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2 Department of Mathematics, All India Jat Heroes Memorial College, Rohtak, 124001, India

Abstract
Objective: To study the stresses due to strip load in a monoclinic elastic
plate placed over an irregular monoclinic elastic half space. Method: Anti-
plane strain problem with different interfacing boundary conditions namely
“perfectly welded interfacing, smooth-rigid interfacing, rough-rigid interfacing”
has been considered and Fourier Transformation is used on the equilibrium
equations to obtain the solutions. Findings: The displacements and stresses
are obtained for each boundary condition and the variation of shearing
stresseswith horizontal distance are studied due to different size of rectangular
shaped irregularity at any point of the medium consisting of monoclinic
elastic plate placed upon an irregular monoclinic elastic half space. The
comparison between the stresses for different types of interfacing has been
made graphically. Novelty: The static deformation of two or more connected
elastic mediums with irregularities due to surface loads has been studied
earlier but just a few have showed graphic representation of stresses with
irregularity in different sizes. Keeping in mind the shortcomings of earlier work
done, the present paper visualizes shearing stresses in both theoretical and
graphical manners completely.

Keywords:Monoclinic; strip loading; anti plane strain; rectangular irregularity

1 Introduction
The concept of dislocation theory has been proved a helpful tool in the study of earth
crust deformation due to surface loads or any internal sources. Several researchers dealt
mathematicallywith the elastic residual fields based on the dislocation theory describing
static deformation of the earth crust associated with an earthquake. Crampin (1)

investigated for the seismic anisotropy in the earth crust, which was a beginning of
anisotropic crystal study but the seismic anisotropy was an unfamiliar concept for
many geophysicists. Keeping this in mind, he tried to suggest a consistent terminology
having simple and descriptive meanings and made the concept of anisotropy easier
to remember and understood. It was found that the two or three dimensional static
deformation of an elasticmaterial due to surface loads was important for understanding
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the behaviour of the elastic medium at continental margins and mountain roots in the earth structure. Following this criteria,
the problem of static deformation present in the elastic mediums had been studied by many researchers, for e.g Pan (2) solved
the static deformation problem of a transversely isotropic layered half space with different type of dislocation sources which
contained the solutions to two and three dimensional source problem for the corresponding isotropic media. The formulation
developed in this paper could be evaluated numerically to study the effect of anisotropy as well as of earth layering on the static
fields. Garg and Singh (3) obtained the stresses as a result of shear line load acting at the boundary of a semi infinite elastic model
consisting of an isotropic elastic layer lying over an isotropic elastic half space and concluded that quasi-static stresses differ
significantly from the corresponding static stresses in pure elastic medium. Madan and Garg (4) obtained the displacements
and stresses at any point of an orthotropic horizontal elastic layer interfacing in three different ways with a base due to a very
long inclined strike slip fault. Garg et.al. (5) examined the static deformation in an orthotropic elastic medium due to a dip
slip fault of infinite length and finite width. As mentioned by Crampin (1) there was monoclinic symmetry in the earth crust.
Monoclinic symmetry of systems of cracks may be found near the surface of the earth where lithostatic pressure has not closed
cracks. Monoclinic crystal system is one of the seven (triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and
cubic) crystal systems. The monoclinic crystal system has been described by three vectors of unequal length in which two are
perpendicular to each other. In mathematical description, an elastic plate can be related to the earth crust and the coupling
between the elastic layer and the elastic half space can be perfectly bonded, smooth-rigid and rough-rigid. Singh et.al. (6)
formulated the problem of two-dimensional static deformation of a monoclinic elastic medium using the Eigen value approach
andFourier transformmethod.Madan (7) obtained solution to the problemof static deformation in amonoclinic elasticmedium
with considerations of welded half space in the form of a layer with a base under different kind of interfacing in the anti-
plane strain state of equilibrium. For convenience, many researchers formulated an elastic problem under the consideration of
perfect isotropic elastic and homogeneity for the elastic medium instead of irregular half space. But under these assumptions
certain ambiguities arose between theory and observations that led to point out the need for reformulating some problems
under less restrictive assumptions. Madan (8) considered a problem in which the static deformation of transversely isotropic
elastic half space with rectangular shaped irregularity present on the interfacing of the elastic mediums caused by surface
loads. Following the above approaches and results, Madan (9) obtained the 2-Dimensional static deformation of an irregular
orthotropic elastic medium with the assumption of rectangular shape and parabolic shape irregularities due to normal line
loads. Madan (10) discussed the effect of irregularity and also effect of anisotropy on the shear stresses due to strip loads on an
orthotropic elastic plate of infinite lateral length connected with an isotropic elastic half space. Chugh (11) obtained stresses in a
transversely isotropic elastic plate due to strip-loading as a contour map in anti-plane strain state under perfectly bonding
boundary condition. Verma et al. (12) obtained the plane strain problem of the deformation of a homogeneous, isotropic,
poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half-space due to two-dimensional seismic
sources buried in the elastic half-space. The effect of the compressibility of the fluid and solid constituents of the poroelastic
layer is to decrease and increase the magnitude of the pore pressure respectively has been concluded. Tiersten (13) developed
many experimental and theoretical results in both two-dimensional and three-dimensional visualization for the measure of
arbitrary elasticity tensors and also for permeability in mountains, rocks and fluids.

