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Abstract
Objective: In this study we consider a two-state retrial queueing system with
feedback having two identical parallel servers. Transient state probabilities for
exact number of arrivals anddepartures from the systemwill be obtainedwhen
both, one or none of the servers is busy. Numerical and graphical solutions will
also be obtained. Methods: The difference-differential equations governing
the system are solved recursively, Laplace transform is then used to obtain the
transient state probabilities for exact number of arrivals and departures from
the system. Findings: Time dependent probabilities are obtained when both,
one and none of the servers is busy. Numerical and Graphical solutions are
also obtained using MATLAB programming. Novelty: In past research, models
considered arrivals and departures from the orbit whereas in present model
arrivals and departures from the system are studied along with the concept
of feedback. Applications: This type of model is implemented in computer
systems.
Mathematics Subject Classification: 60K25, 90B22, 60M20

Keywords: Arrivals; Departures; Queueing; Retrial; Feedback

1 Introduction
Queueing systemswith repeated calls are frequently observed inmany real life situations
such as telecommunication systems, computer networks and these are popularly known
as retrial queueing systems. In retrial queues if a customer on arrival finds any of the
servers free it is served immediately else joins the orbit (pool) and retries for service
after a random amount of time.The primary and secondary arrivals both follow Poisson
distribution. A basic example of retrial queueing system is the case where a person tries
to connect a call but the line goes busy so the person tries to reconnect the call after
some time as a retrial customer. Initial work on retrial queues was done by (1–4).
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Fig 1. Basic structure of a retrial queueing system

As in retrial queueing systems it is described that a customer which do not get immediate service, will retry from the
orbit after a random amount of period as a repeated call. If the customer is unsatisfied after service, he/she joins the orbit
and retry for service as a feedback retrial customer. For example when a message faces failed transmission in multiple access
telecommunication systems, it can be sent again. For feedback queueing systems, the pioneering work was done by (5) in his
paper ‘Cyclic queues with feedback’ and by (6) in paper ‘A single-server queue with feedback’. (7) discussed ‘TheM/G/1 feedback
retrial queue with two types of customers’ where the joint generating function of the number of customers in two groups are
derived by using the supplementary variable method. (8) analyzed ‘A feedback retrial queuing system with starting failures and
single vacation’ where the system size distribution at random points and various performance measures are derived. (9) studied
‘A single server feedback retrial queue with collisions’ in which the joint distribution of server state and the orbit length under
steady state was studied using generating function technique. (10) analyzed ‘Finite Queueing Model with Multitask Servers and
Blocking’ where expressions for mean number of customers in the system, average queue length and blocking probability are
obtained. (11) worked on ‘The multi-server retrial system with Bernoulli feedback and starting failures’ in which formulae for
calculating rate matrix and stationary probabilities were obtained by using matrix-geometric method. (12) published ‘Retrial
queueing models in discrete time: a short survey of some late arrival models’ where average orbit size andmean busy period are
obtained from generating function (13) analyzed ‘Some new results for the M/M/1 queue’ in which solution is obtained for the
probability that exactly ‘i’ number of arrivals, ‘j’ number of services occur over a time interval t. (14) worked on ‘Transient analysis
of markovian queueing model with bernoulli schedule and multiple working vacations’ where transient state probabilities were
computed. (15) discussed ‘Performance analysis of a two-state queueing model with retrials’ and (16) worked on ‘A two-state
multiserver queueing system with retrials’ where the time-dependent probabilities were obtained.

Fig 2. Basic structure of a retrial queueing system with feedback

The paper is organized in various sections as follows: The model is described mathematically in section 2 where the
difference-differential equations governing the system are given. The transient state probabilities are obtained in section 3.
Various special cases are obtained in section 4.The numerical and graphical solutions are illustrated in section 5.The numerical
and graphical representation of busy period distribution of the system and the servers is presented in section 6. Finally, the
conclusion is given in section 7 which is further followed by references.
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2 Model Description
The detailed description of the present model is given as follows:

• The Arrival Process: The primary customers arrive at the system according to Poisson process with mean arrival rate λ .
• TheRetrial Process: If a customer on arrival finds any of the servers free, he is served immediately. Otherwise, the customer

joins the orbit and calls repeatedly until he finds any of the servers free.The retrial customers arrive at the system according
to Poisson process with retrial rate θ .

