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Abstract
Objectives: To measure the performance of docker swarm technology in
virtual labs. Methods : The virtual laboratory is developed as a group of four
systemmachines (VMs) on the same host computer as a cluster. The simulation
depends on Linux OS, VirtualBox, Docker Swarm, Nginx, and Redis tools.
Visualizing the tracing process by using portainer. Findings: The performance
analysis of building virtual labs and running six main educational services
using docker swarm virtualization technology are explained in detail. The
experimental results have shown that the maximum utilization of the central
processing unit (CPU) has reached 13% only for the nodes, 11% for the
services, and 1% for the container, which considered very efficient in terms
of processing. Moreover, the results have proved the effectiveness of the
docker swarm in terms of memory usage since the maximum memory usage
of nodes reached 101 MB, 103 MB for Container, and only 2% for each
service. Additionally, the maximum network transition has reached (941 Bps)
for service.Novelty/Applications: Building Cloud Virtual Labs enable students
to connect remotely to the virtual machine at anytime and anywhere. Also,
these labs enable instructors to trace the students’ progress and manage the
evaluation process.

Keywords: Container; cloud; docker; hypervisor; orchestration; swarm

1 Introduction
Lately, the virtualization term means talking about hypervisor-based virtualization.
However, in recent years container-based virtualization became mature and especially
docker, which gained a lot of attention. Shared computers can be provided via cloud
computing over the internet. The users of cloud computing serve their data in third-
party data centers although the data are far from the user. Virtualization does a vital
part in both data centers and the cloud. Virtualization can be performed simply by
integration by running many virtual machines simultaneously on the same
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machine (1,2). In recent years, Google and IBM are from a few open cloud computing systems that do not utilize hypervisors,
but containers (3,4). The reason is that each hypervisor has a higher limit for many Virtual Machines that could be operated
on. Although, most of these applications do not even require half of the resources allocated to the VM by the CPU. This leads
according to the improvement in Linux containers where only those sources required with the aid of the choice of the features
stay used. In container-based systems, applications participate an operating system, therefore these implementations can be
essentially smaller in estimation, otherwise hypervisor (5,6).

Container-based virtualization is an alternative technology to virtual machines and is rapidly replacing them in the cloud
environment (7,8). A container can be considered a small and separated virtual environment, which incorporates a set of
particular conditions essential to run a particular application.Many insights are from the recently published reports that showed
hybrid cloud appropriation developed three times within the final year, expanding from 19% to 57% of organizations studied (9).
In (10), observed that the containerized environment to run intensive Spark shuffle applications is not good at performance.
Otherwise, the experimental results are good for using SparkwithDocker for intensive calculation and copying applications and
intermediate storage controllers with different virtualization frameworks. In (11), compared two virtual technologies between the
virtual machine that uses Xen and the container operating system that uses VServer with the result could be a container-based
framework that has twice the execution of hypervisor-based frameworks for server-type workloads. In (12), presented a novel
educational platform that differs from existing CTF platforms by having superior availability, added up to computerization, the
perceptibility of participants’ behavior and a high degree of authenticity.However, the costwas toomuch because of the numbers
of virtual machine (13–15), since the High Performance Computing (HPC) applications were tested, LXC demonstrates to be the
most suitable of the container-based systems for HPC. Since containers are increasingly lighter and agile contrasted with virtual
machines, you might have the option to run six to multiple times a bigger number of compartments than virtual machines on
a similar equipment. In (16,17) illustrated a method for determining the mean value of overhead classes of server consolidation
based on performance benchmarking and monitoring techniques and the result differ from the type of virtualization. In (18),
introduced that the Linux namespaces, initially created by IBM, wrap a lot of framework assets and present them to a procedure
to cause it to give the idea that they are committed to that procedure. In (19), developed an application on a virtual machine to
monitor the performance of their uploaded applications deployed on Amazon Web Services (AWS) and Azure though RAM,
Disk Size, and price. In (20), applied benchmark CPU and system tests to look at the exhibition of KVM, uniqueness HPC,
Docker and LXC with the local instance of very good quality server equipment. Containerized virtualization is appropriate
for overseeing microservices-based applications since it serves to rapidly dispatch and end the container for fast scalability,
though VM-based virtualization requires impressive opportunity to begin and end the VM (21). The authors in (22), presented
that containers differ from a virtual system that has virtual machines. The virtual machine has a complete operating system that
runs independently of the physical resources that are virtualized on those available on the host. In (23), showed the improvements
performance of containers in MPI collective data movements by using two stage-methods compared with virtual cluster. In (24),
a high-performance OpenStack-based Docker integration scheme was introduced, which implements a container management
service called Yun. Docker solves one of themain problems facing system administrators and developers for years.The problem
most of the time, the mismatch copy of some library or a few packages cannot be installed. This is where the docker steps in,
and solves this problem forever, by making the image of the application complete, with all its dependencies and shipping it to
the desired environment or server required. Container allowed us to sort out many challenges: pulling, packing, isolating and
making application portable across systems with almost no burdens. Facing issues with tracking down dependencies, scaling
your application, and updating individual components without affecting the entire application.The goal of containers is to write
once, then run on any cloud.

