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Abstract
Objectives: To present a new solution to the field equations obtained for
Bianchi type-III universe by using the law of variation of H, which yields constant
DP. Methods: We study a Bianchi type-III cosmological model with a cloud
strings with particles connected to them in Lyra geometry. To find the exact
solutions of survival field equations we consider here that the shear scalar
and scalar expansion are proportional to each other (σαθ) that leads to
the equation b = cm and secondly we adopt the assumption considering the
Deceleration Parameter q as a negative constant quantity giving the inflationary
model. The geometrical and physical properties are studied and comparedwith
the recent observational data. Findings: The present model starts at t=0 with 0
volume and as time progresses it expands with accelerated rate and themodel
shows that the present universe is particle dominated.
Keywords: Bianchi type III metric; inflation; Lyra geometry; cloud string;
anisotropic

1 Introduction
It is still an interesting area of research to discover its unknownphenomenon that has yet
to observe to study the ultimate fate of the universe. But till today cosmologists cannot
make a final and comprehensive conclusion about the origin and evolution of universe
with strong evidence. So more and more investigations are required to discover and
understand the unknown phenomenon of the universe and many mysterious particles
which are to be observed to study the ultimate fate of the universe. The cosmologist
or researchers developed the string theory to describe the universe, its early stages
and the evolution during the time. So, the study on string cosmology is becoming
very interesting area for the cosmologist, because of its significant role in the study of
formation and evolution of the universe at the early stages and to understand about
the future evolution. In the field of the general relativity the investigation of string was
generally initiated by prominent authors, Stachel (1) and Letelier (2,3). In the recent past
years many prominent authors have investigated the cosmic strings in the context of
Lyra geometry since it can play a great role in describing the universe in the early stages
of evolution (Kibble (4,5)) and they can give rise to density perturbations which can lead
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to the creation of large scale structure (galaxies) of the universe(Zel’dovich (6,7)).
The strings are crucial topological stable defects occurred due to the phase transition at the early days of the universe,

when the temperature is lower than a specific temperature, known as critical temperature. The occurrence of strings inside
the universe results in anisotropy within the space-time, though the strings aren’t seen in the present epoch. Strings cause no
damage to the cosmological models, but they can result in very interesting astrophysical effects. Because of the great position of
strings in the description of the evolution of the early universe, nowadays, many prominent authors have significantly studied
the string cosmology. Soon, after the big-bang, there was a breaking of symmetry during the time of phase transition and the
cosmic temperature went down below some critical temperatures due to which the strings arose, as according to grand unified
theories(Everett (8), Vilenkin1 (9,10)).

Though the Einstein general relativity is one of the most acceptable theory in modern era to describe the universe, it is
unable to explain some of the strong unknown facts about the universe such as accelerated expansion of universe, reason
behind the expansion etc. So the several researchers are trying to solve and explain those aspects of the universe by the help
of different modified theories of Einstein General theory of relativity such as Weyl’s theory, Brans-Dicke theory, f(R) gravity
theory, f(R, T) theory, Lyra geometry, scalar tensor theory etc. Among these theories Lyra geometry is one of themost important
modified theory. Inspired by the geometrization of gravitation, Weyl (11) developed a theory by geometrizing electromagnetism
and gravitation, known as Weyl’s theory. However, this theory was criticized and not accepted due to the condition of non-
integrability of length of vector under parallel displacement. To remove this non integrability condition to H. Weyl’s geometry,
Lyra (12) suggested a modification by introducing a gauge function ϕµ into the structureless geometry to Riemannian geometry
and this modified Riemannian geometry proposed by Lyra is known as Lyra’s Geometry. Halford (13) constructed a theory
in cosmology in Lyra geometry, and he showed that in general theory of relativity the constant ϕµperforms as cosmological
constant term. Bhamra (14), Beesham (15), Singh and Singh (16,17), Rahaman et al. (18), Reddy andRao (19,20), Yadav et al. (21), Adhav
et al. (22), Reddy (23), Rao et al. (24) are the some of the prominent authors who have already constructed various cosmological
models in Lyra geometry. Recently, Singh et al. (25), W. D. R. Jesus, and A. F. Santos (26), Singh and Mollah (27), Mollah et al. (28),
Yadav and Bhardwaj (29), Maurya and Zia (30), A. K. Yadav (31) have studied various cosmological models in different contexts
considering Lyra’s geometry.