In this paper, we have obtained closed form analytical expressions for the displacements and stresses in a horizontal infinite
monoclinic elastic layer placed over an infinite irregular monoclinic elastic half space. The variation of shearing stresses has
been studied graphically with different sizes of irregularity.

2 Basic equation
The equilibrium equations in the cartesian co-ordinate system for zero body forces are

τxx,x + τxy,y + τxz,z = 0 (1)

τyx,x + τyy,y + τyz,z = 0 (2)

τzx,x + τzy,y + τzz,z = 0 (3)

where τxx,τyy,τzz are normal stresses and τxy,τyz,τzx are shearing stresses.
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The stress-strain relations for a monoclinic elastic medium in co-ordinate plane are given by Crampin (1)

τxx = c11exx + c12eyy + c13ezz + c14eyz
τyy = c12exx + c22eyy + c23ezz + c24eyz
τzz = c13exx + c23eyy + c33ezz + c34eyz
τyz = c14exx + c24eyy + c34ezz + c44eyz

τzx = c55ezx + c56exy
τxy = c56ezx + c66exy


(4)

Also, we have the following strain displacement relations

exx =
∂u
∂x

, eyy =
∂v
∂y

, ezz =
∂w
∂ z

, exy =
1
2

(
∂u
∂y

+
∂v
∂x

)
, eyz =

1
2

(
∂v
∂ z

+
∂w
∂y

)
,ezx =

1
2

(
∂w
∂x

+
∂u
∂ z

)
(5)

where exx,eyy,ezz are normal strain components and exy,eyz,ezx are shearing strain components. (u,v,w) are the displacement
components in cartesian coordinate plane. The two suffix quantities ci j (i, j = 1,2,3,4,5,6) are the elastic constants.

The displacements and stresses for a monoclinic elastic material in anti-plane strain equilibrium state in the yz−plane is

u = u(y,z), v = 0, w = 0
exx = eyy = ezz = eyz = 0

exy =
1
2

∂u
∂y

, exz =
1
2

∂u
∂ z

τxy = c56
∂u
∂ z

+ c66
∂u
∂y

τzx = c55
∂u
∂ z

+ c56
∂u
∂y


(6)

Using equations 4-6, the equilibrium equations (2)-(3) are identically zero and equation (1) reduced to

∂ 2u
∂y2 +2

c56

c66

∂ 2u
∂y∂ z

+
c55

c66

∂ 2u
∂ z2 = 0 (7)

We defined the Fourier Transform of f (x,y) as

−
f (x,s) =

∫ ∞

−∞
f (x,y)eiysdy

So, the Inverse Fourier Transform is defined as

f (x,y) =
1

2π

∫ ∞

−∞

−
f (x,s)e−iysds

3 Formulation of the problem
We consider the cartesian co-ordinate system (x,y,z). Here, z−axis has been taken horizontally and y-axis along vertically
downward. An infinite monoclinic elastic plate of thickness ‘Y ’ lying horizontally over an irregular infinite monoclinic elastic
half-space. The irregularity is assumed to be rectangular in shape. The origin of Cartesian co-ordinate system (x,y,z) is taken
at the upper boundary of the plate. The plate occupying the region (0 ≤ y ≤ Y ) is described as medium I whereas the region
y > Y is described as medium II. (as shown in Figure 1).
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Fig 1.

