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Abstract
Objectives: A mathematical model is constructed to investigate the concen-
tration of aerosol mixture in the atmosphere. Aerosol is the significant con-
stituent of the atmosphere, as it is playing a key role in environmental effects
including air quality degradation, smoke-fog related accidents, acid rain for-
mation, and visibility issues. The objective of this paper is to formulate the
effects of aerosol mixture, and it is monitored through its concentration in
the presence and absence of chemical reaction. The effects of concentration
of aerosol mixture has to be reduced so as to enhance visibility. Methodol-
ogy: A two-dimensional schematic geometry is consideredwhich comprises the
channel extended to infinity in the x-axis bounded by porous layers, also elec-
tric and magnetic field are applied transversely. A general exact solution of the
dimensionless governing partial differential equations are obtained using per-
turbation technique with appropriate boundary conditions. Findings: Detailed
results of velocity and concentration of the aerosol mixture were presented
graphically. The graphical representation validated the accuracy of attained
results with an encouraging level of agreement. As a measure to enhance the
effects of air visibility, significant conclusions are specified using the obtained
results.
Keywords: atmospheric fluid; coagulation; concentration; porous layers;
mixture theory

1 Introduction
Atmospheric aerosols are extremely small, finely distributed, liquid or solid particles
suspended in a gaseousmedium. Both natural and anthropogenic aerosol particles have
been playing a major role in the global climate for several years. Due to coagulation,
aerosols bind each other and deforms in the atmosphere resulting in either larger or
smaller particles than its original size and shape. The particles that are formed due to
coagulation, have a direct impact on fog formation, cloud physics, reduction of visibility,
etc. Thus, there is a requirement of evaluating the concentration of the mixture of
aerosols and atmospheric fluid using mixture theory.

A handful of researchworkwas attempted in the field ofmixture theory. Barry et al (1)
developed the governing equations for flow in porous layers and obtained solutions
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using mixture theory. Bowen (2) established the use of thermodynamics of mixture to porous media for an incompressible
fluid. Labonokitov et al (3) used Cauchy-Born hypothesis to show that there is an interaction force between solid and fluid and
provided linear boundary conditions to check the consistency of porosity theory.

Many studies were conducted in the coagulation of aerosols in particular. Anand et al (4) bring forth a numerical study of
the coagulation of aerosols and its number concentration in air. The concentration and source strength of vapors has been
measured using aerosol condensation analytically by Dal Maso et al (5). Gan Fu Zan et al (6) elucidated the role of the fluid shear
rate on the particle coagulation using LES technique and Taylor– series expansion moment method. The mathematical model
for concentration of pollution is developed based on the coagulation and deposition process by Keller and Siegmann (7). The
results of both theoretical and experimental analysis of nanoparticle aerosols in the atmosphere were studied by Seipenbusch
et al (8).

Different analytical approaches are existing to solve the derived partial differential equations. Dettman (9) exhibited a
perturbation technique in elliptic and hyperbolic problems and showed how themethod tends to unify the behavior of variety of
problems in perturbation theory. Rudraiah et al (10) solved the problem of dispersion of aerosol mixture using the perturbation
technique.

Meenapriya and Ratchagar (11) attempted to study coagulation of aerosol in couple stress fluid using generalised dispersion
method. The concentration and dispersion of air pollutants was evaluated in an applied electric and magnetic field by
Meenapriya et al (12,13). Dhange and Sankad (14) investigated the dispersion and chemical effects of the sinusoidal stream of an
MHD couple stress fluid analytically. Varaksin (15) reviewed the current state of aerosol process modeling which pertains to gas-
aerosol partitioning, and highlighted the gap between current understanding of gas-aerosol partitioning from measurements,
comprehensive box models and parameterizations for large-scale modelling.

These studies urge to study about aerosol mixture in a channel bounded by porous beds with the externally applied electric
and magnetic fields. The concentration of the aerosol mixture is evaluated both in the presence and absence of homogeneous
first-order chemical reaction. Numerical calculations are computed using MATHEMATICA and the results are portrayed
graphically by varying parameters like Hartmann number, electric number, reaction rate parameter, porous parameter. The
potrayed graphical results helps to analyze the effects of air visibility through the concentration of aerosol mixture.

