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Abstract
Background/Objectives: Being dynamic in nature, Mobile Ad-hoc Network
(MANET) requires robust resource allocation strategy that can ensure both
optimal transmission reliability and resource efficiency to meet Quality of
Service (QoS) demands. The objective of this research is to address interference
resilience requirement in MANETs which is must due to greedy nature of
nodes especially when accessing resource or bandwidth and develop a highly
robust stochastic prediction based resource allocation strategy. Methods:
The proposed Interference Resilient Stochastic Prediction based Dynamic
Resource Allocation model for Cognitive MANET (ISP-DRACM) intends to
enable optimal resource allocation under interweave and underlay network
setup with instantaneous as well as average interference conditions. It
employs a joint power management and resource allocation strategy where
it intends to maximize the weighted sum-rate of the secondary users under
certain defined conditions like average power and stochastic interference
level. Findings/Novelty: Inculcating resource allocation problem as controlled
Markov Decision Process using Hidden Markov Model (HMM) and Lagrange
relaxation, our proposed model achieves better resource allocation under
limited noise or interference condition and hence achieves both cost-
effectiveness as well as QoS provision. This method has exhibited satisfactory
performance towards spectrum allocation to the secondary users without
imposing any significant interference for both interweave as well as underlay
Cognitive Radio setup.
Keywords: Cognitive mobile ad-hoc network; stochastic prediction;
interference resilience; channel state information; dynamic resource
allocation; underlay and overlay cognitive MANET

https://www.indjst.org/ 4332

https://doi.org/10.17485/IJST/v13i41.687
https://doi.org/10.17485/IJST/v13i41.687
https://doi.org/10.17485/IJST/v13i41.687
shashiraj18@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Shashi Raj et al. / Indian Journal of Science and Technology 2020;13(41):4332–4350

1 Introduction
In the last few years, the use of MANETs has increased significantly due to its adaptability towards mobile-communication,
low-latency routing decision ability and operating characteristics within unlicensed spectrum bands. In major wireless
communication systems, enabling resource efficiency, especially radio spectrum has always been a driving force to develop
resource-efficient routing mechanism. However, the existing unlicensed spectrum is getting overcrowded day by day, thus
violating QoS delivery over the network. To alleviate such issues the concept of Cognitive Radio Network (CRN) is foundmore
viable that can enableDynamic SpectrumAccess (DSA) over dense anddynamicmobile-network conditions. CRNcanplay vital
role to alleviate the issue of spectrum scarcity by sharing available resource amongst participating mobile nodes. CRN supports
resource sharing amongst connected nodes where nodes containing both Primary User(PU)s as well as Secondary User(SU)s
intend to access the underutilized resources concurrently in opportunistic manner and make spectrum heavily crowded. It
makes CRN to undergo interference causing QoS violation to the PUs in MANET. It can cause uncontrollable interference
causing packet drop and exceedingly high energy-exhaustion inMANETs. Hence, enabling optimal resource access and energy-
efficient routing is must to retain maximum data transmission with minimum interference and drop probability (1). It can be
achieved by timely spectrum sensing, resource allocation and transmission. The under-utilization of the resources (spectrum
bandwidth) being one of the gaps asmany users are not taking this into consideration, thus saving the energy cost and increasing
the reliability. Nodes in CRNs sense the availability of licensed spectrum or allied channels with PUs and performs resource
scheduling to access the idle spectrum when needed (1–4).

However, it has always been a challenge to enable energy efficiency when sensing idle spectrum across available licensed
channels and transmit certain fixed amount of data over them, which can even become more difficult for MANETs which are
highly dynamic in topology. Though, a few efforts have been made to enhance QoS in CRN based WSNs, where authors have
either focused on minimizing transmission delay (1–3) or by maximizing network capacity (3,4), not much significant effort are
visible towardsMANET.Authors even tried improving energy-efficiency by enhancing spectrum sensing and switching control;
however, the energy-efficiency can be achieved by assuring minimum energy exhaustion for transmitting certain fixed amount
of data while performing sensing and dynamic resource allocation over unlicensed channels. Practically, it is a tedious task, as
it primarily depends on varied factors such as the data loss rate pertaining to the license-free channel, interference resilience to
the PUs etc.