Suppose a shear load P0 per unit area is acting over the strip (z| ≤ h of the surface y = 0 in the positive x-direction.
So, the boundary condition (at the surface y = 0) is,

τxy =

{
−P0 : |z|< h

0 : |z|> h (8)

The equation of irregularity is represented as:

y = ε f (z) =
{

d : |z|< a
0 : |z|> a (9)

where ε = d
2a ≪ 1 is the perturbation factor.

We are considering the interface between the layer and the half-space as “perfectly welded, smooth rigid, and rough rigid”.
The boundary conditions for different types of coupling are
For perfectly welded contact:

u(y = Y−) = u(y = Y+)

τxy (y = Y−)− iε f
′
(z)τzx (y = Y−) = τxy (y = Y+)− iε f

′
(z)τzx (y = Y+)

(10)

For smooth-rigid contact:

τxy = 0 at y = Y (11)

For rough-rigid contact:

u = 0 at y = Y (12)

Now, taking the Fourier Transform of equation (7), we have

d2−u
dy2 −2

(
is

c56

c66

)
d
−
u

dy
− c55

c66
s2−u = 0

The solution of above ordinary differential equation is

ū =
(
Aem1|s|y +Be−m1|s|y

)
e−i(m2y)s (13)

where m1 =
√

m3 −m2
2, m2 =

c56
c66

, m3 =
c55
c66
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Now, taking the Inverse Fourier Transform of equation (13), the displacements and stresses for (Med. I) are

uI =
1

2π

∫ ∞

−∞

(
Aem1|s|y +Be−m1|s|y

)
e−i(z−m2y)sds (14)

Using equation (14) in equation (6), we have

τ I
xy =

T1

2π

∫ ∞

−∞

(
Aem1|s|y −Be−m1|s|y

)
e−i(z−m2y)|s|ds (15)

τ I
xz =

T1

2π

(
m2

∫ ∞

−∞

(
Aem1|s|y −Be−m1|s|y

)
e−i(z−m2y)s|s|ds

−im1
∫ ∞
−∞
(
Aem1|s|y −Be−m1|s|y

)
e−i(z−m2y)ss

)
ds

(16)

where T1 = m1c66
Using the Fourier Transform technique on the boundary condition (8), we have

τ I
xy =

−P0

π

∫ ∞

−∞

sin(sh)
s

e−iszds (17)

Now, from equations (15) and (17), we have

A−B =
−2P0

T1

(
sin(sh)

s|s|

)
(18)

The displacement and stresses for med. II (i.e for y > Y ) are

uII =
1

2π

∫ ∞

−∞
C
(

e−m′
1|s|ye−ı(z−m′

2y)s
)

ds (19)

the coefficient of em1|s|y is taken as zero, otherwise, u → ∞ as y → ∞

τ II
xy =

−T ′
1

2π

∫ ∞

−∞
C
(

e−m′
1|s|ye−i(z−m′

2y)s
)
|s|ds (20)

τ II
xz =

−T ′
1

2π

∫ ∞

−∞
C
(
m′

2|s|+ im′
1s
)(

e−m′
1|s|ye−i(z−m′

2y)s
)

ds (21)

where T
′

1 = m
′
1c

′
66, m

′
1 =

√
m′

3 −m′2
2 , m

′
2 =

c
′
56

c′66
, m

′
3 =

c
′
55

c′66
and A, B, C may be functions of ‘s’ and determined from the

boundary conditions.
By applying the Fourier transform technique on equation (9), we have

f (z) = sign(a− z)+ sign(a+ z) (22)

where ‘sign′ is the Signum function.

4 Perfect contact
When the interfacing between the plate and half-space at y = ε f (z) is welded contact, then condition (12), (14), (15), (16), (19),
(20), and (21) yield (

Aem1|s|ε f (z)+Be−m1|s|ε f (z)
)

eim2ε f (z)s − ce−m′
1|s|ε f (z)eim′

2ε f (z)s = 0 (26)
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Aem1|s|ε f eim2ε f s
(

T1S1 − iε f
′
m2T1S1 − ε f

′
m1

)
−Be−m1|s|ε f eim2ε f s

(
T1S1 − iε f

′
m2T1S1 + ε f

′
m1

)
+Ce−m

′
1|s|ε f eim

′
2ε f s

(
T

′
1S1 − iε f

′
m

′
2T

′
1S1 + ε f

′
m

′
1

)
= 0

(27)

