[
α +n(1−α)p(1− p)n−1

]Y
[
(1−α)

(
n
xi

)
pxi(1− p)n−xi

]1−Y

α +(1−α)Ip(x,n− x+1)

The plots of Failure Rate (FR) of OIBD(n, p,α) with different choice of parameters n, p and α are provided in Figure 8.

5 Parameter Estimation

5.1 Method of Moment Estimation (MM)

The parameters p and α of (4) can be obtained using the method of moments as follows:
Considering the first two moments from Equations (6) and (7)
From Equations (6)

α =
µ ′

1 −np
1−np

(15)

From Equation (7)

µ ′
2 = α +(1−α)n2 p2 +(1−α)np− (1−α)np2

Using Equation (6)

µ ′
2 = µ ′

1 +(1−α)
(
n2 p2 −np2

)
(16)
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https://www.indjst.org/


Rahman et al. / Indian Journal of Science and Technology 2021;14(22):1839–1854

Fig 8. Shape of FR with different choice of parameters n, p and α

Putting the value of Equation (15) to Equation (16)

µ ′
2 −µ ′

1 =
(
n2 p2 −np2)(1− µ ′

1 −np
1−np

)
µ ′

2 −µ ′
1

1−µ ′
1

=
n2 p2 −np2

1−np
= M (say)

Then,

M =
n2 p2 −np2

1−np
p2 (n2 −n

)
+npM−M = 0

(17)

Solving the quadratic equation (17), we can estimate the value of p. The value of p have been used in equation (15) to estimate
the value of α

5.2 Maximum Likelihood Estimation (MLE)

The parameters p and α of (4) can be obtained using the method of maximum likelihood as follows:
Let x1,x2,x3, . . . ,xn be a random sample from one-inflated binomial distribution as given by (4) and let for i = 1,2,3, . . . ,n

ai =

{
1; if xi = 1
0; otherwise

then for i = 1,2,3, . . . ,n, (4) can be inscribed as follows

P(X = xi) =
[
α +n(1−α)p(1− p)n−1]ai

[
(1−α)

(
n
xi

)
pxi(1− p)n−xi

]1−ai

https://www.indjst.org/ 1849
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Hence the likelihood function; L = L(p,α ;x1,x2,x3, . . . . . . ,xn) will be

L =
n

∏
i=1

[
α +n(1−α)p(1− p)n−1]ai

[
(1−α)

(
n
xi

)
pxi(1− p)n−xi

]1−ai

=
[
α +n(1−α)p(1− p)n−1]n0

n

∏
i=1

[
(1−α)

(
n
xi

)
pxi(1− p)n−xi

]bi

Where bi = 1−ai and n0 = ∑n
i=1 ai . Note that n0 represents, respectively the number of one’s in the sample.

Therefore

logL = n0 log
[
α +n(1−α)p(1− p)n−1

]
+(n−n0) log(1−α)+∑n

i=1 bi log
(

n
xi

)
+∑n

i=1 bixi log p+∑n
i=1 bi (n− xi) log(1− p)

∂ logL
∂α

=
n0

(
1−np(1− p)n−1

)
α +n(1−α)p(1− p)n−1 − (n−n0)

(
1

1−α

)
(18)

∂ logL
∂ p

= n0

[
n(1−α)(1− p)n−2(1−np)

α +n(1−α)p(1− p)n−1

]
+

∑n
i=1 bixi

p
− ∑n

i=1 bi (n− xi)

1− p
(19)

Now, letting ∂
∂α logL = 0 , from Equation (18) that

1−α =
n−n0

n0
(
1−np(1− p)n−1

)
α +n(1−α)p(1− p)n−1

(20)

Let, p1 = α +n(1−α)p(1− p)n−1 (21)

Setting ∂ logL
∂ p = 0 , from Equation (19) and using Equation (21)

n0

[
n(1−α)(1− p)n−2(1−np)

p1

]
+

∑n
i=1 bixi

p
− ∑n

i=1 bi (n− xi)

1− p
= 0 (22)

Now, if we replace p1 by their sample relative frequencies, which is by their sample estimate, the proportion of one’s in the
sample, i.e. p̂1 = n0/n , respectively then Equations (20) and (22) reduce to

1−α =
n−n0

n(1−np(1− p)n−1)
(23)

and

n2(1−α)(1− p)n−2(1−np)+
∑n

i=1 bixi

p
− ∑n

i=1 bi (n− xi)

1− p
= 0 (24)

Using Equation (23), Equation (24) reduces to(25)(
∑n

i=1 bixi

p(1− p)
− n∑n

i=1 bi

1− p

)(
1−np(1− p)n−1

)
+n(n−n0)(1− p)n−2(1−np) = 0

A(p) = 0

(25)

Where

A(p) =
(

∑n
i=1 bixi

p(1− p)
− n∑n

i=1 bi

1− p

)(
1−np(1− p)n−1)+n(n−n0)(1− p)n−2(1−np)

Hence Equation (25) can be solved by any numerical procedure say, Newton Rapson, to obtain p̂ numerically,
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i: e. A(p̂) = 0 .
Similarly, using Equation (23), α can be estimated

α̂ = 1− n−n0

n(1−np(1− p)n−1)

Therefore, the maximum likelihood estimates (MLE) of the parameters p and α are given by solving Equation (25) numerically
to find p̂, with α̂ given by Equation (26) respectively.