This is themain issue we confront suppose you have one application server which can serve ”x” customers. On the off chance
that you have to serve double the measure of customers, you may expand the assets on the server or make another occasion
of the application server that is stack offset with the first server. Docker accompanies an approach to make a ”swarm” of group
hubs by making that required number of utilization holders. It enables you to send any number of use servers over any number
of hosts with a couple of directions. And afterward, you can downsize simply.

2 Materials and Methods

2.1 Docker

Docker is a Future Virtualization technology. Docker is an open-source framework that automates the implementation of
applications in lightweight and portable containers and is one of the world’s leading software container platforms. Containers do
this by providing a complete runtime environment in a package, which includes the application, in addition to all dependencies,
libraries and other binary files, and the configuration files necessary to run it (25). Docker intends to address the difficulties of
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virtualization resources, velocity, and execution in the software development process.TheDocker container permits developers
to perform applications and services by utilizing the technology or language most convenient to them (26).

Docker consists of:

1. The Docker Engine: The light and powerful combined open source containerization technology with a workflow to build
and containerize your applications.

2. DockerHub:The Software as a service (SaaS) service to share andmanage applications. It is a free public image registry for
Store and build images. It is essentially a client-server application with three significant parts: a command-line interface
(CLI), a REST API and a server.

The server is a demon process called dockerd. Listen to Docker API requests and manage all Docker assets, such as images,
containers, networks, and volumes. A Docker image is characterized in a Docker file that is a book document that contains
Docker orders to construct an image from a base image that could be from a local machine or an online image registry. With
Docker-Machine, machines can be provisioned, both virtual and physical, on a number cloud platforms as well as bare metal
machines to run Docker containers.

2.2 Docker swarmmode

A clustering tool is software that allows an operator to talk to a single endpoint and to command and orchestrate a set of
resources, in our case containers. Instead of manually distributing workloads (containers) on a cluster, a clustering tool that
will decide where to start jobs (containers), how to store them, when to eventually restart them. The operator needs to only
configure some behaviors, decide the cluster topology and size, tune settings, and enable or disable advanced features. Swarm
can monitor the availability and resources usage of nodes using a swarm Master (manager). A Docker Swarm is a gathering
of servers (physical or, for my situation, virtual) that are organized as a network and arranged to act as a single unit. Docker
manages the network between servers in the swarm in a straight forwardly way, so it can have a multi-container application
with the primary segments on one server, the database on another, the Redis cache on a third party, and so on. On the off chance
that Docker sees a server disconnect, regardless of whether arranged or not, it will quickly move the containers from the failed
server to those that are as yet dynamic, guaranteeing high accessibility of its services.

At the point when the Docker engine works in swarm mode, the administrator nodes execute the raft consensus algorithm
to deal with the status of the global cluster.Themost important part of the swarm are its remote APIs; it is 100% compatible with
all versions of the Docker engine. This layer should allow for sharing resources, scheduling tasks and treating many processes
in execution as a unified, scalable and well-behaved solution in all workloads. Swarm consequently attempts to recoup when
containers or nodes crashed. Docker Swarm allows you to scale container applications by operating them in any number of
instances on any number of nodes in your network. One of the most thing that Docker Swarm solve is orchestration.