Solving equations (18), (26) and (27), we have the values

A =
2P0

T1

sin(sh)
s|s|

(
(S1V − ε f ′V3 + iε f ′S1V2)e−2m1|s|ε f

(S1 − iε f ′S1V1 + ε f ′V3)− (S1V − ε f ′V3 + iε f ′S1V2)e−2m1|s|ε f

)
(28)

B =
2P0

T1

sin(sh)
s|s|

(
1− (S1V − ε f ′V3 + iε f ′S1V2)e−2m1|s|ε f

(S1 − iε f ′S1V1 + ε f ′V3)− (S1V − ε f ′V3 + iε f ′S1V2)e−2m1|s|ε f

)
(29)

C =
4P0

T1

sin(sh)
s|s|

(
S1 (1+ iε f ′m2)e−(α |s|+iβ s)ε f

(S1 − iε f ′S1V1 + ε f ′V3)− (S1V − ε f ′V3 + iε f ′S1V2)e−2m1|s|ε f

)
(30)

whereV = T−1
T+1 , V1 =

T1m2+T
′
1 m

′
2

T1+T ′
1

, V2 =
T1m2−T

′
1 m

′
2

T1+T ′
1

, V3 =
m
′
1−m1

T1+T ′
1

T = T1
T ′

1
, α = m1 −m

′
1, β = m2 −m

′
2

Substituting the values for A, B, C from (28)-(30) in equations (14)-(16) for med. I and in equations (19)-(21) for med. II
and also substituting the value for f(z) from (22), we will obtain the following results for displacements and stresses.

For med. I(i.e. , for≤ y ≤ Y )

uI =
P0

πT1

∫ ∞

−∞

sin(sh)
s|s|

(
e−m1|s|y +

∞

∑
n=1

V ne−m1|s|(2nε f−y)−
∞

∑
n=1

V ne−m1|s|(2nε f+y)

)
e−i(z−m2y)sds (31)

τ I
xy =−P0

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

V n

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f − y)2 −h2

)] (32)

τ I
xz =−P0m2

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

V n

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f )− y

)2
−h2


+ m1P0

2π

[
log

[(z−m2y)+h]2 +(m1y)2

[(z−m2y)−h]2 +(m1y)2

−∑∞
n=1 V n

(
log

[(z−m2y)+h]2 +[m1(2nε f + y)]2

[(z−m2y)−h]2 +[m1(2nε f + y)]2
+ log

[(z−m2y)+h]2 +[m1(2nε f − y)]2

[(z−m2y)−h]2 +[m1(2nε f − y)]2

)]
(33)

For med. II (i.e. y > Y )

uII =
2P0

πT1

(
T

T +1

)∫ ∞

−∞

sin(sh)
s|s|

(
e−m1|s|y−(α |s|+iβ s)ε f+

∑∞
n=1 V ne−m1|s|(2nε f+y)−(α|s|+ιβ s)ε f )

)
e−i

(
z−m

′
2zy
)

sds
(34)
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τ II
xy =− 2P0

π(1+T )

tan−1
2h
(

m
′
1y+αε f

)
(
z−m′

2y+ ιβε f
)2

+
(
m′

1y+αε f
)2 −h2

+∑∞
n=1 V n tan−1

2h
(
(2nm1 +α)ε f +m

′
1y
)

(
z−m′

2y+ ιβε f
)2

+
(
(2nm1 +α)ε f +m′

1y
)2 −h2

 (35)

τ II
xz =− 2P0m

′
2

(1+T )π

tan−1
2h
(

m
′
1y+αε f

)
(
z−m′

2y+ ιβε f
)2

+
(
m′

1y+αε f
)2 −h2

+∑∞
n=1 V n tan−1

2h
(
(2nm1 +α)ε f +m

′
1y
)

(
z−m′

2y+ ιβε f 2 +
(
(2nm1 +α)ε f +m′

1y
)2 −h2


+

P0m
′
1

π(1+T )

log

(
z−m

′
2y+ ιβε f +h

)2
+
(

m
′
1y+αε f

)2

(
z−m′

2y+ ιβε f −h
)2

+
(
m′

1y+αε f
)2 +

+∑∞
n=1 V n log

(
z−m

′
2y+ ιβε f +h

)2
+
(

m
′
1y+(2nm1 +α)ε f

)2

(
z−m′

2y+ ιβε f −h
)2

+
(
m′

1y+(2nm1 +α)ε f
)2



(36)

5 Smooth rigid-interface
When the interfacing between plate and half-space at y=Y is smooth-rigid, without loss of generality, on taking T −→ ∞
i.e, V = 1 in equations (31)-(33) for med. I and in equations (34)-(36) for med. II. we will obtain the following results for
displacements and stresses.