When likelihood functions have convoluted frames, ExpectationMaximization (EM) algorithm can be used also as a simplest
alternative method for finding the MLEs of the parameters.

For the reckoning of the asymptotic variance covariance matrix of the estimates the second order differentiations of the
log-likelihood function are furnish here

∂ 2 logL
∂α2 =−n0

[ (
1−np(1− p)n−1

)2

(α +n(1−α)p(1− p)n−1)2

]
− (n−n0)

{
1

(1−α)2

}

∂ 2 logL
∂ p2 = n0

 (
α +n(1−α)p(1− p)n−1

)[
n(n−1)(np−2)(1−α)(1− p)n−3

]
−
(
n(1−α)(1− p)n−2(1−np)

)2


(α+n(1−α)p(1−p)n−1)

2

−∑n
i=1 bixi

p2 − ∑n
i=1 bi(n−xi)

(1−p)2

∂ 2 logL
∂α∂ p

= n0

[
n(1− p)n−2(np−1)

(α +n(1−α)p(1− p)n−1)2

]

Theasymptotic variance covariancematrix of themaximum likelihood estimators of p and α forOIBD(n, p,α), can be acquired
by inverting the Fisher information matrix (I), given by

I =

 E
(
− ∂ 2 logL

∂ p2

)
E
(
− ∂ 2 logL

∂ p∂α

)
E
(
− ∂ 2 logL

∂α∂ p

)
E
(
− ∂ 2 logL

∂α2

) 
The ingredient of the above Fisher information matrix can be acquired as

E
(
−∂ 2 logL

∂ p2

)
=

(
−∂ 2 logL

∂ p2

)∣∣∣∣
p=p̂,α=α̂,n=n

The asymptotic distribution of the maximum likelihood estimator (p̂, α̂) is given by

√
n
(

p̂
α̂

)
MLE

L−→ AN
((

p̂
α̂

)
, I−1

)
, as n → ∞

6 Simulation study
In this section a simulation study has been conducted to see the performance of the estimated parameters. Here, to generate
randomnumbers X fromOI BD(n, p,α) =OI BD(20, p,α)we have applied acceptance rejection sampling (21). By applying this
method random samples are generated of size n=100 and 200 with different combination of true values of parameters p and α
and finally, MLEs are computed using EM algorithm of R software. Bias and MSE of the parameters given in the Table 1 are
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calculated using the following formulae.

Bias(θ̂) = E(θ̂)−θ

MSE(θ̂) = E(θ̂ −θ)2

θ̂ = estimated parameter and θ = true parameter

θ = (p,α), θ̂ = (p̂, α̂)

Here, r(= mumber of replication ) = 1000

From the values of the MSE and biases of the simulation study given in Table 1, it is observed that as the sample size increase
the estimated bias an MSE are also gradually decreases which is as expected.

Table 1. Results of Simulation
p → 0.5 0.6 0.7 0.8

α ↓ n → 100 200 100 200 100 200 100 200

0.1

Bias(p̂) 0.0055 0.0052 0.0058 0.0058 0.0058 0.0059 0.0057 0.0058
MSE(p̂) 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001
Bias(α̂) 0.0005 -0.0003 0.0005 -0.0003 0.0005 -0.0003 0.0005 -0.0003
MSE(α̂) 0.0009 0.0004 0.0009 0.0004 0.0009 0.0004 0.0009 0.0004

0.2

Bias(p̂) 0.0123 0.0123 0.0129 0.0127 0.0129 .0127 0.0129 0.0127
MSE(p̂) 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002
Bias(α̂) -0.0001 0.0001 -0.0002 0.0001 -0.0002 0.0001 -0.0002 0.0001
MSE(α̂) 0.0015 0.0007 0.0015 0.0008 0.0015 0.0008 0.0015 0.0008

0.3

Bias(p̂) 0.0215 0.0213 0.0219 0.0218 0.0219 0.0219 0.0219 0.0218
MSE(p̂) 0.0007 0.0005 0.0007 0.0005 0.0006 0.0005 0.0006 0.0005
Bias(α̂) 0.0002 -0.0001 0.0002 -0.0001 0.0002 -0.0001 0.0002 -0.0001
MSE(α̂) 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009

0.4

Bias(p̂) 0.0340 0.0331 0.0339 0.0340 0.0339 0.0340 0.0339 0.0339
MSE(p̂) 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0013 0.0012
Bias(α̂) 0.0004 -0.0002 0.0004 -0.0002 0.0004 -0.0002 0.0004 -0.0002
MSE(α̂) 0.0024 0.0011 0.0024 0.0011 0.0024 0.0011 0.0024 0.0011