2.3 Orchestration

Container Orchestration refers to the automated arrangement, coordination, and management of software containers. It can
manage a large collection of container easily, that allows deploying Docker containers on clusters and automate the container
life cycle. The Master’s goal is to increase the utilization of the available resources. Systems manager through orchestration
can perform infrastructure-related functions such as scale-up a running cluster, replacing a service or, fetch user application
code from remote repository. Scheduling is a key component of container orchestration, and helped maximize the workload’s
availability, whilst making maximum use of the resources available for those workloads. Automated scheduling removes the
need for manual deployment of services, which would otherwise be an onerous task, especially when those services require
scaling up and down horizontally. Load Balancing used to distribute traffic evenly across the tasks in your service to prevent
these failures. Nodes can take one of the following values of policies:

• Active: enables HA for instances and enable automatically restarting the VM if it stops unexpectedly due to one of these
cause node power outage, node network failure and hypervisor failing for any reason.

• Monitor: monitors the state of the instance and notifies administrators if the instance stops, fails, or becomes unreachable.

3 Proposed simulation
This paper aims to measure the performance of docker swarm technology in virtual labs. For achieving our purpose, the
proposed virtual labs are built according to the frame-work in Figure 1.
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Fig 1.The frame-work of building virtual labs

This simulation depends on Linux OS, VirtualBox, Docker Swarm, Nginx, and Redis tools. This virtual laboratory is
developed as a group of four system machines (VMs) on the same host computer as a cluster. Nevertheless, the corresponding
laboratory can be performed in any of the Docker-compatible clouds by replacing the name of the controller to the name of
the desired cloud (27). A service could be a high-level concept relating to a collection of jobs to be implemented by workers.
Services are deployed in a Docker, once the container is started or stopped for this selected service, they can be scaled or even
replaced. The easiest way to implement an application service is to run it on a single server, similar to how you would run your
development environment. If you want to expand your application, you can run Compose applications in a Swarm cluster.

In our simulation, VirtualBox be used as environment otherwise theDocker supported various clouds by replacing the driver
name to the desired cloud according to some types like Digital Ocean, Amazon Web Services, Microsoft Azure, Google Cloud
Platform and IBM Cloud. Docker-compose is a file following the YAML data standard and it defines a number of services run
by Docker Swarm. Each service is based on an image, which in this case corresponds to the application images. Each service
has a number of properties that can be specified through the compose file, such as environment variables, container replicas,
volumes, constraints and networks (28,29).

First, to create a machine by installing a Docker-machine. For creating a Swarm cluster of nodes, Fist of all using Docker-
machine that enabled creating many machines. To begin, four Docker hosts with Docker-Machine must be created. Docker-
Machine automates these steps with one command instead of manually creating a Linux VM, generating and uploading
certificates, and logging into it via SSH, and installing and configuring the Docker Daemon. The first step is to create a Docker
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Swarm Manager through specific IP of specific machine which belongs to the Master node, which can be used as a discovery
token. As running many Docker-machines for various projects, we might face problems cause of the dynamic assignments
of IPs on startup. For Creating a Docker-Machine with a fixed IP, we must use this command ”ifconfig eth1 192.168.99.100
netmask 255.255.255.0 broadcast 192.168.99.255 up” | docker-machine sshManager sudo tee /var/lib/boot2docker/bootsync.sh
> /dev/null. We must stop and start the Machine, then regenerate-certs of each machine. The token was generated by using the
Docker hub registry. It enabled us to connect all the nodes within the Swarm cluster by adding this token to other machines
(slave nodes), which determined as worker node otherwise manager node. Docker Swarm is made up of one swarm master
node and any number of slave nodes. To make the environment fully functional, the standard Nginx image will be run. It is a
server officially available from the Docker hub registry. The Nginx exposed our service on port 80. The Redis image can also be
run in a Docker cluster working as a DB with the same steps as Nginx.

We can specify the number of containers (or instances) to launch. This is specified via the replicas parameter. Nodes may be
active, drained and paused. When the node is active, it is ready to accept tasks from the Master Node. Now, the virtual lab is
ready with 4 different IP machines running the services. An application, no matter how good its user interface, will not claim
market share if its response time is slow. That’s why we spend so much time improving the performance and scalability of an
application as its user base grows.