2 Mathematical Formulation
A two-dimensional turbulent flow of chemically reactive aerosols in a poorly conducting atmospheric fluid bounded by porous
layers is modelled as shown in Figure 1 . Assuming at each point in the channel is simultaneously occupied by both aerosols
and atmospheric fluid. The component is represented by β , where β = s for solid phase (aerosols) and β = f for fluid phase
(atmospheric fluid). Both solid and fluid are assumed to be intrinsically incompressible.

Uniform magnetic field of strength B0 and electric field through electrodes with electric potentials φ = (V hx) at y =
−h, φ = (V h(x− x0)) at y = h are applied transversely through porous boundaries. The channel is symmetric about x–axis
which extends to infinity in both directions with applied pressure gradient ∂ p

∂ t = G. The porous medium considered here is
homogenous and isotropic. The concentration of aerosols with and without chemical reaction both in the solid phase and fluid
phase are calculated respectively.

Basic governing equations are based on poro-elasticity and are derived using mixture theory and Reynolds averaging
procedure.

Equation of continuity

∇.
(

φβ qβ
i

)
= 0 (1)

Equation of Momentum

ρβ

[
∂qβ

i
∂ t

+qβ
j

∂qβ
i

∂x j

]
=−φβ ∂ p

∂xi
+µβ

[
∂ 2qβ

i
∂x2 +

∂ 2qβ
i

∂y2

]
±K(qs

i −q f
i ) (2)

Where qβ
i is the velocity of aerosols (if β = s) and qβ

i is the velocity of the atmospheric fluid (if β = f ) with i = 1,2 and j = 1,2.
Also p is the pressure of the fluid, K is the linear drag coefficient that is, Darcy resistance offered by solid to fluid.The term ∂ p

∂xi

is the pressure gradient, φs is the aerosol volume fraction and φ f is the fluid volume fraction, ρβ is the density of the mixture
and µβ is the viscosity of the mixture.
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Fig 1. Physical Configuration

Equation of Species (
∂Ci

∂ t
+uβ ∂Ci

∂x
+ vβ ∂Ci

∂y

)
= De

(
∂ 2Ci

∂x2 +
∂ 2Ci

∂y2

)
−RCi (3)

For i = 1,2 letC1 denotes mean aerosol concentration with chemical reaction,C2 signifies mean aerosol concentration without
chemical reaction, De is eddy diffusion coefficient and R represents first-order chemical reaction.

To derive a cartesian form of governing equations let the components of velocity be qs
1 = us, is the x-component of aerosol,

q f
1 = u f , is the x- component of the atmospheric fluid, qs

2 = vs, is the y-component of aerosol, q f
2 = v f , is y-component of

atmospheric fluid. Let the components of xi are x1 = x, x2 = y.
The Cartesian form of equations (1) to (3) are,
Continuity equation

∂
∂x

(φ
s

vs +φ f v f )+
∂
∂y

(
φsvs+φ f v f )= 0 (4)

x-momentum equation

ρβ

[
∂uβ

∂ t
+uβ ∂uβ

∂x
+ vβ ∂uβ

∂y

]
=−φβ ∂ p

∂x
+µβ

(
∂ 2uβ

∂x2 +
∂ 2uβ

∂y2

)
−K

(
us −u f

)
+ρeEx −σ0B2

0uβ
(5)

y-momentum equation

ρβ

[
∂vβ

∂ t
+uβ ∂vβ

∂x
+ vβ ∂vβ

∂y

]
= µβ

(
∂ 2vβ

∂x2 +
∂ 2vβ

∂y2

)
−K

(
vs − v f

) (6)

Species equation (
∂Ci

∂ t
+uβ ∂Ci

∂x
+ vβ ∂Ci

∂y

)
= D

(
∂ 2Ci

∂x2 +
∂ 2Ci

∂y2

)
−RCi (7)
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For De = D + Kxx = D + Kyy, where the eddy diffusivity coefficients Kyy,Kyy are assumed to be small , hence eddy
diffusion coefficient (De) is molecular diffusion coefficient (D). To solve the governing equations Beaver Joseph slip boundary
conditions (16) are used to study the boundary effects of velocity.

