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Abstract
Objectives: In communication engineering, the assignment of channels or
frequencies to different transmitters in a communication network without
interference is an important problem. Finding the span for such an assignment
is a challenging task. The objective of this study is to find the span of
quadrilateral snake families.Method: The solution to the channel assignment
problem can be found out bymodeling the communication network as a graph,
where the transmitters are represented by nodes and connectivity between
transmitters are given by edges. The labeling technique in graph theory is very
useful to solve this problem. LetG= (V ,E) be a graphwith vertex set V, edge set
E. Let u,v ∈V (G). The radio antipodal mean labeling of a graph G is a function f
that assigns to each vertex u, a non-negative integer f (u) such that f (u) ̸= f (v) if
d(u,v)< diam(G) and d(u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ diam(G) , where d(u,v) represents the

shortest distance between any pair of vertices u and v of G and diam(G) is the
diameter of G. The radio antipodal mean number of f, is themaximum number
assigned to any vertex ofG and is denotedby ramn( f ). The radio antipodalmean
number of G, denoted by ramn(G) is the minimum value of ramn( f ) taken over
all antipodal mean labeling f of G. Findings: In this study, we have obtained
the bounds of radio antipodal mean number of quadrilateral snake families.
Novelty: The radio antipodalmean number of quadrilateral snake families was
not studied so far. Hence, the establishment of the bounds for radio mean
number of quadrilateral snake families will motivatemany researchers to study
the radio antipodal mean number of other communication networks.
Keywords: Radio antipodal mean labeling; quadrilateral snake; alternate
quadrilateral snake; double quadrilateral snake; double alternate
quadrilateral snake

1 Introduction
The radio labeling technique has a lot of application in communication engineering. It
is mainly used to assign channels or frequencies to different radio stations. In each radio
station, its antennas propagate electromagnetic waves with different frequencies,
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known as radio waves. A specific signal can be accessed, by tuning the radio receiver to a particular frequency. All the radio
station must be assigned with distinct channels, located within a certain proximity of one another (1). The level of interference
is closely related to the geographical location of the stations - the closer are the stations, the stronger the interference between
them. To avoid interference, the difference between the channels assigned to a pair of nearby stations must be large enough.
The channels can be assigned to each radio station in a network, by modeling the network as a graph, where each station is
represented by a vertex and the stations whose geographical locations are very close are joined by an edge (2). The assignment
of integers to the vertices, edges or both based on certain condition is known as graph labeling (3).

The procedure of assigning channels (frequencies) efficiently to all radio transmitters is popularly known as the channel
assignment problem (4). William Hale formulated this problem as a graph coloring problem in 1980 (5). To solve the channel
assignment problem, the interference graph is developed, and the assignment of channels has been converted into a graph
coloring or graph labeling problem, where we assign different labels (positive integer) or colors to all the vertices in the graph
such that the adjacent vertices receive different colors (or labels) (6). Jerrold R. Griggs and Roger K. Yeh (7) devised this problem
as a distance 2 labeling or L(2, 1) labeling. It is defined as follows: Given a real number d > 0, an Ld(2,1) - labeling of G
is a non-negative real-valued function f : V (G) → (0, ∞) such that, whenever x and y are two adjacent vertices in V , then
| f (x)− f (y)| ≥ 2d, and whenever the distance between x and y is 2, then | f (x)− f (y)| ≥ d.

The work of Jerrold et al. motivated Chartrand et al. (8) to introduce a new graph labeling technique called radio labeling.
The radio labeling of graphs is just an extension of L(2, 1) labeling. A radio labeling of a graph G is a function f : V (G)→ N
such that, d (u,v)+ | f (u)− f (v)| ≥ 1+ diam(G), where d(u,v) represents the shortest distance between the vertices u and
v and diam(G) is the diameter of G. The problem of finding the radio number of an arbitrary graph is proved to be an NP-
Complete problem (9). In 2002, Chartrand et al. (10) defined a new graph labeling technique called radio antipodal labeling by
modifying the existing radio labeling definition.The radio antipodal labeling of a graph G is a function f : V (G)→ N such that
d (u,v)+ | f (u)− f (v)| ≥ dim(G).The span obtained by radio antipodal labeling of a graph is less compared to radio labeling of
a graph as the vertices at diametric distances are assigned the same label in antipodal labeling. In 2015, Ponraj et al. (11) redefined
the radio labeling condition and introduced a new graph labeling technique called radio mean labeling. A radio mean labeling
of a graph G is a one-to-one map f from the vertex set V (G) to the set of natural numbers N such that for any two distinct
vertices u and v of G, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+diam(G).