Inspired by the above discussions, here we have studied the string cosmological model with particles connected to them in
Bianchi type-III universe considering Lyra geometry. The work done in this paper and findings are somewhat distinct from
the earlier findings. In the sec.2, Bianchi type-III metric is presented and the field equations in Lyra geometry are derived;
In the sec.3, the determinate solutions of the field equations are determined by using some plausible conditions. Physical and
geometrical properties of our model with the help of graph are discussed in sec.4; In sec.5 conclusions of the paper are given.

2 The metric and field equations
We consider the Bianchi type-III metric as

ds2 = a2dx2 +b2e−2xdy2 + c2dz2 −dt2 (1)

Here, a, b and c are the functions of ‘t’ alone. For the above metric let

x1 = x,x2 = y,x3 = z and x4 = t (2)

The field equations with gauge function and 8πG = 1,C = 1 in Lyra manifold is

Ri j −
1
2

Rgi j +
3
2

ϕiϕ j −
3
4

gi jϕkϕ k =−Ti j (3)

Where, ϕi is the displacement field vector given by

ϕi = (0,0,0,β ) (4)

Here, β is the function of time.
The energy-momentum tensor for a cosmic string is taken as

Ti j = ρuiu j −λxix j (5)

Here, λ = ρ −ρp is the string tension density, ρ is the energy density and ρp is the particle density of the string. Also, ui is the
four velocity vector and xi is the unit space-like vector which represents the direction of strings, and they are given by

xi =
(
0,0,c−1,0

)
and ui = (0,0,0,1) (6)
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Such that uiui =−1 =−xixi and uixi = 0 (7)

If R is the average scale factor then volume is

V = abc = R3 (8)

The expansion scalar is given by

θ = ui
,i =

ȧ
a
+

ḃ
b
+

ċ
c

(9)

Hubble parameter is given by

H =
1
3

(
ȧ
a
+

ḃ
b
+

ċ
c

)
(10)

The shear scalar is given by

σ2 =
1
2

σi jσ i j =
1
3

[(
ȧ
a

)2

+

(
ḃ
b

)2

+

(
ċ
c

)2

− ȧḃ
ab

− ḃċ
bc

− ċȧ
ca

]
(11)

And the mean anisotropy parameter is

∆ =
1
3

3

∑
r=1

(
Hr −H

H

)2

(12)

Where, Hr(r = x,y,z) denotes the directional Hubble factors, and they are given by Hx =
ȧ
a ,Hy =

ḃ
b and Hz =

ċ
c for the metric

(1).
The field Equation (3) with the Equations (4), (5), (6) and (7) for the Equation (1) takes the form

b̈
b
+

c̈
c
+

ḃċ
bc

+
3
4

β 2 = 0 (13)

ä
a
+

c̈
c
+

ċȧ
ca

+
3
4

β 2 = 0 (14)

ä
a
+

b̈
b
+

ȧḃ
ab

++
3
4

β 2 − 1
a2 = λ (15)

ȧḃ
ab

+
ḃċ
bc

+
ċȧ
ca

− 3
4

β 2 − 1
a2 = ρ (16)

ȧ
a
− ḃ

b
= 0 (17)

Here the overhead dots represent the order of differentiation w. r. t. time ‘t’.
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3 Solutions of the field equations
Solving Equation (17), we have

a = rb (18)

Here r is the integration constant. With generality, we can take r = 1 .
And using it, (18) can be written as,

a = b (19)

Thus using relation (19) the field Equations (13), (14), (15) and (16) reduces to

b̈
b
+

c̈
c
+

ḃċ
bc

+
3
4

β 2 = 0 (20)