Boundary conditions for velocity are

uβ = 0 , vβ =
h2G0

µβ
εei(αx+wt), at y = 0 (8)

∂uβ

∂y
=

−αp√
k

(
uβ −up

)
,vβ =

h2G0

µβ
(1+ εei(αx+wt)) , at y = h (9)

∂uβ

∂y
=

αp√
k

(
uβ −up

)
, at y =−h (10)

For Concentration

Ci =C0εei(αx+wt), at y = 0 (11)

Ci =C0

(
1+ εei(αx+wt)

)
, at y = h (12)

Ci =C0, at y =−h (13)

Where up is the Darcy velocity of the porous layer, αp is the slip parameter, k is the permeability of the porous layer, α is
the streamwise wave number, w is the frequency parameter, ε is the perturbation parameter, i is the imaginary number, C0

is the dimensionless concentration and up = − k
µ

∂ p
∂x represents Darcy law. To make (4) to (13) non-dimension the following

dimensionless quantities are introduced.

x∗ = x
h ;y∗ = y

h ; t∗ = t
t0

;us∗ = µsus

h2G0
;u f ∗ =

µ f u f

h2G0
;G∗ = G

G0
; vs∗ = µsvs

h2G0
;

v f ∗ =
µ f v f

h2G0
;ρ∗

e = ρe(
ε0

V
h2

) ; p∗ = p

ρ(V
h )

2 ;u∗p =
up

(V
h )

; E∗
x = Ex

(V
h )

;

φ f ∗ = φ f

V ;φs∗ = φs

V ;β 2 = h2R
D ;C∗

i = Ci
C0

;

The reaction rate parameter is β andV is the applied constant electric potential due to embedded electrodes at the boundaries.
The porous parameter σ = h√

k
, the electric number We =

ε0 V 2

µβ
, Hartmann number is M2 = σ0 B0

2h2

µ . After dimensionalising
the above governing equations and boundary conditions neglecting asterisk we obtain,

φ f

µ f

(
∂u f

∂x
+

∂v f

∂y

)
+

φs

µs
(

∂us

∂x
+

∂vs

∂y
) = 0 (14)

x- momentum solid phase

∂ 2us

∂x2 +
∂ 2us

∂y2 −A1
∂us

∂ t
−A2

[
us ∂us

∂x
+ vs ∂us

∂y

]
−φsA3

∂ p
∂x

−A4
(
us −u f r3

)
+A5We(ρeEx)−M2us = 0 (15)

x- momentum fluid phase

∂ 2u f

∂x2 +
∂ 2u f

∂y2 −A6
∂u f

∂ t
−A7

[
u f ∂u f

∂x
+ v f ∂u f

∂y

]
−φ f A3

∂ p
∂x

+A4
(
us − r3u f )+A5We(ρeEx)−M2u f = 0 (16)

https://www.indjst.org/ 1059

https://www.indjst.org/


Meenapriya et al. / Indian Journal of Science and Technology 2021;14(13):1056–1070

y- momentum solid phase

∂ 2vs

∂x2 +
∂ 2vs

∂y2 −A1
∂vs

∂ t
−A2

[
us ∂vs

∂x
+ vs ∂vs

∂y

]
−A4

(
vs − v f r3

)
= 0 (17)

y- momentum fluid phase

∂ 2v f

∂x2 +
∂ 2v f

∂y2 −A6
∂v f

∂ t
−A7

[
u f ∂v f

∂x
+ v f ∂v f

∂y

]
+A4

(
vs − v f r3

)
= 0 (18)

Concentration

∂ 2Ci

∂x2 +
∂ 2Ci

∂y2 − c1

(
∂Ci

∂ t

)
− c2

(
uβ ∂Ci

∂x
+ vβ ∂Ci

∂y

)
−βCi = 0 (19)

The dimensionless boundary conditions for velocity are given by,

uβ = 0 , vβ = εei(αx+wt), at y = 0 (20)

∂uβ

∂y
=−ασ

(
uβ −up

)
,vβ = (1+ εei(αx+wt)) , at y = 1 (21)

∂uβ

∂y
= ασ

(
uβ −up

)
, at y =−1 (22)

For Concentration

Ci = εei(αx+wt), at y = 0 (23)

Ci = (1+ εei(αx+wt)), at y = 1 (24)

Ci = 1, at y =−1 (25)

To determine the velocity of the fluid, we need to evaluate the value of ρeEx in x- momentum equations. Using conservation of
charges equation and Maxwell’s equation, the value of ρeEx is calculated as given below.