The radio antipodal labeling condition was modified by Xavier and Thivyarathi (12) in 2018 and introduced a new graph
labeling technique called radio antipodal mean labeling. The radio antipodal mean labeling of a graph G is a function f that
assigns to each vertex u, a non-negative integer f (u) such that d(u, v) +

⌈
f (u)+ f (v)

2

⌉
≥ diam(G). If d (u, v)< diam(G), then

f (u) ̸= f (v). In their work, they have investigated the radio antipodal mean number of paths, wheel, cycle, mesh, and its
derived architectures.The radio antipodal mean number of certain types of ladder graphs have been studied by Yenoke et al. (13)
and Jose et al. (3) obtained the upper bounds of radio antipodal mean number of triangular snake families. It was observed that
the radio antipodal mean number is less than the radio antipodal number.The radio antipodal mean labeling technique reduces
the span compared to radio antipodal labeling.

This paper has been further organized as follows. In section 2, the preliminaries necessary for our discussion were presented.
Themain results are discussed in section 3, followed by a Conclusion. In this paper, the bounds of radio antipodalmean number
of quadrilateral snake families have been obtained.

2 PRELIMINARIES
In this section, the terminologies necessary for our study are presented.

Definition 2.1 (12).The radio antipodalmean labeling of a graphG is a function f that assigns to each vertex u, a non-negative
integer f (u) such that f (u) ̸= f (v) if d(u, v) < diam(G) and d(u, v) +

⌈
f (u)+ f (v)

2

⌉
≥ diam(G), where d(u, v) represents

the shortest distance between any pair of vertices u and v of G.
Definition 2.2 (14). A quadrilateral snake QSn is obtained from a path v1,v2, . . . ,vn by joining vi and vi+1,1 ≤ i ≤ n−1, to

new vertices u j and u j+1 respectively and joining the vertices u j and u j+1 for j = 1,3, . . . ,2n−3.That is every edge of a path
is replaced by a cycleC4. For example, see Figure 1.
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Fig 1. QS4

Definition 2.3 (14). An alternate quadrilateral snake AQSn is obtained from a path v1,v2, . . .vn by joining vi and vi+1 to new
vertices ui and ui+1 respectively for i ≡ 1 (mod 2) and i ≤ n−1 and then joining ui and ui+1. That is every alternative edge
of a path is replaced by a cycleC4. For example, see Figure 2.

Fig 2. AQS4

Definition 2.4 (14). A double quadrilateral snake DQSn is obtained from two quadrilateral snakes that have a common path.
For example, see Figure 3.

Fig 3. DQ4

Definition 2.5 (14). A double alternative quadrilateral snake DAQn is obtained from two alternative quadrilateral snakes that
have a common path. For example, see Figure 4.
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Fig 4. DAQ4

3 Main Results
The bounds of radio antipodal mean number of quadrilateral snake families are obtained in this section.

Theorem 3.1. The radio antipodal mean number of quadrilateral snakes, ramn(QSn)≥ 3n−3, n ≥ 4.
Proof. The graph QSn has 3n− 2 vertices. The vertex set of QSn can be partitioned into two disjoint vertex sets V1 and V2

such that V1 has 2n−2 vertices and V2 has n vertices. In V1 there exists only one pair of vertices at diametric distance. Hence,
these vertices are assigned the same label. For the remaining 2n− 4 vertices, we need at least 2n− 4 distinct labels. Together
with the vertices at diametric distance, we need at least 2n−3 labels to label all the vertices in the vertex setV1. InV2 there exists
no pair of vertices at diametric distance and hence we need at least n distinct labels to label all the vertices inV2. Therefore, we
need at least 3n−3 labels to label all the vertices of QSn.