• The Feedback Rule: If a customer is unsatisfied with the service, he may join the orbit as a feedback customer. A departing
customer joins the orbit with probability γ for receiving a satisfied service and leaves the system with probability (1-γ).

• The Service Process: Service times follow exponential distribution with mean service rate µ .

The input flow of primary calls, intervals between repetitions, service times are statistically independent.

Laplace Transformation of
−
f (s) of f (t) is given by:

f̄ (s) =
∫ ∞

0
e−st f (t)dt; Re(s)> 0

The Laplace inverse of

Q(p)
P(p)

=
n

∑
k=1

mk

∑
l=1

tmk−leakt

(mk − l)!(l −1)!
× dl−1

d pl−1

(
Q(p)
P(p)

)
(p−ak)

mk ∀p = ak, ai ̸= ak for i ̸= k

Where,P(p) = (p−a1)
m1 (p−a2)

m2 . . . . . . . . .(p−an)
mn

Q(p) is a polynomial of degree << m1 +m2 +m3 + . . . . . . . . . . . . .mn −1.
The Laplace inverse of N̄a,b,c

n1,n2 ,n3
( s) = 1

(s+a)n1 (s+b)n2 (s+c)n3 is is

Na,b,c
n1,n2,n3

(t) = ∑n3
l=1 ∑l

m=1
e−at tn3−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n1+g1)

)(
∏m−2

g2=0 (n2+g2)
)

(n3−l)!(m−1)! (b−a)n2+m−1 (c−a)n1+l−m

+∑n2
l=1 ∑l

m=1
e−bt tn2−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n1+g1)

)(
∏m−2

g2=0 (n3+g2)
)

(n2−l)!(m−1)! (a−b)n3+m−1 (c−b)n1+l−m

+∑n1
l=1 ∑l

m=1
e−ct tn1−l (−1)m+1 ( l−1

m−1 )
(

∏l−m−1
g1=0 (n2+g1)

)(
∏m−2

g2=0 (n3+g2)
)

(n1−l)!(m−1)! (a−c)n3+m−1 (b−c)n2+l−m

If L−1{f(s)}= F(t) and L−1{ g( s)}= G(t) then

L−1{f(s)g(s)}=
∫ t

0
F(u)G(t−u)du = F∗G

F * G is called the convolution of F and G.

2.1 The Two-Dimensional State Model

2.1.1 Definitions
Pi, j,0(t)=Probability that there are exactly i number of arrivals, j number of departures by time t and servers are free.

Pi, j,k(t)=Probability that there are exactly i number of arrivals, j number of departures from the system by time t when k(k
= 1 or 2) servers are busy.

Pi, j(t) =Probability that there are exactly i number of arrivals, j number of departures from the system by time t.

Pi, j (t) = Pi, j,0 (t)+Pi, j,1 (t)+Pi, j,2 (t) , ∀ i, j; i ≥ j

Initially

P0,0,0 (0) = 1; Pi, j,0 (t) = 0, i < j; Pi, j,k (t) = 0, i < j Pi,0,k = 0, i ≥ 0, (k = 1 or 2)
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2.1.2 The Difference Differential equations governing the system are:

d
dt

Pi, j,0 (t) =−(λ +(i− j)θ)Pi, j,0 (t)+µ (1− γ)Pi, j−1,1 (t)+µγPi, j,1 (t) ; i ≥ j ≥ 0 (1)

d
dt

Pi, j,1 (t) =−(λ +µ +(i− j−1)θ)Pi, j,1 (t)+λPi−1, j,0 (t)+(i− j)θPi, j,0 (t)+2µ (1− γ)Pi, j−1,2 (t)+2µγPi, j,2 (t) ; i > j ≥ 0 (2)

d
dt

Pi, j,2 (t) =−(λ +2µ)Pi, j,2 (t)+λPi−1, j,1 (t)+λPi−1, j,2 (t)+(i− j−1)θPi, j,1 (t) ; i > 1, i > j ≥ 0 (3)