For med. I(i.e. , for≤ y ≤ Y )

uI =
Po

πT1

∫ ∞

−∞

sin(sh)
s|s|

(
e−m1|s|y +

∞

∑
n=1

e−m1|s|(2nε f−y)−
∞

∑
n=1

e−m1|s|(2nε f+y)

)
e−i(z−m2y)sds (37)

τ I
xy =−P0

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f − y)2 −h2

)] (38)

τ I
xz =−P0m2

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f − y)2 −h2

)]
+

m1P0

2π

[
log

[(z−m2y)+h]2 −m1y2

[(z−m2y)−h]2 +m1y2

−∑∞
n=1

(
log

[(z−m2y)+h]2 +[m1(2nε f + y)]2

[(z−m2y)−h]2 +[m1(2nε f + y)]2
+ log

[(z−m2y)+h]2 +[m1(2nε f − y)]2

[(z−m2y)−h]2 +[m1(2nε f − y)]2

] (39)

For med. II (i.e. y > Y )

uII =
2P0

πT1

∫ ∞

−∞

sin(sh)
s|s|

(
e−m1|s|y +

∞

∑
n=1

e−m1|s|y−(α|s|+ιβ s)ε f −
∞

∑
n=1

e−m1|s|y−(α|s|+ιβ s)ε f

)
e−i(z−m2y)sds (40)

τ II
xy = 0

τ II
xz = 0

(41)
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6 Rough rigid-interface
When the interfacing between the plate and half-space at y=Y is rough-rigid, without loss of generality, on taking T −→ 0
i.e, V = −1 in equations (31)-(33) for med. I and in equations (34)-(36) for med. II. we will obtain the following results for
displacements and stresses.

For med. I(i.e. , for≤ y ≤ Y )

uI =
Po

2πT1

∫ ∞

−∞

sin(sh)
s|s|

(
e−m1|s|y +

∞

∑
n=1

(−1)ne−m1|s|(2nε f−y)−

∑∞
n=1(−1)ne−m1|s|(2nε f+y)

)
e−i(z−m2y)sds

(42)

τ I
xy =−P0

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

(−1)n

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f − y)2 −h2

)] (43)

τ I
xz =−P0m2

π

[
tan−1 2hm1y

(z−m2y)2 +m2
1y2 −h2

−
∞

∑
n=1

(−1)n

(
tan−1 2hm1(2nε f + y)

(z−m2y)2 +m2
1(2nε f + y)2 −h2

+ tan−1 2hm1(2nε f − y)

(z−m2y)2 +m2
1(2nε f − y)2 −h2

)]
+

m1P0

2π

[
log

[(z−m2y)+h]2 +(m1y)2

[(z−m2y)−h]2 +(m1y)2

−∑∞
n=1(−1)n

(
log

[(z−m2y)+h]2 +[m1(2nε f + y)]2

[(z−m2y)−h]2 +[m1(2nε f + y)]2
+ log

[(z−m2y)+h]2 +[m1(2nε f − y)]2

[(z−m2y)−h]2 +[m1(2nε f − y)]2

)] (44)

For med. II (i.e. y > Y )

uII = 0 (45)

τ II
xy =−2P0

π

tan−1
2h
(

m
′
1y+αε f

)
(
z−m′

2y+ ιβε f
)2

+
(
m′

1y+αε f 2
)
−h2

+∑∞
n=1(−1)n tan−1

2h
(
(2nm1 +α)ε f +m

′
1y
)

(
z−m′

2y+ ιβε f 2
)
+
(
(2nm1 +α)ε f +m′

1y
)2 −h2

 (46)

τ II
xz =−2P0m

′
2

π

tan−1
2h
(

m
′
1y+αε f

)
(
z−m′

2y+ ιβε f
)2

+
(
m′

1y+αε f
)2 −h2

+∑∞
n=1(−1)n tan−1

2h
(
(2nm1 +α)ε f +m

′
1y
)