2
b̈
b
+

ḃ2

b2 +
3
4

β 2 − 1
b2 = λ (21)

ḃ2

b2 +2
ḃċ
bc

− 3
4

β 2 − 1
b2 = ρ (22)

We have 3 highly nonlinear independent differential Equations (20), (21) and (22) with variables b,c,λ ,β and ρ which are
unknown. So to obtain the exact solutions of above equations we must have two extra conditions. So here we used the following
two physically plausible conditions:

Here, we take the assumption that the shear scalar and expansion scalar are proportional to each other (σαθ) which leads
to the equation

b = cm (23)

Here m ̸= 0 is a constant.
This is based on observations of velocity and red-shift relation for an extragalactic source which predicted that the Hubble

expansion is 30 percent isotropic, which is supported by the works of Thorne (32), Kantowski and Sachs (33), Kristian and
Sachs (34). In particular, it can be said that σ

H ≥ 0.30, where σ and H are respectively shear scalar and Hubble constant. Also,
Collins et al. (35) has shown that if the normal to the spatially homogeneous line element is congruent to the homogeneous
hyper-surface then σ

θ = constant ,θ being the expansion factor.
Secondlywe adopt the assumption proposed byBerman (36) about the variation of hubble’s parameterH,which gives constant

DP in the model as

q =−RR̈
Ṙ2 = (constant) (24)

When h is negative then the model universe expand with acceleration and when q is positive then the model universe contract
with deceleration. Although the present observations like CMBR and SNe Ia suggested the negative value of q but it can be
remarkably state that they are not able to deny about the decelerating expansion (positive q) of universe. This is the most
suitable condition to explore the physically meaningful solutions of the above field equations.

The scale factor R admits the solution-

R = (ht + k)

1
1+q , q ̸=−1

(25)

Here h ̸= 0 and k are integration constants.
Using the Equations (8), (19), (23) and (25), we get,

a = b = (ht + k)

3m
(1+q)(2m+1) (26)
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c = (ht + k)

3
(1+q)(2m+1) (27)

Without loss of generality we take h=1 and k=0 then (26), (27) becomes

a = b = t

3m
(1+q)(2m+1) , c = t

3
(1+q)(2m+1) (28)

Using (28) the metric (1) can be reduced to

ds2 = t

6m
(1+q)(2m+1) (dx2 + e−2xdy2

)
+ t

6
(1+q)(2m+1) dz2 −dt2 (29)

This gives the geometry of the metric (1).

4 Physical and geometrical parameters
We obtained some of the important physical and geometrical parameters that are useful for the discussion on the evolution of
the universe.

Using (28) in (22) we obtained ρ as

ρ =
3(m+1)(2−q)

(1+q)2(3m+1)t2 − t
−

6m
(1+q)(2m+1) (30)

From (19) and (20) using (28) we obtained

λ =
3(m−1)(2−q)

(1+q)2(3m+1)t2 − t
−

6m
(1+q)(2m+1) (31)

From (30), (31) we obtained the ρp as

ρp =
6(2−q)

(1+q)2(3m+1)t2 (32)

The gauge function β is obtained as

β 2 =
4
[
(m+1)(2m+1)(1+q)−3

(
m2 +m+1

)]
(1+q)2(3m+1)2t2

(33)

The spatial volume, scalar expansion, Hubble parameter, shear scalar and mean anisotropy parameter of the model are

V = t

3
1+h (34)

θ =
3

(1+h)t
(35)

H =
1

(1+h)t
(36)

σ =

√
3(m−1)

(1+h)(2m+1)t
(37)

∆ =
2(m−1)2

(2m+1)2 = Const. (38)
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5 Interpretations of the solutions
The Equation (29) represents the Bianchi type-III anisotropic cosmological model with strings in Lyra geometry. The physical
and geometrical behavior of model for −1 < h < 0 are discussed as