Using Laplace Transform
−
f (s) of f (t) given by

−
f (s) =

∫ ∞

0
e−st f (t)dt; Re(s)> 0

and using initial condition in equations (1) to (3), we have

(s+λ +(i− j)θ)
−
Pi. j.0 (s) = µ (1− γ)

−
Pi, j−1,1 (s)+µγ

−
Pi, j,1 (s) ; i ≥ j ≥ 0 (4)

(s+λ +µ +(i− j−1)θ)
−
Pi, j,1 (s) = λ

−
Pi−1, j,0 (s)+(i− j)θ

−
Pi, j,0 (s)+2µ (1− γ)

−
Pi, j−1,2 (s)+2µγ

−
Pi, j,2 (s) ; i > j ≥ 0 (5)

(s+λ +2µ)
−
Pi, j,2 (s) = λ

−
Pi−1, j,1 (s)+λ

−
Pi−1, j,2 (s)+(i− j−1)θ

−
Pi, j,1 (s) ; i > j ≥ 0 (6)

3 Solution of the Problem
Solving equations (4) to (6) recursively, we have

−
P0,0,0 (s) =

1
s+λ

(7)

−
P1,0,1 (s) =

λ
s+λ +µ

−
P0,0,0 (s)+

θ
s+λ +µ

−
P1,0,0(s) (8)

−
P1,1,0 (s) =

µ(1− γ)
s+λ

−
P1,0,1 (s) (9)

−
Pi,0,0 (s) =

µγ
s+λ + iθ

−
Pi,0,1 (s) ; i ≥ 1 (10)

−
Pi,i,0 (s) =

µ (1− γ)
s+λ

{
λ

s+λ +µ
−
Pi−1,i−1,0 (s)+

θ
s+λ +µ

−
Pi,i−1,0 (s)+

2µ (1− γ)
s+λ +µ

−
Pi,i−2,2 (s)

}
; i ≥ 2 (11)

−
Pi,1,1 (s) =

λ
s+λ +µ +(i−2)θ

−
Pi−1,1,0 (s)+

(i−1)θ
s+λ +µ +(i−2)θ

−
Pi,1,0 (s)+

2µ (1− γ)
s+λ +µ +(i−2)θ

−
Pi,0,2 (s)+

2µγ
s+λ +µ +(i−2)θ

−
Pi,1,2 (s) ; i > 2

(12)
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−
Pi,i−1,1 (s) =

λ
s+λ +µ

−
Pi−1,i−1,0 (s)+

θ
s+λ +µ

−
Pi,i−1,0 (s)+

2µ (1− γ)
s+λ +µ

−
Pi,i−2,2 (s) ; i > 1 (13)

−
Pi,2,0 (s) =

µ(1− γ)
s+λ +(i−2)θ

−
Pi,1,1 (s)+

µγ
s+λ +(i−2)θ

−
Pi,2,1 (s) ; i > 2 (14)

−
Pi, j,2 (s) = ∑i− j

k=1

(
λ

s+λ +2µ

)i− j−k

η ′
k (s)

−
P j+k, j,1 (s) ; i ≥ j+2, j ≥ 1 (15)