Conservation of charges

∂ρe

∂ t
+(q.∇)ρe +∇.J = 0 (26)

Maxwell’s equation

∇.E =
ρe

∈0
(Gauss law) (27)

−∂B0

∂ t
= ∇×E (Faraday′s law) (28)

J = σc(E +u×B0) (Ohm′s law) (29)
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In a poorly conducting fluid, the induced magnetic field is negligibly small compared to an electric field and hence the current
density is J = σcE and the electrical conductivity σc ≪ 1 and hence any perturbation on it is negligible and so it depends upon
the conduction temperature Tb.

So (26) reduces to ∂J
∂y = 0 and the equation of electric potential φ reduces to,

∂ 2φ
∂y2 +

1
σc

∂φ
∂y

∂σc

∂y
= 0 (30)

with σc = σ0(1+αh (Tb −T0)) (31)

Whereαh is the volumetric expansion coefficient and Tb is the solution of equation d2Tb
dy2 = 0which is solved using dimensionless

quantities, Tb
∗ = Tb

△T ; η = y
h ; and the boundary conditions are Tb = T0 at η =−1, and Tb = T1 at η = 1. Hence we obtain

the equation Tb −T0 =
△T (y+h)

2h , where△T =T1 −T0.
Using this value in (31), we getσc =σ0eαc(y+h) and solving (30) using the boundary condition,φ = x Pe at y=−1, and φ =

(x− x0)Pe at y = 1, we get the value φ =
(

x− x0 eαch−e−αcy

2sinhαc

)
Pe

Now consider, ρeEx = (∇.E)Ex (from (27)
Since Ex =−1, and E =−∇φ then ρeEx =−∇2φ(−1)

Hence ρeEx =
α2

c x0e−αcy

2sinhαc
= a2e−αcyPe, where a2 =

αc
2x0

2sinhαc
After substituting ρeEx, equations (15) and (16) becomes

∂ 2us

∂x2 +
∂ 2us

∂y2 −A1
∂us

∂ t
−A2

[
us ∂us

∂x
+ vs ∂us

∂y

]
−φsA3

∂ p
∂x

−A4
(
us −u f r3

)
+A5We

(
a2e−αcy)−M2us = 0 (32)

∂ 2u f

∂x2 +
∂ 2u f

∂y2 −A6
∂u f

∂ t
−A7

[
u f ∂u f

∂x
+ v f ∂u f

∂y

]
−φ f A3

∂ p
∂x

+A4
(
us − r3u f )+A5We

(
a2e−αcy)−M2u f = 0 (33)

2.1 Method of Solution

To evaluate the values of velocity and concentration of the aerosol mixture, Perturbation technique is used. Disintegrating the
flow variables into steady base state quantities denoted by upper case and two-dimensional linear perturbed quantities denoted
by tilde (∼) symbol as follows,

u(x,y) =UB (y)+ ũ(y)εei(αx+ωt)+O(ε2)

v(x,y) = ṽ(y)εei(αx+ωt)+O(ε2)

p(x,y) = pB (y)+ p̃(y)εei(αx+ωt)+O(ε2)

Ci (x,y) =CBi (y)+C̃i (y)εei(αx+ωt)+O(ε2)

After decomposing the above equation into base and perturbed parts, the solution of the base part are obtained analytically
and that of the perturbed part are obtained numerically. Let the perturbation parameter ε = A4r3 = µs