Hence, ramn(QSn)≥ 3n−3.
Theorem 3.2 .The radio antipodal mean number of quadrilateral snakes, ramn(QSn)≤ 4n−6, n ≥ 4.
Proof. Let V (QSn) be the vertex set of QSn. This vertex set can be written as V (QSn) = V1 ∪ V2, where V1 =

{ui : 1 ≤ i ≤ 2n−2} andV2 = {vi : 1 ≤ i ≤ n}.
In the vertex setV1, the vertices u1 and u2n−2 are at diametric distance. Therefore, the vertices u1 and u2n−2 can receive the

same labeling. That is f (u1) = f (u2n−2).
The remaining vertices of QSn are labelled by the following mapping:

f (ui) = n+ i−2,1 ≤ i < 2n−2

f (vi) =

 3n+ i−5,1 ≤ i ≤ n−2
n−2, i = n−1
4n−6, i = n

(1)

Claim:Themapping (1) is a valid radio antipodal mean labeling.
Let u,v ∈V (QSn ).
Case 1: Let u,v ∈V1.
In this case, d(u,v)≥ 1.
Case 1.1: Let u = ui and v = u j1 ≤ i, j < 2n−2, i ̸= j .
Then by (1), f (ui) = n+ i−2 and f (u j) = n+ j−2.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈
2n+i+ j−4

2

⌉
> d.

Case 1.2: If u = u1 and v = u2n−2.
In this case, d (u,v) = d. Also f (u) = n−1 and f (v) = n−1.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ d +

⌈ 2n−2
2

⌉
≥ d +n−1 > d.

Case 1.3: Let u = ui and v = u2n−2, 2 ≤ i < 2n−2.
Then f (ui) = n+ i−2 and f (u2n−2) = n−1.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈ 2n+i−3
2

⌉
> d.

Case 2: If u,v ∈V2.
In this case, d(u,v)≥ 1.
Case 2.1: Let u = vi and v = v j 1 ≤ i, j ≤ n−2, i ̸= j.
In this case d(u,v)≥ 1.
By mapping (1), f (u) = 3n+ i−5 and f (v) = 3n+ j−5.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈
6n+i+ j−10

2

⌉
> d.
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Case 2.2: Let u = vi,1 ≤ i ≤ n−2 and v = vn−1.
Here, d(u,v)≥ 1 and by (1), f (u) = 3n+ i−5 and f (v) = n−2.

Therefore, d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 1+

⌈ 4n+i−7
2

⌉
≥ d.

Case 2.3: Let u = vi1 ≤ i ≤ n−2 and v = vn.
Here, d(u,v)≥ 2 Also, f (u) = 3n+ i−5 and f (v) = 4n−6.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 2+

⌈ 7n+i−11
2

⌉
> d.

Case 2.4: Let u = vn−1 and v = vn.
Here, f (u) = n−2 and f (v) = 4n−6. Also, d (u,v) = 1.
Hence,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 1+

⌈
5n−8

2

⌉
> d.

Case 3: Let u ∈V1 and v ∈V2.
Case 3.1: Let u = ui and v = v j, 1 ≤ j ≤ n−2,1 ≤ i < 2n−2.
Here, f (u) = n+ i−2 and f (v) = 3n+ j−5. Also d(u,v)≥ 1.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 1+

⌈
4n+ i+ j−7

2

⌉
> d.

Case 3.2: Let u ∈ u2n−2 and v ∈ vn−1.
In this case, d (u,v) = 2 and f (u) = n−1 and f (v) = n−2.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 2+

⌈
2n−3

2

⌉
≥ d.

Case 3.3: Let u = u2n−2 and v = vn.
Here, d (u,v) = 1. By mapping (1), f (u) = n−1 and f (v) = 4n−6.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 1+

⌈
5n−7

2

⌉
≥ d.