Where

η ′
k =


1 k = 1

1+ (k−1)θ
s+λ+2µ k = 2 to i− j−1

(k−1)θ
s+λ+2µ k = i− j

P̄i, j,1(s) =
λ

s+λ +µ +(i− j−1)θ
P̄i−1, j,0(s)+

(i− j)θ
s+λ +µ +(i− j−1)θ

P̄i, j,0(s)+

2µ(1− γ)
s+λ +µ +(i− j−1)θ

i− j

∑
k=1

(
λ

s+λ +2µ

)i− j−k

η ′
k(s)P̄j+k−1, j−1,1(s)+

2µγ
s+λ +µ +(i− j−1)θ

i− j

∑
k=1

(
λ

s+λ +2µ

)i− j−k

η ′
k(s)P̄j+k, j,1(s); i ≥ j+2, j ≥ 2

(16)

where

η ′
k =


1+ (k−1)θ

s+λ+2µ k = 1
(k−1)θ

s+λ+2µ k = 2 to i− j−1
1

s+λ k = i− j

−
Pi, j,0 (s) =

µ(1− γ)
s+λ +(i− j)θ

−
Pi, j−1,1 (s)+

µγ
s+λ +(i− j)θ

−
Pi, j,1 (s) (17)

Taking the Inverse Laplace of equations (7) to (17)

P0,0,0 (t) = e−λ t (18)

P1,0,1 (t) = λe−(λ+µ)t ∗P0,0,0 (t)+θe−(λ+µ)t ∗P1,0,0(t) (19)

P1,1,0 (t) = µ(1− γ)e−λ t ∗P1,0,1(t) (20)

Pi,0,0 (t) = µγe−(λ+iθ)t ∗Pi,0,1 (t) ; i ≥ 1 (21)

Pi,i,0(t) = µ(1− γ)λe−λ t
{

1
µ
− e−µt

µ

}
∗Pi−1,i−1,0(t)+µ(1− γ)θe−λ t

{
1
µ
− e−µt

µ

}
∗

Pi,i−1,0(t)+2µ2(1− γ)2e−λ t
{

1
µ
− e−µt

µ

}
∗Pi,i−2,2(t); i ≥ 2

(22)
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Pi,1,1(t) = λe−(λ+µ+(i−2)θ)t ∗Pi−1,1,0(t)+(i−1)θe−(λ+µ+(i−2)θ)t ∗Pi,1,0(t)+
2µ(1− γ)e−(λ+µ+(i−2)θ)t ∗Pi,0,2(t)+2µγe−(λ+µ+(i−2)θ)t ∗Pi,1,2(t) ; i > 2

(23)

Pi,i−1,1 (t) = λe−(λ+µ)t ∗Pi−1,i−1,0 (t)+θe−(λ+µ)t ∗Pi,i−1,0 (t)+2µ (1− γ)e−(λ+µ)t ∗ Pi,i−2,2 (t) ; i ≥ 1 (24)

Pi,2,0 (t) = µ (1− γ)e−(λ+µ+(i−2)θ)t ∗Pi,1,1 (t)+µγe−(λ+µ+(i−2)θ)t ∗Pi,2,1 (t) ; i > 2 (25)

Pi, j,2 (t) = λ i− j−1 t i− j

(i− j)!
e−(λ+2µ)t ∗Pj+1, j,1 (t)+

i− j−1

∑
k=2

λ i− j−k t i− j−k−1

(i− j− k−1)!
e−(λ+2µ)t ∗ Pj+k, j,1 (t)+

∑i− j−1
k=2 λ i− j−k (k−1)θ

t i− j−k

(i− j− k)!
e−(λ+2µ)t ∗Pj+k, j,1 (t)+(i− j− 1)θe−(λ+2µ)t ∗Pi, j,1 (t) ; i ≥ j+2, j ≥ 1

(26)

Pi, j,1(t) = λe−(λ+µ+(i− j−1)θ)t ∗Pi−1, j,0(t)+(i− j)θe−(λ+µ+(i− j−1)θ)t ∗Pi, j,0(t)+