µ f
kh2

µs
is assumed to be

so small, where A4 ≪ r3 . Assuming the flow to be steady, and splitting (14), (17) to (25), (32), (33) and neglecting the higher
orders of perturbation parameter ε , we obtain the following set of partial differential equations.
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Base part equations

∂ 2U s
B

∂y2 −φsA3
∂ pB

∂x
+A5Wea2e−αcy −M2U s

B = 0 (34)

∂ 2U f
B

∂y2 −φ f A3
∂ pB

∂x
+A5Wea2e−αcy −M2U f

B = 0 (35)

∂ 2CBi

∂y2 −βCBi = 0 (36)

Perturbed part equations (
∂ ṽ f

∂y
−a3ũ f

)
r1 +

(
∂ ṽs

∂y
−a3 ũs

)
r2 = 0 (37)

∂ 2ũs

∂y2 + ũs
(
A1a4 +A2U s

B a3 −M2 −α2)−A2
∂U s

B
∂y

ṽs +(A3 φs a3 p̃ ) = 0 (38)

∂ 2ũ f

∂y2 + ũ f
(

A6a4 +A7U f
B a3 −M2 −α2

)
−A7

∂U f
B

∂y
ṽ f +

(
A3 φ f a3 p̃

)
= 0 (39)

∂ 2ṽs

∂y2 + ṽs
(
A1a4 +A2U s

B a3 −α2)= 0 (40)

∂ 2ṽ f

∂y2 + ṽ f
(

A6a4 +A7U f
B a3 −α2

)
= 0 (41)

∂ 2C̃i

∂y2 +C̃i

(
c2a3 UB

β + c1a4 −α2 −β
)
− c2

∂CBi

∂y
ṽβ = 0 (42)

where a3 = αtan(αx+ωt), and a4 = wtan(αx+ωt),
The base part boundary conditions are

UB
β = 0, CBi = 0, at y = 0 (43)

CBi = 1, at y = 1 (44)

∂Uβ
B

∂y
=−ασ

(
Uβ

B −Up
β
B

)
, at y = 1 (45)

∂Uβ
B

∂y
= ασ

(
Uβ

B −Up
β
B

)
, CBi = 1, at y =−1 (46)
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and perturbed part boundary conditions are,

ũβ = 0, ṽβ = 1, C̃i = 1 , at y = 0 (47)

ṽβ = 1, C̃i = 1 , at y = 1 (48)

∂ ũβ

∂y
=−ασ

(
ũβ − ũpβ

)
, at y = 1 (49)

∂ ũβ

∂y
= ασ

(
ũβ − ũpβ

)
, C̃i = 0,at y =−1 (50)

Base part solutions
For equations (34) and (35) the solution is

U s
B = A cosh[M y]+Bsinh[M y]− A9

M2 +
A8

αc2 −M2 e−αcy (51)

U f
B =C cosh[M y]+Dsinh[M y]− A9

M2 +
A8

αc2 −M2 e−αcy (52)

Also the derivatives ofU s
B,U

f
B are

∂U s
B

∂y
= AMsinh[M y]+BMcosh[M y]−αc

A8

αc2 −M2 e−αcy (53)

∂U f
B

∂y
=CMsinh[M y]+DMcosh[M y]−αc

A8

αc2 −M2 e−αcy (54)

The values of integration constants A,B,C,D are calculated using (43) to (46). The perturbed part equations (38) to (41) are
simplified using (51) to (54) as given below,

∂ 2ũs

∂y2 + ũs
(
s1 −M2 + s2cosh[M y]+ s3sinh[M y]− s4e−αcy)− ṽs(s5sinh [M y]+ s6 cosh [M y]− s4e−αcy)+A11 = 0 (55)

∂ 2ũ f

∂y2 + ũ f
(
s8 −M2 + s9cosh[M y]+ s10sinh[M y]− s11e−αcy)− ṽ f (s12sinh [M y]+ s13 cosh [M y]− s14e−αcy)+A13 = 0 (56)

∂ 2ṽs

∂y2 + ṽs
(
s15 + s2cosh[M y]+ s3sinh[M y]+ s4e−αcy)= 0 (57)

∂ 2ṽ f

∂y2 + ṽ f
(
s16 + s9cosh[M y]+ s10sinh[M y]− s11e−αcy)= 0 (58)