4 Results
For the purpose of managing and tracking the virtual labs, the “portainer” management soft-ware is used. Portainer is a
lightweightmanagement simpleUser Interface (UI), especially for Dockers visualization. Portainer is considered a simple single
container. It is compatible with the Docker engine or even Docker swarm mode that can run on any one of them. The interface
of portainer is a web service that builds visually and represents metric graphs based on time-series databases. A collection of
predefined dashboards contains graphs on particular endpoints. It displays only the existing information about nodes, disks,
interfaces, and so on; according to a particular time frame. In our experiments, Portainer is used for debugging containers
and management not only Docker hosts but also swarm cluster (30). The characteristics of the experimental environment are
described below in Table 1.

Table 1. Experimental environment characteristics
Items Characteristics
Processor Intel(R) Core(TM) i3-2328M CPU @ 2.20GHz
Number of CPU, threads/core, cores /socket 4, 2, 2
RAM 6GB @1600MHz
Disk (file system type) ATA DISK HDD 480GB (ext4)
Platforms Ubuntu 18.04 , VirtualBox Graphical User Interface

Version 5.2.34, Docker v 1.18.3
Monitoring tools Grafana 5.1, Prometheus 2.2.1, cAdvisor 0.29.0

The performance metrics of service that installed in the virtual cluster lab were measured by using three open-source
performance tools Grafana, Prometheus, and cAdvisor. Grafana is open-source software that visualizes and analytics data
stored. Through query, visualize, alert on, and explore the metrics no matter where are stored. Prometheus is an open-source
systemmonitoring and alerting toolkit that enables cAdvisor extracting the data sampled every 30 seconds. cAdvisor (Container
Advisor) is a daemon that runs for every container, saves resource isolation parameters, extracts histograms for historical
resource usage, and network statistics (31,32). The CPU utilization, Memory Usage and Network transmission rate are our main
evaluation metrics for measuring virtual lab performance. Figure 2 shows the CPU utilization for all nodes, container and the
installed services. The results show the efficacy of docker swarm since only 13% CPU usage is required for nodes and 2% for
Container. The memory usages are shown in Figure 3, where only 101MB are required for running single node and 2MB for
running service. Finally, the network transmission rates are shown in Figure 4 where the maximum transmission rate was 941
Bps. The use of CPU usages is simple comparing with virtualization technique and memory usage also. It is can be concluded
that the performance of Dockers swarm is very motivational and recommended for the field of E-learning in building virtual
labs. The performance measurements metrics of container displayed how is a lightweight compared with virtualization and
saves the resources utilized as possible. Finally, a scientific comparison between a virtual machine (Hypervisor) and Docker
(Container) are described below in Table 2 in terms of security, speed, OS and etc.
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Fig 2. CPU utilization of simulated environment

Fig 3.Memory usage of simulated environment
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Fig 4.Network transmission rates of installed services

Table 2.Major differences between hypervisor and container.
Hypervisor (Virtual Machine) Container (Docker)

OS Needs an Hypervisor and a full OS inside Talks to the host kernel
Foot-Print Bigger Footprint (RAM and Storage space Smaller Footprint (No RAM and differential storage
Storage Space VMs consumes storage space for each instance Consumes very less space
Weight Heavier Lightweight
Startup time It is in the order of minutes It is in the order of seconds
Deployment Deployment is tough Easy Deployment with minimal requirements
Speed Slower Faster
Security Security issues of running OS Security issues limited to Applications

5 Conclusion and Future work
With the outbreak of COVID-19, The E-learning has played a major role for combating this paradigm. This study contributes
in building a virtual laboratory for the distributed software development process on various clouds using docker swarm. It aims
to measure the potential performance of docker swarm for building virtual labs. This virtual Labs tools was based on Docker
Swarm, VirtualBox, Linux OS, Nginx, and Redis. The significant restriction of virtualization innovation is bottlenecks in I/O
serious applications. The experimental results explained that the container-based virtualization system has better CPU and
I/O performance on account of its capacity to discharge utilized unused and assets and work in isolation. Occasionally, Docker
supported by Portainer as a simple UI and it can visualize the commands of the Swarm cluster environment.This simulation can
help students through learning and instructor to keep tracing the tasks that the students do. Although, in many big companies
managers can also follow the progress of distributed tasks.The enhancements are applied to choose themost effective criteria to
achieve and improve the performance and velocity of DevOps. Docker swarm only require 300MB and 13%CPU utilization for
running virtual lab, which is very wealthy in terms of minimizing resource utilization. Since containerization is an important
issue for gaining the best achievements in enterprises, the future work will focus on enhancing the performance used criteria
of microservices and serverless applications.
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