2µ(1− γ)λ i− j−1e−(λ+µ+(i− j−1)θ)t

{
1

2µ
− e−2µt

i− j−2

∑
r=0

tr

r!
1

(2µ)i− j−1−r

}
∗

Pj, j−1,1(t)+2µ(1− γ)e−(λ+µ+(i− j−1)θ)t ∑i− j−1
k=2 λ i− j−k

{
1

(2µ)i− j−k −

e−2µt ∑i− j−k−1
r=0

tr

r!
1

(2µ)i− j−k−r

}
∗Pj+k−1, j−1,1(t)+2µ(1−

γ)e−(λ+µ+(i− j−1)θ)t ∑i− j−1
k=2 λ i− j−k(k−1)θ

{
1

(2µ)i− j−k −

e−2µt ∑i− j−k−1
r=0

tr

r!
1

(2µ)i− j−k−r

}
∗Pj+k−1, j−1,1(t)+2µ(1− γ)(i− j−1)

θe−(λ+µ+(i− j−1)θ)t
{

1
2µ

− e−2µt

2µ

}
∗Pi, j,1(t)+2µγe−(λ+µ+(i− j−1)θ)tλ i− j−1

{
1

2µ
−

e−λ t ∑i− j−2
r=0

tr

r!
1

(2µ)i− j−1−r

}
∗Pj+1, j,1(t)+

2µγe−(λ+µ+(i− j−1)θ)t ∑i− j−1
k=2 λ i− j−k

{
1

(2µ)i− j−k − e−2µt
i− j−k−1

∑
r=0

tr

r!
1

(2µ)i− j−k−r

}
∗

Pj+k, j,1(t)+2µγe−(λ+µ+(i− j−1)θ)t ∑i− j−1
k=2 λ i− j−k(k−1)θ

{
1

(2µ)i− j−k −

e−2µt ∑i− j−k−1
r=0

tr

r!
1

(2µ)i− j−k−r

}
∗Pj+k, j,1(t)+2µγe−(λ+µ+(i− j−1)θ)t(i− j−1)θ

{
1

2µ
−

e−2µt

2µ

}
∗Pi, j,1(t); i ≥ j+2, j ≥ 2

(27)

Pi, j,0 (t) = µ (1− γ)e−(λ+(i− j)θ)t ∗Pi, j−1,1 (t)+µγe−(λ+(i− j)θ)t ∗Pi, j,1 (t) (28)

4 Some Important Performance Measures

•The Laplace transform of
−
Pi.(s) is given as:

−
Pi. (s) = ∑i

j=0

−
Pi, j (s) =

λ i

(s+λ )i+1 ; i > 0 (29)
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and its Inverse Laplace is:

Pi. (t) =
e−λ t (λ t)i

i!
(30)

which proves the basic assumption that primary arrivals follow Poisson process.
•The probability that exactly j customers depart from the system by time t is given as:

P. j (t) = ∑∞
i= j Pi, j(t) (31)

• Summing equations (7)-(17) over i and j we get:

∑∞
i=0 ∑i

j=0

{
−
Pi, j,0(s)+

−
Pi, j,1(s)+

−
Pi, j,2(s)

}
=

1
s

(32)

and hence

∑∞
i=0 ∑i

j=0
{

Pi, j,0(t)+Pi, j,1(t)+Pi, j,2(t)
}
= 1 (33)

which is the verification of our results.
• Define Qn,m= Probabilitiy that there are n customers in the orbit when m (m = 0, 1, 2) servers are busy at time t.
When server is free, it is represented by probability Qn,0 (t)

Qn,0 (t) = ∑∞
j=0 Pj+n, j,0 (t) (34)

The number of customers in the orbit, in this case are calculated with the following formula:

n = ( number of arrivals − number of departures)

When m servers are busy, it is represented by the probability Qn,m(t).