Where s1,s2,s3, . . . . . . . . .s14,s15 are constants obtained when simplification.
The above four perturbed equations (55) to (58) are solved for ũs, ũ f , ṽs, ṽ f numerically usingMATHEMATICA, and hence

velocities for both solid and fluid phases are plotted as graphs respectively.
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2.1.1 Case 1: Concentration of smog (C1) (when β ̸= 0 )
The base part ofC1 isCB1 and its solution is obtained from (36) is given by,

CB1 = Ecosh
[√

β y
]
+F sinh[

√
β y] (59)

Using boundary conditions (43) to (46) the values E = 0, F = 1
sinh[

√
β ]

are obtained. so,

CB1 =
sinh

√
βy

sinh
√

β
(60)

∂CB1

∂y
=

√
βcosh

√
βy

sinh
√

β
(61)

For solid phase:
Equation (42) becomes,

∂ 2C̃1

∂y2 +C̃1
(
c2a3 UB

s + c1a4 −α2 −β
)
− c2

∂CB1

∂y
ṽs = 0 (62)

Using (51) and (60), the above equation becomes,

∂ 2C̃1

∂y2 +C̃1
(
A15 + s17 cosh [M y]+ s18 sinh [M y]− s19 + s20 e−αcy)−A16 cosh

[√
β y
]

ṽs = 0 (63)

For fluid phase:
Equation (42) becomes,

∂ 2C̃1

∂y2 +C̃1
(
c2a3 UB

f + c1a4 −α2 −β
)
− c2

∂CB1

∂y
ṽ f = 0 (64)

Using (52) and (60), the above equation becomes,

∂ 2C̃1

∂y2 +C̃1
(
A15 + s17 cosh [M y]+ s18 sinh [M y]− s19 + s20 e−αcy)−A17 cosh

[√
β y
]

ṽ f = 0 (65)

These perturbed equations (63), (65) are solved numerically subject to the boundary conditions prescribed in (47) to (50).
Graphs are plotted for concentration with chemical reaction (C1) for both solid and fluid phase using MATHEMATICA.

2.1.2 Case 2: Concentration of Haze C2 (when β = 0)
The base part ofC2 isCB2 whose equation from (36) is

∂ 2CB2

∂y2 = 0 (66)

and its solution is given by,

CB2 = Gy+H (67)

Using boundary conditions (43) to (46) we get, G = 1, H = 0. so,

CB2 = y (68)

∂CB2

∂y
= 1 (69)

https://www.indjst.org/ 1064

https://www.indjst.org/


Meenapriya et al. / Indian Journal of Science and Technology 2021;14(13):1056–1070

For solid phase:
Equation (42) becomes,

∂ 2C̃2

∂y2 +C̃2
(
c3a3 UB

s + c1a4 −α2 )− c3
∂CB2

∂y
ṽs = 0 (70)

Using (51) and (69), the above equation becomes,

∂ 2C̃2

∂y2 +C̃2
(
A18 + s17 cosh [M y]+ s18 sinh [M y]+ s19 + s20 e−αcy)− c2 ṽs = 0 (71)

For fluid phase:
Equation (42) becomes,

∂ 2C̃2

∂y2 +C̃2
(
c3a3 UB

f + c1a4 −α2 )− c3
∂CB2

∂y
ṽ f = 0 (72)

Using (52) and (69), the above equation becomes,

∂ 2C̃2

∂y2 +C̃2
(
A18 + s21 cosh [M y]+ s22 sinh [M y]− s23 + s24 e−αcy)− c3 ṽ f = 0 (73)

These perturbed equations (71) and (73) are solved numerically subject to the boundary conditions prescribed in (47) to (50).
Graphs are plotted for the concentration without the effects of chemical reaction (C2), for both solid and fluid phase using
MATHEMATICA.