Case 3.4: Let u = ui and v = vn−1, 1 ≤ i < 2n−2.
By (1), f (u) = n+ i−2 and f (v) = n−2. In this case, d(u,v)≥ 1.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 1+

⌈
2n+ i−4

2

⌉
> d.

Case 3.5: Let u = ui and v = vn, 1 ≤ i < 2n−2.
In this case, d (u,v)≥ 2 and f (u) = n+ i−2 and f (v) = 4n−6.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 2+

⌈
5n+ i−8

2

⌉
2 ≥ d.

Case 3.6: Let u = u2n−2 and v = vi, 1 ≤ i ≤ n−2.
By (1), f (u) = n−1 and f (v) = 3n+ i−5. In this case, d(u,v)≥ 3.
Therefore,

d (u,v)+
⌈

f (u)+ f (v)
2

⌉
≥ 3+

⌈
4n+ i−6

2

⌉
> d.

Therefore, the radio antipodal mean labeling condition is satisfied for every pair of vertices in QSn.
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Hence, the mapping (1) is a valid radio antipodal mean labeling.
By the mapping (1), the vertex vn receives the maximum label which is given by 4n−6.
Therefore, ramn(QSn)≤ 4n−6.
Theorem 3.3 .The bounds of radio antipodal mean number of quadrilateral snakes are given by, 3(n−1)≤ ramn(QSn)≤

2(2n−3).
Proof.The proof follows fromTheorem 3.1 andTheorem 3.2.
Theorem 3.4. The radio antipodal mean number of double quadrilateral snakes, ramn(DQSn)≥ 5n−6, n ≥ 4.
Proof.The double quadrilateral snake DQSn has 5n−4 vertices. These vertices can be partitioned into three disjoint vertex

setsV1,V2 andV3 where the vertex setV1 andV3 has 2n−2 vertices each andV2 has n vertices. Each of the vertex setsV1 andV3,
has one pair of vertices at diametric distance. Hence, these 4 vertices can be labeled with just 2 labels. To label the remaining
vertices inV1 andV3 at least 4n−8 labels are needed. Together with the vertices at diametric distance, at least 4n−6 labels are
needed to label the vertex setsV1 andV3.

In the vertex setV2 there are n vertices and there is no pair of vertices at diametric distance.Therefore, to label the vertex set
V2, at least n distinct labels are needed.

Hence, the number of labels needed to label all the vertices of DQSnwill be at least 5n−6.
Therefore, ramn(DQSn)≥ 5n−6, n ≥ 4.
Theorem 3.5.The radio antipodal mean number of double quadrilateral snakes, ramn(DQSn)≤ 6n−9, n ≥ 4.
Proof. Let V (DQSn) be the vertex set of DQSn. This vertex set can be partitioned as, V (DQSn) = V1 ∪V2 ∪V3, where

V1 = {ui : 1 ≤ i ≤ 2n−2} ,V2 = {vi : 1 ≤ i ≤ n} ,V3 = {wi : 1 ≤ i ≤ 2n−2}.
In the vertex setV1, the vertices u1 and u2n−2 are at diametric distance.
Therefore, f (u1) = f (u2n−2).
Similarly, in the vertex setV3, the vertex w1 and w2n−2 are at diametric distance and hence f (w1) = f (w2n−2) .
The remaining vertices of DQSn are labelled by the mapping:

f (ui) = n+ i−2,1 ≤ i < 2n−2.

f (vi) =

 3n+ i−5,1 ≤ i ≤ n−2
n−2, i = n−1

3n+ i−6, i = n.
f (wi) = 4n+ i−6,1 ≤ i < 2n−2.

(2)

Claim:Themapping (2) is a valid radio antipodal mean labeling.
Let u,v be any two vertices of DQSn.
Case1: Suppose u, v ∈V1.
Case 1.1: Let u = ui and v = u j, i ̸= j, 1 ≤ i, j < 2n−2.
In this case, d (ui,u j)≥ 1 and by mapping (2), f (ui) = n+ i−2 and f (u j) = n+ j−2.