Qn,m (t) = ∑∞
j=0 Pj+n+m, j,m (t) ; m = 1,2 (35)

The number of customers in the orbit in this case is calculated by the following formula:

n = ( number of arrivals − number of departures −m)

Using above definitions in (1) to (3) and let µ=1, γ=0 the equations we get are:

(λ +nθ)Qn,0 (t) = Qn,1 (t) ; n ≥ 0 (36)

(λ +nθ +1)Qn,1 (t) = λQn,0 (t)+(n+1)θQn+1,0 (t)+2Qn,2 (t) ; n ≥ 0 (37)

(λ +2)Qn,2 (t) = λQn,1 (t)+λQn−1,2 (t)+(n+1)θQn+1,1 (t) ; n ≥ 0 (38)

which coincides with the results (1)-(3) of (17).

5 Numerical Solution and Graphical Representation
TheNumerical solutions are generated usingMATLABprogramming for the case ρ=0.6,η=0.5 and γ=0.4. Observing the below
tables for various time instants it could be seen that the sum of probabilities approaches to 1.
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Table 1. At t=1
P0,0,0 P1,0,0 P1,1,0 P2,0,0 P1,0,1 P2,0,1 P2,1,1 P2,0,2 P3,0,2 Sum
0.5488 0.0414 0.0737 0.0016 0.2142 0.0162 0.0288 0.0418 0.0085 0.975

Table 2. At t=5
P0,0,0 P1,0,0 P1,1,0 P2,1,0 P2,2,0 P3,2,0 P3,3,0 P4,3,0 P5,3,0 P5,4,0

0.0498 0.0249 0.0845 0.0423 0.0717 0.0366 0.0378 0.0198 0.0153 0.0177
P1,0,1 P2,0,1 P2,1,1 P3,1,1 P3,2,1 P4,1,1 P4,2,1 P4,3,1 P5,2,1 P5,3,1

0.0399 0.02 0.0678 0.0367 0.0551 0.0139 0.0139 0.0315 0.0226 0.0301
P5,4,1 P2,0,2 P3,1,2 P4,1,2 P4,2,2 P5,1,2 P5,2,2 P5,3,2 Sum
0.0171 0.016 0.0243 0.0198 0.0177 0.0155 0.0221 0.0121 0.8477

Table 3. At t=10
P5,3,0 P5,4,0 P5,5,0 P2,1,1 P3,1,1 P3,2,1 P4,2,1 P4,3,1 P5,2,1 P5,3,1

0.0489 0.1496 0.2153 0.0101 0.0075 0.0219 0.0169 0.0307 0.0254 0.0798
P5,4,1 P3,1,2 P4,2,2 P5,2,2 P5,3,2 Sum
0.1187 0.0045 0.0094 0.023 0.0302 0.9387

Table 4. At t=15
P2,2,0 P3,2,0 P3,3,0 P4,3,0 P4,4,0 P5,3,0 P5,4,0 P5,5,0 P3,2,1 P4,3,1

0.0032 0.0025 0.0078 0.0061 0.0138 0.0224 0.1566 0.5927 0.0032 0.0076
P5,3,1 P5,4,1 P2,0,2 P4,2,2 P5,2,2 P5,3,2 Sum
0.0338 0.1123 0.0001 0.0015 0.023 0.0302 0.9809

Table 5. At t=25
P0,0,0 P1,1,0 P2,2,0 P3,1,0 P3,3,0 P4,3,0 P4,4,0 P5,4,0 P5,5,0 P1,0,1

0 0 0 0 0.0001 0.0001 0.0004 0.0303 0.9462 0
P2,1,1 P3,1,1 P4,2,1 P4,3,1 P2,0,2 P3,1,2 P4,2,2 P5,2,2 Sum
0 0 0 0.0001 0 0 0 0.0001 0.9773

Table 6. At t=35
P0,0,0 P1,1,0 P2,1,0 P3,2,0 P4,2,0 P4,4,0 P5,3,0 P5,5,0 P1,0,1 P2,1,1 P3,2,1 P4,1,1

0 0 0 0 0 0 0 0.9947 0 0 0 0
P5,0,1 P5,2,1 P5,4,1 P2,0,2 P3,1,2 P4,2,2 P5,3,2 Sum
0 0 0.0021 0 0 0 0 0.9968