0.5

Bias(p̂) 0.0507 0.0501 0.0512 0.0510 0.0513 0.0510 0.0512 0.0509
MSE(p̂) 0.0029 0.0027 0.0030 0.0028 0.0029 0.0027 0.0029 0.0027
Bias(α̂) 0.0001 0.0006 0.0001 0.0006 0.0001 0.0006 0.0001 0.0006
MSE(α̂) 0.0024 0.0012 0.0024 0.0011 0.0024 0.0012 0.0024 0.0012

7 Real-life examples
The researchers illustrate the application of OIBDwith real data set with the inflated count of one and compare it with binomial
distribution and ZIBD.The data set consists of the sex composition of child tomothers with parity two in Assam andMeghalaya
of India. The data used to fit the model are taken from NFHS-IV conducted in all the states and Union territories of India
during 2015-2016 (dhsprogram.com). The prime reason for selecting the two states is the variation in the prevailing social
system. Assam being a patriarchal society, a strong son preference exists (22); whereas, the social system of Meghalaya is based
on matriarchal where preference for daughters is observed (23). Past research showed that sex preference has a positive effect on
fertility and contraceptive practices (24–26). Studies also showed that it is imperative to have one son to continue family in India
with a patriarchal family system (27). Considering these facts, for Assam and Meghalaya, the birth of male and female child are
studied with mothers of parity 2. Singh et al. (11) show that sex preference does not exist amongmothers with higher parity, that
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is why, in this study, mothers with lower parity is considered to study gender preference. The study considers the women who
had ever been married in the age group 15-49 and also the birth interval of the considered women is greater than five years (i.e.
who completed their family size). Tables 2 and 3 shows the number of son and daughters born tomothers in the states of Assam
and Meghalaya. The count one is inflated in both states, so OIBD is fitted and compared with Binomial distribution and ZIBD.

Table 2.Distribution of number of male children out of observed number women in Assam
Number ofmale births Observed number of women B(n, p) ZIBD(n, p,α) OIBD(n, p,α)

0 525 660.751877 660.751877 524.980182
1 2016 1744.630246 1744.630246 2015.952960
2 1016 1151.617877 1151.617877 1016.066858
Total 3557 3557 3557 3557

Estimated parameters
p̂ = 0.5690 p̂ = 0.5690 p̂ = 0.5818

α̂ = 1.0659×10−32 α̂ = 0.1561
logL -3465.67 -3465.67 -3422.25
KS test 0.038165 0.038165 0.000019
p-value 0.006 0.006 0.999
AIC 6933.34 6935.34 6848.50
BIC 6932.4386 6933.5372 6846.6972

Table 3.Distribution of number of male children out of observed number women in Meghalaya
Number of female births Observed number of women B(n, p) ZIBD(n, p,α) OIBD(n, p,α)

0 129 155.234464 154.987176 129.024056
1 360 307.995072 307.996848 359.999856
2 127 152.770464 153.015976 126.976088
Total 616 616 616 616

Estimated parameters
p̂ = 0.4984 p̂ = 0.4984 p̂ = 0.4980

α̂ = 7.0743×10−9 α̂ = 0.168844
Log L -604.418 -604.418 -595.595
KS test 0.042588 0.042234 0.000039
p-value 0.327 0.333 0.999
AIC 1210.836 1212.836 1195.19
BIC 1209.935 1211.0332 1193.3872

Here we fitted our proposed distribution, i.e. one-inflated binomial distribution (OIBD) along with Binomial distribution
(BD) and Zero-inflated binomial distribution (ZIBD) (10). The values of log-likelihood, Akaike information criterion (AIC) (28),
Bayesian information criterion (BIC) (28) and the Kolmogorov–Smirnov test (KS test) with p-values are summarized in Tables 2
and 3 for the two states. AIC and BIC are the model selection criteria and KS test for goodness of fit.

From the tables it is seen that the values of KS test, AIC and BIC of OIB distribution is smaller than BD and ZIB distribution
and the expected frequencies of OIBD is closed to the observed frequencies. From Table 2, it can be observed that the proposed
OIBDprovides better fitting to the sonpreference data ofAssamwith inflated count of one (p-value > 0.05)whereas theBinomial
distribution and ZIBD does not fits to the data. In case of Meghalaya, all the three distributions fits well with the daughter
preference data with inflated count of one (Table 3), but OIBD has the highest p-value of KS test, indicating that it fits better
than the other distribution.

8 Conclusion
In this study, the one-inflated binomial distribution (OIBD) is introduced and studied its distributional properties and reliability
characteristics.The parameters are estimated using themethod ofmaximum likelihood estimators. A simulation study has been
conducted to see the behaviour of theMLEs.The appropriateness of the fitting distribution is carried out based on the goodness
of fit test and some information criteria. To the real-life data set having a higher frequency of count one, it can be observed that
the proposed one-inflated binomial distribution (OIBD) provides better fitting than other competitor distributions.
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A future prospect of this study may be to proposed an OIBD regression model. This study is centered on only the mixture
of over dispersed count data for one as a point mass and binomial distribution i.e. one-inflated binomial distribution (OIBD).
There are many other count distributions suitable for one-inflated version, which can be done for future research.
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