(
z−m′

2y+ iβε f 2 +
(
(2nm1 +α)ε f +m′

1y
)2 −h2


+

P0m
′
1

π

log

(
z−m

′
2y+ iβε f +h

)2
+
(

m
′
1y+αε f

)2

(
z−m′

2y+ iβε f −h
)2

+
(
m′

1y+αε f
)2 +

+∑∞
n=1(−1)n log

(
z−m

′
2y+ iβε f +h

)2
+
(

m
′
1y+(2nm1 +α)ε f

)2

(
z−m′

2y+ iβε f −h
)2

+
(
m′

1y+(2nm1 +α)ε f
)2



(47)

https://www.indjst.org/ 62

https://www.indjst.org/


Savita et al. / Indian Journal of Science and Technology 2021;14(1):55–70

6.1 Particular cases

Orthotropic elastic layered half-space:
By putting c56 = 0 i.e m1 =m3 =

√
c55
c66

and m2 = 0 in the equations (31)-(36), we will get the deformation of an orthotropic
elastic layered half space due to strip loading.

Isotropic elastic layered half space:
By putting c56 = 0 and c66 = c55 = µ i.e. m2 = 0 and m1 = m3 = 1 in the equations (31)-(36), we will get the deformation

of an isotropic elastic layered half space due to strip loading.

6.2 Special cases

(i) By putting c56 = 0 i.e m2 = 0, m1 = m3 =
√

c55
c66

= m, and c
′
56 = 0, c

′
66 = c

′
55 = µ , i.e m

′
2 = 0, m

′
1 = m

′
3 = 1 in equations

(31)-(36) we will obtain the system of equations

uI = P0
πT1

∫ ∞
−∞

sin(sh)
s|s|

(
e−m|s|y +∑∞

n=1 V ne−m|s|(2nε f−y)−∑∞
n=1 V ne−m|s|(2n∈ f+y)

)
e−iz sds

τ I
xy =−P0

π

[
tan−1 2hmy

z2+m2y2−h2 −∑∞
n=1 V n

(
tan−1 2hm(2nε f+y)

z2+m2(2nε f+y)2−h2 + tan−1 2hm(2nε f−y)
z2+m2(2nε f−y)2−h2

)]

τ I
xz =

m1P0

2π

[
log

[z+h]2 +(my)2

[z−h]2 +(my)2 −
∞

∑
n=1

V n
(

log
[z+h]2 +[m(2nε f + y)]2

[z−h]2 +[m(2nε f + y)]2
+ log

[z+h]2 +[m(2nε f − y)]2

[z−h]2 +[m(2nε f − y)]2

)]

uII =
2P0

πT1

(
T

T +1

)∫ ∞

−∞

sin(sh)
s|s|

(
e−m|s|y−((m−1)|s|)ε f +

∞

∑
n=1

V ne−m|s|(2nε f+y)−((m−1)|s|)ε f )

)
e−i(z)sds

τ II
xy =− 2P0

π(1+T )

[
tan−1 2h(y+(m−1)ε f )

(z)2+(y+(m−1)ε f )2−h2 +∑∞
n=1 V n tan−1 2h((2nm+(m−1))ε f+y)

(z)2+((2nm+(m−1))ε f+y)2−h2

]
τ II

xz =
P0

π(1+T )

(
log (z+h)2+(y+(m−1)ε f )2

(z−h)2+(y+(m−1)ε f )2 +∑∞
n=1 V n log (z+h)2+(y+(2nm+(m−1))ε f )2

(z−h)2+(y+(2nm+(m−1))ε f )2

)
which is similar to Madan (10).

(ii) By taking the lower monoclinic elastic half space as a simple base the obtained results (31)-(36), (37)-(41) and (42)-(47)
can similar toMadan (7) for all three different boundary conditions “perfectly welded interfacing, smooth-rigid interfacing, and
rough-rigid interfacing” respectively.

7 Numerical results
Here, we want to describe the effect of rectangular irregularity on the stresses due to strip load P0 = 107 dynes/cm−2 acting on
((z| ≤ h) the upper layer of monoclinic elastic plate connected with monoclinic elastic half space. For numerical calculation,
we take the following data for elastic constants from Tiersten (13).