Table 7. At t=40
P0,0,0 P1,1,0 P2,2,0 P3,1,0 P3,3,0 P4,1,0 P5,0,0 P5,5,0 P1,0,1 P3,1,1 P3,2,1

0 0 0 0 0 0 0 0.9984 0 0 0
P4,1,1 P4,3,1 P5,3,1 P5,4,1 P3,1,2 P4,0,2 P5,1,2 P5,3,2 Sum
0 0 0 0.0006 0 0 0 0 0.999
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The probabilities against time are presented graphically through Figures 3, 4, 5, 6, 7, 8, 9 and 10.

Fig 3. Probabilities P0,0,0and P1,1,0against t (average service times)

Figure 3 depicts the plot of probabilities P0,0,0 and P1,1,0 against time t (average service times) for the case when ρ = 0.6, η
= 0.5 and γ = 0.4. It is clear from the graph that the probability P0,0,0 rapidly decreases with time from initial value 1 at t=0.The
probability P1,1,0 increases in the beginning from initial value 0 at t=0 and then decreases gradually.

Fig 4. Probabilities P4,1,0P4,2,0P4,3,0P4,4,0P4,4,0against t (average service times)
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Figure 4 depicts comparison among the probabilities P4,0,0, P4,1,0, P4,2,0, P4,3,0 and P4,4,0 for the case when ρ = 0.6, η = 0.5
and γ = 0.4. It is interpreted from the graph that the highest values attained are by probabilities are larger for higher number of
departures.

Fig 5. Probabilities P2,1,1P3,1,1P4,1,1P5,1,1against t (average service times)

The probabilities P2,1,1, P3,1,1, P4,1,1 and P5,1,1 for the case when ρ=0.6, η=0.5 and γ=0.4 are compared in Figure 5. It is
interpreted from the graph that in the starting the probabilities increases and then decreases. In general, it can also be concluded
that the probabilities Pi,0,1 take smaller values for higher i (number of arrivals).

Fig 6. Probabilities P5,1,0P5,1,1P5,1,2P5,1,1against t (average service times)

Figure 6 shows the comparison between probabilities P5,1,0, P5,1,1 and P5,1,2 when plotted against time t for ρ = 0.6, η = 0.5
and γ = 0.4. Beginning with value 0 at t=0 the probabilities P5,1,0, P5,1,1 and P5,1,2 increases rapidly to their highest values and
then decreases. It can be seen that the probability P5,1,2 is greater than P5,1,1 which is greater than P5,1,0 throughout i.e., the
probability when both the servers are busy is greater than probability when one server is busy which is in turn greater than the
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probability when both the servers are idle.

Fig 7. Effect of ρ on probability P0,0,0against t (average service times)

The effect of change of ρ (traffic intensity) on probability P0,0,0 is studied in Figure 7 keeping other parameters constant i.e.,
η=0.5 and γ=0.4.The plot depicts the probability P0,0,0 against time t for different values of traffic intensity (ρ=0.3, 0.6 and 0.9)
and it is concluded that for large value of ρ , probability P0,0,0 decreases. Therefore, more is value of ρ i.e., more are the arriving
customers per unit service time, less is the probability of having zero units in the system.

Fig 8. Effect of γ on probability P5,1,0, against t (average service times)
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Fig 9. Effect of γ on probability P5,1,1, against t (average service times)

Fig 10. Effect of γ onprobability P5,1,2, against t (average service times)

In Figures 8, 9 and 10 the probabilities P5,1,0, P5,1,1, and P5,1,2 are plotted respectively against time t for different values of
γ=0.3, 0.5 and 0.7 keeping other parameters constant i.e., ρ=0.6 andη=0.5. It is concluded that the probabilitiesP5,1,0,P5,1,1, and
P5,1,2 increase initially and then decrease for higher values of time. It is also observed that for higher value of γ the probabilities
took larger values.