Therefore, d (u,v)+
⌈

f (ui)+ f (u j)
2

⌉
≥ 1+

⌈
2n+i+ j−4

2

⌉
≥ d.

Case1.2: Let u = u1 and v = u2n−2.
Here, f (u1) = n−1 and f (u2n−2) = n−1.
The distance between the vertices u1 and u2n−2 will be n+1.
Therefore, d (u,v)+

⌈
f (u1)+ f (u2n−2)

2

⌉
≥ (n+1)+

⌈
2(n−1)

2

⌉
≥ 2n > d.

Case1.3: Let u = ui and v = u2n−2, 1 ≤ i < 2n−2.
In this case d (u,v)≥ 1. By mapping (2), f (ui) = n+ i−2 and f (u2n−2) = n−1.
Therefore, d (u,v)+

⌈
f (ui)+ f (u2n−2)

2

⌉
≥ 1+

⌈ 2n+i−3
2

⌉
≥ d.

Case 2: Suppose u,v ∈V2.
Case 2.1: Let u = vi and v = v j 1 ≤ i ≤ n−2, i ̸= j.
The distance between the vertices vi and v j will be at least 1.
By mapping (2), f (vi) = 3n+ i−5 and f (v j) = 3n+ j−5.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈
6n+i+ j−10

2

⌉
> d.

Case 2.2: Let u = vi, 1 ≤ i ≤ n−2 and v = vn−1.
In this case, d(u,v)≥ 1.Here f (u) = 3n+ i−5 and f (v) = n−2.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈ 4n+i−7
2

⌉
≥ d.

Case 2.3: Let u = vn−1 and v = vn.
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Here, d (u,v) = 1. By mapping (2), f (u) = n−2 and f (v) = 3n+ i−6.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈ 4n+i−8
2

⌉
≥ d.

Case 2.4: Let u = vi 1 ≤ i ≤ n−2, v = vn.
The distance between the vertices u and v will be at least 2.
Here, f (u) = 3n+ i−5 and f (v) = 3n+ j−6.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 2+

⌈
6n+i+ j−11

2

⌉
≥ d.

Case 3: Suppose u,v ∈V3.
This case will be similar to case 1.
Case 4: Suppose u ∈V1 and v ∈V2.
Case 4.1: Let u = ui, 1 ≤ i < 2n−2, v = v j, 1 ≤ j ≤ n−2.
Here, d(u,v)≥ 1. By mapping (2), f (u) = n+ i−2 and f (v) = 3n+ j−5.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈
4n+i+ j−7

2

⌉
> d.

Case 4.2: Let u = u2n−2 and v = vn−1.
In this case, f (u) = n−1 and f (v) = n−2.
The distance between the vertices u and v will be 2.
Hence, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 2+

⌈ 2n−3
2

⌉
≥ d.

Case 4.3: If u = u1 and v = vn−1.
Here, d (u,v ) = n−1 and by mapping (2), f (u) = n−1 and f (v) = n−2.
Therefore, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ n−1+

⌈ 2n−3
2

⌉
> d.

Case 4.4: If u = ui, 1 ≤ i ≤ 2n−2 and v = vn.
The distance between the vertices u and v in this case will be at least 1. That is
d(u,v)≥ 1. By (2), f (u) = n+ i−2 and f (v) = 3n+ j−6.
Here, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 1+

⌈
4n+i+ j−8

2

⌉
> d.

Case 5: Suppose u ∈V1v ∈V3.
In this case, d(u,v)≥ 2 and f (u) = n+ i−2 and f (v) = 4n+ j−6.
Here, d (u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ 2+

⌈
5n+i+ j−8

2

⌉
> d.