(a) For monoclinic elastic layer,

c
′
55 = 94×109N/m2,

c
′
66 = 93×109N/m2,

c
′
56 =−11×109N/m2,

(b) For monoclinic elastic half-space,

c
′′
55 = 57.94×109N/m2,

c
′′
66 = 39.88×109N/m2,

c
′′
56 =−17.91×109N/m2
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Figures 2, 3, 4 and 5 represent the variation of shearing stresses τxy and τxz forMed. I andFigures 6, 7 and 8 represent the variation
of shearing stresses τxy and τxz for Med. II in perfectly welded contact, with horizontal distance ‘z’ and for strip size ′h′ at depth
level y. All figures (2)-(8) in perfectly welded contact are calculated for T1 = T

′
1 . Figures 9, 10 and 11 represent the variation

of shearing stresses τxy and τxz in smooth-rigid contact for Med. I, for different values of h = 1, 1.5, 2 at y = 1 respectively.
Figures 12 and 13 represent the variation of shearing stress τxy and τxz in rough-rigid contact for Med. I and Figures 14, 15, 16
and 17 in case of Med. II. In figures (9)-(17) both shearing stresses τxy and τxz have been plotted for all series terms by taking
the sum up to first ten terms of the series. As per our consideration, it is mentioned that the irregularity is present in the lower
half space. It has been observed graphically that the stresses for Med. I (i.e monoclinic elastic layer) are affected by the change
of loaded strip size but not by irregularity and this observation prevails in all the three interfacing boundary conditions. So, it
has been concluded that the change in the size of irregularity has affected the stresses in lower half space. Also It has been found
that the stresses τxy and τxz for Med.I at (h = -0.25, -0.5, 0.25, 0.5) have no discontinuity and the discontinuity comes in graphs
for h>0.5, shown in figures (2)-(5) and the same has been observed for stresses in smooth or rough-rigid contacts. Moreover,
it has been observed that the stresses for Med. II (i.e lower half space) have discontinuities due to irregularity as well as strip
size ( (z| ≤ h) for h ≥1. Same pattern has been observed in lower half space, if a = 0 in absence of rectangular irregularity
(i.e in case of regular half space) with (h| ≤ 0.5 the stresses are continuous, clearly in figures (8), (16). Graphically, it has been
concluded that in both mediums the variation in shearing stresses is affected by anisotropy of material, size of the strip and size
of an irregularity. Also, the difference between the shearing stresses in magnitude decreases as horizontal distance increases.

Fig 2. Variation of the stress component τxy in perfectly welded contact with horizontal distance z, for Med. I

Fig 3. Variation of the stress component τxz in perfectly welded contact with horizontal distance z, for Med. I
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Fig 4. Variation of the stress component τxy in perfectly welded contact with horizontal distance z, for Med. I

Fig 5. Variation of the stress component τxz in perfectly welded contact with horizontal distance z, for Med. I

Fig 6. Variation of the stress component τxy in perfectly welded contact with horizontal distance z, for Med. II
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Fig 7. Variation of the stress component τxz in perfectly welded contact with horizontal distance z, for Med. II

Fig 8. Variation of the stress component τxz in perfectly welded contact with horizontal distance z, for Med. II

Fig 9. Variation of the stress component τxy in smooth-rigid contact with horizontal distance z, for Med. I
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Fig 10. Variation of the stress component τxy in smooth-rigid contact with horizontal distance z, for Med. I

Fig 11. Variation of the stress component τxz in smooth-rigid contact with horizontal distance z, for Med. I

Fig 12. Variation of the stress component τxy in rough-rigid contact with horizontal distance z, for Med. I
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Fig 13. Variation of the stress component τxz in rough-rigid contact with horizontal distance z, for Med.I

Fig 14. Variation of the stress component τxy in rough-rigid contact with horizontal distance z, for Med. II

Fig 15. Variation of the stress component τxy in rough-rigid contact with horizontal distance z, for Med. II
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Fig 16. Variation of the stress component τxy in rough-rigid contact with horizontal distance z, for Med. II

Fig 17. Variation of the stress component τxz in rough-rigid contact with horizontal distance z, for Med. II

8 Conclusions
The closed form expressions for the stresses in an elastic model consisting of monoclinic elastic layer lying over an irregular
monoclinic elastic half space due to shear strip load has been obtained. Graphically, it has been concluded that the stresses in
an infinite monoclinic layer interface with an irregular monoclinic half space are significantly affected by the presence of an
irregularity and also by anisotropy of the elasticmedium as a result of shear load.The irregularitymay be rectangular, triangular,
parabolic etc. Also the difference between the shearing stresses in magnitude decreases as horizontal distance increases. The
results obtained are useful to study the static deformation near the surface of the earth where lithostatic pressure have disjoint
cracks perpendicular to themaximum compressional stress.The corresponding results obtained byMadan (7) and byMadan (10)

can be obtained from our results as particular cases.
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