Though, a number of researches have been done towards energy-efficiency MANETs; however majority of the existing
approaches either focus on reducing active sensing nodes to reduce energy exhaustion or improve routing paradigm. Under
dynamic network condition, the lack of active sensing nodesmight force network to undergo delayedChannel State Information
(CSI) estimation or even outdated CSI estimation. The improper functional characteristics or greedy resource access nature
which is common in CRNs, it might cause significantly high interference to the PUs impacting their QoS provision. A few
researches have tried to enhance resource access and transmission efficiency by means of a power and channel scheduling, it
could not address interference and resulting QoS violation introduced by SUs on PUs. Though, a number of researches have
been done towards energy-efficiency MANETs; however majority of the existing approaches either focus on reducing active
sensing nodes to reduce energy exhaustion or improve routing paradigm or could be considered as another major research gap
which is imbibed as one of our objectives of the research work proposed.

Considering such limitations and gaps which are mentioned in the previous paragraph, in this study, a robust and efficient
stochastic resource allocation model is developed for MANETs that intends maintaining optimal resource access to SU, while
maintaining interference (caused by SU) below a specified threshold. The main advantage of the proposed work being filling
up of the gaps mentioned in the previous paragraphs and proposition of new model to produce efficient results in comparison
with the work done by the earlier researchers. The proposed resource allocation model is designed as a resource allocation
problem as controlled Markov Decision Process using Hidden Markov Model (HMM) and Lagrange relaxation; our proposed
ISP-DRACM model achieves better resource allocation under limited noise or interference condition and hence achieves
both cost-effectiveness as well as QoS provision. Realizing dynamic nature of MANET and different operating environment,
the proposed resource allocation has been assessed for Interweave (also called Overlay) and Underlay setup, where resource
allocation has been performed under instantaneous as well as averaged interference conditions. The overall proposed model
has been developed and simulated using MATLAB 2019b tool and the performance has been assessed in terms of resource
allocation and power transmission scheduling.

1.1 Previously reported work

In (5) proposed an energy efficient cluster head selection approach which achieves energy-efficient clustering while considering
the dynamic channel access nature of CR Sensor Networks. In (6) focused on the user association problem in cognitive
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heterogeneous networks. In (7) focused on achieving energy efficient cooperative CRN. For network dynamism, in (8) proposed
stochastic prediction like HMM where they applied user’s power and resource consumption dynamics to predict future
demands for resource scheduling. In (9) applied Bayesian andQ learning, a reinforcement learning to predict resource allocation.
Undeniably, reinforcement learning has played vital role in contemporary network solutions, lack of dynamics-centric or
unknown network condition, which is common in MANETs. In (10) examined efficacy of cooperative and non-cooperative
sensingmethods for resource allocation. In (11) proposed spectrum sensing and secondary data transmission rate based resource
allocation. In (12) focused on transmit power scheduling for better spectrum sensing and access control by SUs.

In (13) proposed an iterative resource allocation concept using Dinkelbach method with Hungarian approach; though its
efficiency over dynamic network like MANET remains confined. Das et al. (14) tried to reduce SU sensing unit to minimize
energy consumption. Considering interference probability in cognitive resource access or opportunistic resource access
condition, in (15) focused on energy-efficient spectrum access while assuring interference-resilience to the PUs. In (16) developed
Hybrid Radio Rendezvous (HRR) protocol for Clustered-CRN by estimating upper bound on the Maximum TTR (MTTR) to
perform HRR for energy-efficient sensing; however bandwidth allocation could not be addressed. In (17) focused on improving
sensing period to reduce power consumption of SUs. In (18) applied game-theoretic model to support PUs and SUs ability to
tune their transmission power and frequencies, simultaneously. A Stackelberg game concept was designed to enable hierarchical
spectrum access, though it lacked contributing efficient resource allocation paradigm. Li et al. (19) designed a smart Relaying
Opportunistic Spectrum Sharing (ROSS) model to improve energy-efficiency of both PUs and SUs.

Energy Awareness Optimal Relay Selection (EAORS) was proposed by Yang et al. (20) using weighted objective function that
reduced relay node so as to preserve energy. To achieve energy-efficiency in (21) focused on controlling transmitting power of
CR nodes. In (22) used ratio of the spectral efficiency to the total energy consumption during signal transmission and spectrum
sensing to schedule transmission. In (23) developed ECR-MAC that enabled SUs to detect and access the unused frequency
spectrum. In (24) performed cooperative spectrum sensing and data transmission for selected SUs while maintaining minimum
interference to the PUs. A similar effort wasmade by Kozal et al. (25) who appliedmulti-hop cluster-based cooperative spectrum
sensing scheme to help SU for using idle spectrum without imposing interference to the PU(s). In (26) proposed clustered-CRN
in mobile CR Ad-hoc network.