Case 6: Suppose u ∈V2 and v ∈V3.
This case will be like case 4.
Hence, the radio antipodal mean labeling condition is satisfied by every pair of vertices of DQSn.
Therefore, mapping (2) is a valid radio antipodal mean labeling.
By mapping (2) the vertex w2n−1 receives the maximum label, f (w2n−1) = 6n−9.
Hence, ramn(DQSn)≤ 6n−9.
Theorem 3.6 . The bounds of radio antipodal mean number of double quadrilateral snakes are given by, 5n − 6 ≤

ramn(DQSn)≤ 3(2n−3).
Proof. The proof can be obtained directly fromTheorem 3.4 andTheorem 3.5.
Theorem 3.7. The radio antipodal mean number of alternate quadrilateral snakes, ramn(AQSn) ≥ 2n − 2, n ≡

1(mod 2) , n ≥ 3.
Proof.The vertex set of AQSn, n ≡ 1(mod 2) , n ≥ 3 can be partitioned into 2 vertex setsV1 andV2 such that |V 1|= n−1

and |V 2|= n.
In AQSn there is only one pair of vertices that are at diametric distance. Hence, these two vertices can receive the same label.

For the remaining 2n−3 vertices at least 2n−3 distinct labels are needed to label.
Therefore, the number of labels required to label all the vertices of AQSn will be at least 2n−2.
Hence, ramn(AQSn)≥ 2n−2, n ≡ 1(mod 2) , n ≥ 3.
Theorem 3.8. The radio antipodal mean number of alternate quadrilateral snakes, ramn(AQSn) ≤

⌈ n
2

⌉
+ 2(n−2) , n ≡

1(mod 2) , n ≥ 3.
Proof. Let V (AQSn) be the vertex set of AQSn and can be written as V (AQSn) = V1 ∪V2, where, V1 = {ui : 1 ≤ i ≤ n−1}

andV2 = {vi : 1 ≤ i ≤ n}.
In the vertex set V1, the vertex u1 is at diametric distance with the vertices un−1 and vn. Without loss of generality, the

vertices u1 and vn are given the same labeling. That is f (u1) = f (vn).
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The remaining vertices of AQSn are labelled by the following mapping:

f (u2i−1) = n− i−1,1 ≤ i ≤
⌊n

2

⌋
f (u2i) = n+ i−2,1 ≤ i ≤

⌊n
2

⌋
f (vi) =

⌈n
2

⌉
+ i+n−3,1 ≤ i ≤ n−1

(3)

Claim:Themapping (3) is a valid radio antipodal mean labeling.
Let u, v be any two vertices of AQSn.
The cases are similar to Theorem 3.2.
Hence, the mapping (3) is a valid radio antipodal mean labeling.
By mapping (3), the vertex vn−1 receives the maximum label and is given by

⌈ n
2

⌉
+2(n−2) .

Therefore, ramn(AQSn)≤
⌈ n

2

⌉
+2(n−2) , n ≡ 1(mod 2) , n ≥ 3.

Theorem 3.9 . The bounds of radio antipodal mean number of alternate quadrilateral snakes are given by 2(n−1) ≤
ramn(AQSn)≤

⌈ n
2

⌉
+2(n−2) , n ≡ 1(mod 2).

Proof. The proof is obvious fromTheorem 3.7 andTheorem 3.8.
Theorem 3.10. The radio antipodal mean number of alternate quadrilateral snakes, ramn(AQSn) ≥ 2n − 1, n ≡

0(mod 2) , n ≥ 6.
Proof.The vertex set of AQSn can be partitioned into 2 vertex setsV1 andV2 with n vertices each. InV1, there is only one pair

of vertices that are at diametric distance. Hence, these two vertices can receive the same label. To label the remaining 2n− 2
vertices, at least 2n−2 distinct labels are needed.