Fig 1. Energy density Vs. Time

Fig 2. Tension density, Particle density Vs. Time

• From the expressions of energy density ρ and tension density λ given by Equations (30) and (31), we have observed that
both of them are negative at the initial epoch of time but as the time progresses they changes sign from negative to positive
and then decreases gradually and finally become zero when t → ∞ . Figure 1 presents the variations of energy density with
time t, which clearly indicate that at infinite time, ρ → 0 . Again, the nature of the variations of tension density λversus
time t is shown by Figure 2. From this we can conclude that initially when t → 0 , λ is negative but with the passage of
cosmic time it changes sign from negative to positive and finally at infinite time it becomes zero, which is supported by
Letelier (2,3)

• For themodel universe, the expression of particle density ρp is found as the Equation (32) and its variations versus cosmic
time is shown in Figure 2.Which shows that ρpis always positive which decreases from ρp =∞ as t = 0 to ρp = 0 whenever
t → ∞ . Also, Figure 2 depicts that the tension density diminishes more quickly than the particle density, therefore with
the passage of time string will disappear leaving the particles only. Hence, our model is realistic one. And it is also seen
that ρp

|λ | > 1 , that shows that tension density of string diminishes faster than particle density. This tells us that the late
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universe is particle dominated.

Fig 3. Volume, Gauge Function Vs. Time

• In this model universe, at the initial epoch of time, the gauge function β 2 given by Equation (33) is found to be infinite
and it decreases with the increase of time. Finally, the gauge function β 2 → 0 when t → ∞ .

• The volume for this model increases as time increases. The expression of volume V as obtained in Equation (34) shows
that the model universe begin with initial singularity at t = 0 from V = 0 i.e. our model universe starts from zero volume at
t = 0 and as time increases it expands and also when t → ∞, V → ∞ . So, for 1+q > 0 the model shows that the universe
is expanding with accelerated rate.

Fig 4. Expansion scalar, Hubble parameter, Shear scalar Vs. Time

• From the expansion scalar and Hubble parameter for the model (29), at t = 0, the θ and H both are infinite and as the
time progresses gradually they decrease and finally θ and H become 0 when t is infinite. Hence, the model shows that the
universe expands with time but the rate of expansion slower as the increases of time and the expansion stops at t → ∞
. Again, it is seen that dH

dt = − 1
(1+h)t2 = 0 , when t approaches infinity and this implies the greatest value of Hubble’s

Parameter and accelerated expansion of the universe. These behaviors of the model are presented in Figure 4
• In Equation (37) and Figure 4. It is seen that the value of the shear scalar σ → ∞ at initial epoch and it decreases as the

time increases and become zero at late universe showing that the universe obtained here is shear free in the late time.
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• From Equation (38) the mean anisotropy parameter ∆ = constant(̸= 0) for m ̸= 1 and ∆ = 0 for m = 1. Also as t → ∞ the
value of σ2

θ 2 = (m−1)2

3(2m+1)2 = constant(̸= 0) for m ̸= 1 and σ2

θ 2 = 0 for m = 1 From both statements we can conclude that this
model is anisotropic for large value of t when m ̸= 1 but it is isotropic for m=1.

6 Conclusions
In this article, we have attempted to present a new solution to the field equations obtained for Bianchi type-III universe in
Lyra geometry by using the law of variation of Hubble’s parameter H which yields constant DP. This variational law for H in
Equation (24) explicitly determine the values of the average scale factors(R). So here we have constructed a Bianchi type-III
cosmological model attached to strings in Lyra geometry, which is an anisotropic and inflationary model. The physical and
geometrical parameters which are very important in the description of cosmological models have been obtained and discussed.
The model starts at t = 0 with volume 0 and it expand with acceleration in which the strings disappear leaving the particles
only in the late universe giving particle dominated universe which agrees with the present observational data. The model is
expanding, anisotropic for m ̸= 1 at late universe, accelerating, non-shearing and admits initial singularity at t=0, that also
agree with the present day observational data. Through this study, we hope to present a better knowledge of the cosmological
evolution of the present universe with the help of Bianchi type-III universe in Lyra geometry.
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