6 Busy Period Distribution
The busy period distribution of the system as well as the server is discussed in this section.

The probability that server is busy is given by:

P(Server is busy) = ∑
i> j≥0

(
Pi, j,1 (t)+Pi, j,2(t)

)
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The probability that system is busy is given by:

P(System is busy) = ∑i> j≥0
(
Pi, j,0(t)+Pi, j,1(t)+Pi, j,2(t)

)
(40)

6.1. Numerical and Graphical Representation of Busy Period

Using MATLAB programming and following the work of (18) the numerical results are obtained. Here the probabilities for
system busy as well as server busy are obtained which are presented in the table below for various values of ρ keeping η and γ
same.

Table 8. Probabilities of System busy and Server busy to study theeffect of ρ

t
Probability(System Busy) Probability(Server Busy)
ρ=0.3 ρ=0.6 ρ=0.9 ρ=0.3 ρ=0.6 ρ=0.9

0
1
2
3
4
5
6
7
8
9
10

0
0.2077
0.3204
0.3931
0.444
0.4813
0.5089
0.5292
0.5432
0.5516
0.5546

0
0.3724
0.5389
0.6388
0.6944
0.7336
0.7554
0.7605
0.749
0.7214
0.68

0
0.5029
0.6879
0.7807
0.832
0.8541
0.8511
0.8224
0.7717
0.7048
0.6283

0
0.1772
0.2475
0.2858
0.3111
0.3294
0.3426
0.3515
0.3563
0.3573
0.3544

0
0.3227
0.4318
0.4859
0.5173
0.5325
0.5323
0.5175
0.4899
0.4523
0.4082

0
0.4419
0.5679
0.6207
0.6376
0.6244
0.586
0.5301
0.4652
0.3984
0.3349

Fig 11. Probabilities of System busy and Server busy against t(average service times)

Theprobabilities for Systembusy and Server busy are plotted in Figure 11 for the caseρ=0.6,η=0.5 and γ=0.4.The two curves
increase rapidly in the beginning and then start decreasing. The probability of System busy remains higher than probability of
Server busy, as required.
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Fig 12. Effect of ρ on System busy against t (average service times)

Fig 13. Effect of ρ on Server busy against t (average servicetimes)

Theprobabilities of Systembusy and Server busy are plotted against time for different values ofρ
(

tra f f ic intensity = λ
2µ

)
in

Figures 12 and 13 respectively. It is clearly visible from both the graphs that the probabilities have larger values for higher values
of ρ in the initial to moderate values of t. Afterwards this trend of these probabilities reversed for higher values of t.
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Fig 14. Effect of η on System busy against t (average service times)

Fig 15. Effect of η on Server busy against t (average service times)
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Figures 14 and 15, respectively show the probabilities of System busy and probabilities of Server busy plotted against time
for various values of η

(
retrial intensity = θ

2µ

)
. For System busy the probabilities are higher for lower values of η . For Server

busy the probabilities for initial to moderate values of t are lower for smaller η but for higher values of t the trend changes, here
the probabilities are greater for smaller η .

Fig 16. Effect of γ on System busy against t (average service times)

Fig 17. Effect of γ on Server busy against t (average service times)
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The probabilities of System busy and probabilities of Server busy are respectively plotted in Figures 16 and 17 for different
values of γ(probability o f f eedback). In both the graphs it is clear that the probabilities increase rapidly for the initial values
of t and then decrease gradually for higher t.

7 Conclusion
We studied two identical parallel servers with the concept of feedback. In previous research, queueing models with arrivals
and departures from the orbit were considered but in present research we considered arrivals and departures from the system
with the concept of feedback, in addition. We have obtained the time-dependent probabilities for exact number of arrivals and
departures from the system when both servers are busy or free or one is busy. Several numerical results are obtained to check
the effects of various parameters. This type of model is implemented in computer systems. The present model can serve as a
base of future research for modeling practical situations where heterogeneous servers would be required.
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