In (27) designed a cross layer resource allocation model for multi-hop CRN under undefined transmission gain and PU’s
presence in network. Authors exploited channel statistics and mapping information to identify PU and its resource demand,
based onwhich the resource allocation schedulingwas performed.The authors (28) used Bayesianmodel that exploiting network
information to perform sensing and stochastic allocation; however could not address noise and interference caused during
resource access by SU. In (29) designed a cross-layer model based resource allocation model for CRNs. Authors at first obtained
the correlation between primary receiver interference levels and energy bounds of the SUs, so as to help retaining QoS to the
PUs. In (30) focused on enhancing resource allocation while maintaining reduced transmission power and collision probability
on PUs.

2 Problem formulation
This is the matter of fact that energy-efficiency and QoS provision (reliability, timely transmission, resource efficiency, etc)
have always been the predominant need of any wireless communication systems. However, high pace rising demands of the
QoS/QoE communication under diverse network condition possessing high mobility, heterogeneous network conditions and
greedy resource access nature limitmajority of the conventional routing approaches or protocols. On the other hand, bandwidth
or resource being a constrained factor requires optimal resource-access, control and allocation strategy to meet user demands
so as to continue communication. Noticeably, radio allocation has always been the challenge for industries due to non-linear
demand patterns, energy-exhaustive scenario, competitive transmission nature and therefore it requires an optimal resource-
allocation strategy. Undeniably, the resource allocation model must ensure both energy-efficiency as well as QoS provision to
the users. Towards optimal resource utilization or allocation, in the last few years Cognitive Radio (CR) technology has gained
widespread attention that intends to maximize resource utilization across the network amongst licensed users (say, PUs) and
unlicensed users (say, SUs). As application specific purposes CRhas given rise to a newnetworking paradigmwhere it comprises
cooperatively functional PUs and SUs and SU intends to use unused resources to ensure optimal utilization.

Majority of existingworks focusmainly onCRbased sensor networks, which is hypothesized to be low in topological changes
and network dynamism.On contrary,MANET as name reveals undergoes significantly highmobility and hence has exceedingly
high non-linearity in resource utilization or demand patterns. In such case CR requires to be well versed to deal with dynamic
topology and resource demands. On the other hand, CRN based MANETs requires maintaining optimal balance between
sensing, resource access, transmission scheduling and allocation efficiency. Merely, reducing active nodes or MAC scheduling
cannot yield optimal performance until strengthening the resource allocation policy with interference resilient-transmission
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control. In other words, scheduling resource allocation can be done better provided it allocates or schedules transmission while
ensuring that the noise or interference caused by SUs on PU(s) will be significantly low so that QoS or QoE could not be
affected. CRN based MANETs require maintaining energy-efficient and interference resilience to both PUs as well as SUs for
QoS communication. Additionally, CR-based MANET (here onwards we call it as CRN) might function as both interweave as
well as underlay which has different flexibility and operating principles towards opportunistic sensing and resource allocation
to the SUs. Noticeably, in underlay CRN environment SUs are allowed to access and transmit their data opportunistically as
long as it maintains interference to a defined level. On the other hand, in interweave CRN states a coexisting communication
culture where SUs are required to maintain their interference level to a predefined threshold. In addition, in interweave SUs can
access the spectrum which is left unused or under-utilized. However, in both these CRN environment, the transmission by SUs
might impose interference to the PUs and hence can degrade QoS provision.

Considering above stated issues, in this paper we emphasized on developing a robust stochastic prediction assisted resource
allocation strategy for CR based MANET or CRN under different network setup like interweave and underlay. Unlike classical
researches, in the proposed resource allocation method the emphasis is made on enhancing power transmission scheduling
and resource allocation while capping interference below a level. This approach is hypothesized to enable optimal resource
allocation with negligible interference and hence better QoS delivery. In this paper a novel and robust Interference and
Noise Resilient Stochastic Prediction based Dynamic Resource Allocation model for Cognitive MANET (ISP-DRACM) is
developed to ensure optimal resource allocation under underlay as well as interweave network setup. ISP-DRACM intends
to enable optimal resource allocation under interweave and underlay network setup with instantaneous as well as average
interference conditions. ISP-DRACM employs a joint power management and resource allocation strategy where it intends
to maximize weighted sum-rate of the SUs under certain defined conditions like average power and stochastic interference
level. As probabilistic interference condition, ISP-DRACM intends to perform resource allocation under both instantaneous as
well as averaged interference conditions. Inculcating resource allocation problem as controlled Markov Decision Process using
HMM and Lagrange relaxation, our proposed ISP-DRACM model achieves better resource allocation under limited noise or
interference condition.Theproposedmodel has been designed for both interweave aswell as underlayCRN setups. Considering
working culture of both interweave and underlay CRNs, the resource allocation strategies have been examined under short-
term as well as long-term interference constraints. In CRN there can be dynamic resource demands and opportunistic resource
access activity and hence the assessment of both short-term (say, instantaneous) interference as well as long-term (say, average)
interference can make proposed system robust to handle or deal with any dynamic conditions.