3 Results and Discussion
The velocity directions are exposed to get a better perception of the flow.The velocity profile for aerosols and atmospheric fluid
for parameters including Hartmann number (M), electric number (We), and porous parameter (σ) are displayed in Figures 2
and 3. Figure 2 depicts that increasing electric number and porous parameter, the velocity of aerosol increases respectively.
But results vary when increasing the values of Hartmann number, where aerosol velocity decreases. Figure 3illustrates the
same result as in Figure 2. Figure 3shows that increasing electric number and porous parameter, velocity of atmospheric fluid
increases, but by increasing Hartmann number fluid velocity decreases.

Fig 2. Velocity profile of aerosols

Concentration profiles for different values of parameters are discussed as two cases in the proceeding sub-sections.
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Fig 3. Plots of atmospheric fluid velocity

3.1 Concentration of aerosol mixture in the presence of chemical reaction (when β ̸= 0):

The concentration of aerosols and atmospheric fluid in the presence of chemical reaction by varying some parameters are
illustrated in Figure 4 to Figure 7.

Figure 4 depicts the results of aerosol concentration for some values of reaction rate parameter and Hartmann number. It
reveals that increasing the rate of the reaction, aerosol concentration increases but when maximizing Hartmann number the
concentration of aerosols decreases. Figure 5 represents the plots of aerosol concentration for some values of an electric and
porous parameter. It reveals that increasing both electric number and porous parameter, the concentration of aerosol decreases.

Fig 4. Concentration of aerosols for different values of reaction rate and parameter andHartmann number
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Fig 5. Concentration of aerosols for various values of electric number and porous parameter

Figure 6 illustrates the plots of fluid concentration for different values of an electric number and porous parameter. It
gives a clear picture that increasing both electric number and porous parameter, fluid concentration decreases. The results of
atmospheric fluid concentration for various values of reaction rate parameter and Hartmann number are presented in Figure 7.
It reveals that increasing both reaction rate parameter and Hartmann number, the concentration of fluid decreases.

Fig 6. Concentration of atmospheric fluid for some values of electric number and porous parameter
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Fig 7. Concentration of atmospheric fluid for various values of reaction rate parameter and Hartmann number

3.2 Case(2) : Concentration of aerosol mixture in the absence of chemical reaction (when β = 0 ):

The concentration of aerosols and atmospheric fluid without the effect of a chemical reaction by varying some parameters are
depicted in Figures 8 and 9.

Figure 8 shows the plots of aerosol concentration for different values of electric and Hartmann number. It is noted from
the figure that while increasing electric number aerosol concentration maximizes. Also, increasing Hartmann number, the
concentration of aerosol declines. The results of fluid concentration for various values of electric and Hartmann number are
presented in Figure 9. It is observed that increasing both Hartmann number and electric number, concentration of atmospheric
fluid without chemical reaction reduces.

Fig 8. Concentration of aerosol for different values of Hartmann number (when β = 0)
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Fig 9. Concentration of atmospheric fluid for some values of Hartmann number and electric number (when β = 0)

3.3 Discussion

In the presence of chemical reaction,

• The concentration of aerosols in the aerosol mixture is reduced by enhancing electric, magnetic and porous effects.
• The concentration of atmospheric fluid in the aerosol mixture is reduced by increasing the rate of the reaction, and by

improving electric, magnetic and porous effects.

In the absence of chemical reaction,

• The concentration of aerosols in the aerosol mixture is reduced by enhancing magnetic field effects.
• The concentration of atmospheric fluid in the aerosol mixture is reduced by increasing electric, magnetic field effects.

4 Conclusion
The concentration of the aerosol mixture is evaluated both in the presence and absence of homogeneous first-order chemical
reaction under the presence of electric and magnetic field. The concentration of aerosols in the mixture when chemically
reactive, reduces when enhancing the electric, magnetic, and porous effects. The same results hold for the concentration of
atmospheric fluid in the presence of chemical reaction. Atmospheric fluid concentration in themixture reduceswhile increasing
the rate of the reaction, electric, magnetic and porous effects. In the absence of chemical reaction, aerosol concentration
reduces when improving the magnetic field and fluid concentration reduces when maximizing the effects of both electric and
magnetic fields. Hence it is concluded that both in the presence and absence of chemical reaction concentration of the mixture
is minimized when electric, magnetic and porous effects are enhanced.
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