Therefore, the number of labels needed to label all the vertices of AQSn will be at least 2n−1.
Hence, ramn(AQSn)≥ 2n−1, n ≡ 0(mod 2).
Theorem 3.11. The radio antipodal mean number of alternate quadrilateral snakes, ramn(AQSn) ≤ 2n +

⌊ n−1
2

⌋
, n ≡

0(mod 2) , n ≥ 6.
Proof. Let V (AQSn) be the vertex set of AQSn and can be written as V (AQSn) = V1 ∪V2, where, V1 = {ui : 1 ≤ i ≤ n} and

V2 = {vi : 1 ≤ i ≤ n}.
In the vertex setV1, the vertices u1 and un are at diametric distance. Therefore, f (u1) = f (un).
The remaining vertices of AQSn are labeled by the following mapping:

f (u2i−1) = n− (i−1)−1,1 ≤ i <
n
2

f (u2i) = n+ i−1,1 ≤ i <
n
2

f (un−1) = n+
⌊

n−1
2

⌋
f (vi) = n+

⌊
n−1

2

⌋
+ i,1 ≤ i ≤ n

(4)

Let u, v be any two vertices of AQSn.
Claim:Themapping (4) is a valid radio antipodal mean labeling.
The cases are similar to Theorem 3.2.
Hence, we conclude that the mapping (4) is a valid radio antipodal mean labeling.
By mapping (4), the vertex vn receives the maximum label and is given by 2n+

⌊ n−1
2

⌋
.

Therefore, ramn(AQSn)≤ 2n+
⌊ n−1

2

⌋
, n ≡ 0(mod 2) , n ≥ 6.

Theorem 3.12 .The bounds of radio antipodal mean number of alternate quadrilateral snakes for n ≡ 0(mod 2) are given
by, 2n−1 ≤ ramn(AQSn)≤ 2n+

⌊ n−1
2

⌋
.

Proof.The proof follows fromTheorem 3.10 andTheorem 3.11.
Theorem 3.13. The radio antipodal mean number of double alternate quadrilateral snakes, ramn(DAQSn) ≥ 3n−4, n ≡

1(mod 2) , n ≥ 6.
Proof.The double alternate quadrilateral snake has 3n−2 vertices for n ≡ 1(mod 2). These vertices can be partitioned into

3 disjoint vertex setsV1,V2 andV3. The vertex setsV1 andV3 respectively have n−1 vertices andV2 has n vertices.
In DAQSn there are two pairs of vertices are at diametric distance and hence these four vertices can be labeled using two

labels.
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To label the remaining 3n−6 vertices, at least 3n−6 distinct labels are needed. Therefore, the number of labels required to
label the vertices of DAQSn will be at least 3n−4.

Hence, ramn(DAQSn)≥ 3n−4, n ≡ 1(mod 2) , n ≥ 6..
Theorem 3.14.The radio antipodal mean number of double alternate quadrilateral snakes, ramn(DAQSn)≤ 3n+

( n−1
2

)
−

5, n ≡ 1(mod 2) , n ≥ 3.
Proof. LetV (DAQSn) be the vertex set of DAQSn.
It can be partitioned as, V (DAQSn) = V1 ∪ V2 ∪ V3, where V1 = {ui : 1 ≤ i ≤ n−1} ,V2 = {vi : 1 ≤ i ≤ n} ,V3 =

{wi : 1 ≤ i ≤ n−1}.
InV1, the vertex v1 is at diametric distance from the vertices un and vn.
Without loss of generality, the vertices u1 and vn can be given the same label.
Hence, f (u1) = f (vn).
Similarly, the vertices w1 and un−1 are at diametric distance and hence they can be assigned the same labeling. Therefore,

f (w1) = f (un−1) .
The remaining vertices of DAQSn are labeled by the mapping:

f (u2i−1) = n− i−1,1 ≤ i ≤
⌊n

2

⌋
f (u2i) = n+ i−2,1 ≤ i ≤

⌊n
2

⌋
f (vi) = n+

⌊n
2

⌋
+ i−2,1 ≤ i ≤ n−1

f (wi) = 2n+
n−1

2
+ i−4,1 < i ≤ n−1

(5)

Claim:Themapping (5) is valid radio antipodal mean labeling.
Let u, v be any two vertices of DAQSn.
The cases are like Theorem 3.5.
Hence, we conclude that the mapping (5) is valid radio antipodal mean labeling.
By mapping (5), the vertex wn−1 receives the maximum label, and is given by 3n+

( n−1
2

)
−5.

Therefore, ramn(DAQSn)≤ 3n+
( n−1

2

)
−5, n ≡ 1(mod 2) , n ≥ 3.

Theorem 3.15 .The bounds of radio antipodal mean number of double alternate quadrilateral snakes for n ≡ 1(mod 2) are
given by, 3n−4 ≤ ramn(DAQSn)≤ 3n+

( n−1
2

)
−5.

Proof.The proof follows fromTheorem 3.13 andTheorem 3.14.
Theorem 3.16. The radio antipodal mean number of double alternate quadrilateral snakes, ramn(DAQSn) ≥ 3n−2, n ≡

0(mod 2) , n ≥ 6.
Proof.The double alternate quadrilateral snake has 3n vertices for n ≡ 0(mod 2). These vertices can be partitioned into 3

disjoint vertex setsV1,V2 andV3 such that each vertex set has n vertices. InDAQSn, two pairs of vertices are at diametric distance
and hence these four vertices can be given the same label. To label the remaining 3n−4 vertices, at least 3n−4 distinct labels
are needed.

Therefore, the number of labels needed to label all the vertices of DAQSnwill be at least 3n−2.
Hence, ramn(DAQSn)≥ 3n−2, n ≡ 0(mod 2) , n ≥ 6.
Theorem 3.17.The radio antipodal mean number of double alternate quadrilateral snakes, ramn(DAQSn)≤ 3n+

⌊ n−1
2

⌋
−

1, n ≡ 0(mod 2) , n ≥ 6.
Proof. LetV (DAQSn) be the vertex set of DAQSn.
This vertex set can be written as, V (DAQSn) = V1 ∪V2 ∪V3, where V1 = {ui : 1 ≤ i ≤ n} ,V2 = {vi : 1 ≤ i ≤ n} ,V3 =

{wi : 1 ≤ i ≤ n}.
InV1, the vertices u1 and un are at diametric distance. This implies, f (u1) = f (un).
Similarly, inV3, the vertices w1 and wn are at diametric distance. Therefore, f (w1) = f (wn) .
The remaining vertices of DAQSn are labelled by the following mapping:

f (u2i−1) = n− (i−1)−1,1 ≤ i < n/2
f (u2i) = n+ i−1,1 ≤ i < n/2
f (un−1) = n+ ⌊(n−1)/2⌋
f (vi) = n+ ⌊(n−1)/2⌋+ i,1 ≤ i ≤ n
f (wi) = 2n+ ⌊(n−1)/2⌋+ i, 1 ≤ i < n

(6)

https://www.indjst.org/ 1079

https://www.indjst.org/


Arputha Jose et al. / Indian Journal of Science and Technology 2021;14(13):1071–1080

Claim:Themapping (6) is valid radio antipodal mean labeling.
Let u, v be any two vertices of DAQSn.
The cases are similar to Theorem 3.5.
Hence, we conclude that the mapping (6) is valid radio antipodal mean labeling.
By mapping (6), the vertexWn receives the maximum label and is given by 2n+

⌊ n−1
2

⌋
.

Therefore, ramn(DAQSn)≤ 3n+
⌊ n−1

2

⌋
−1, n ≡ 0(mod 2) , n ≥ 6.

Theorem 3.18 .The bounds of radio antipodal mean number of double alternate quadrilateral snakes for n ≡ 0(mod 2) are
given by, 3n−2 ≤ ramn(DAQSn)≤ 3n+

⌊ n−1
2

⌋
−1.

Proof.The proof is obvious fromTheorem 3.16 andTheorem 3.17.

4 Conclusion
The channel assignment is important in communication engineering which can be formulated as an optimization problem
mathematically. It is an interesting and challenging as all the radio transmitters must be labeled without any interference
using minimum span. In this study, the bounds of the radio antipodal mean number of quadrilateral snake families have been
investigated. This work can be extended further to other communication networks.
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