3 Systemmodel
This section primarily discusses the proposed ISP-DRACM model for dynamic resource allocation in CR based MANETs.
Before discussing the proposed model, a brief of CRN applied is given as follows.

Consider that the CRN under study be the MANET with unlicensed secondary user (SUs) who intends to transmit its
data using available spectrum opportunistically over K spectrum or channels. We hypothesize that each spectrum or channel
has the similar bandwidth and belongs to or connected to the different licensed PUs. Let the considered CR based MANET be
possessing a CRN network controller (NC) especially designed to operate for gathering CSI and associated dynamic parameters
to make resource and interference adaptive spectrum allocation decision, while ensuring minimum packet loss, retransmission
probability, energy exhaustion and QoS violation. Functionally, NC intends to collect dynamic CSI information to make
adaptive resource allocation scheduling. A snippet of the CSI model considered in ISP-DRACM is given in subsequent section.

3.1 Channel state information estimation

The CSI incorporated in our dynamic spectrum sensing and allocation strategy contains the details pertaining to the channel
statistics. In ISP-DRACM, CSI is accessible to each node or users, where the CSI can be heterogeneous in nature, which is
different for PUs and requesting SUs. It makes CSI estimation highly intricate for NC. We considered CSI heterogeneity due
to two key reasons, first that the CSI accessibility for the links pertaining to PUs or SUs is different and second that the CSI
can have decisive impact on resource allocation strategies. CSI for SUs (say, CR-to-CR) data transmission link can be called as
static and often known (say, perfectly known). In other words, in case of CR-to-CR communication (to be noted, here CR says a
participating MANET’s node or sensor node requesting resource access from the PU), at each time slot, the instantaneous gain
of the SUs can be obtained deterministically. Consider that at certain instant n the instantaneous power gain of the channel in
between the mth SU transmitter and the intended receiver over the k th spectrum be hm

k,2 [n]. Noticeably, in hm
k,2 [n] the subscript

“2” signifies the channel pertaining to the secondary transceiver and therefore the PUs transmitting respective data are placed
at long distance from the SUs. Additionally, hm

k,2 [n] signifies the squared weight of the instantaneous fading coefficient divided
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by the noise power of the k-th spectrum.
In other words, hm

k,2 [n] signifies the squared magnitude of the instantaneous fading coefficient divided by the weight sum
of the noise power along with the instantaneous interference caused by the k-th PU primary transmitter in CRN. Considering
CSI of PUs in CRN it can’t be often considered perfectly known, i.e., the radio-bands pertaining to the licensed users in CRN
can’t be sensed concurrently at each instant. Consequently, it makes CSI unknown for PUs in CRN. The CSI often used to be
probabilistic in nature and varies over time. Typically, such hypotheses are viable especially when the sensing cost of the PUs is
too high, such as power exhaustion in comparison to the sensing cost for the state of CR links. In ISP-DRACM, CSI information
was collected by NC from PUs under different network conditions like noise level and interference. CRN operate under two
predominant network setup conditions, interweave and underlay. Unlike major conventional researches where authors have
merely considered conventional random interference, ISP-DRACM considers both interweave as well as underlay conditions,
which provides different level of resource access environment for SUs. Realizing CRN network dynamism, we considered both
perfect and imperfect primary CSI information for both interweave as well as underlay network. The brief of primary CSI
estimation under interweave setup is given as follows:

3.1.1 Primary CSI in interweave CRNs
In interweave setup NC needs the information whether each of the radio-band is occupied or is being used. In addition, it
estimates up to what extent it is being used. To achieve it, we introduced a Boolean constructs ak signifying the spectrum
pattern of the PU in conjunction with the k-th spectrum band. Now, ak [n] can be the unit value (i.e.,ak [n] = 1) only when the
PU is active at instant n, else PU is stated to be idle or not using any resource. In ISP-DRACM, we applied a 2×1 matrix called
belief factor, defined as (1).

fak [n] := [Pr{ak[n] = 0} ,Pr{ak[n] = 1}]T (1)

The derived belief factor (1) can be hypothesized to be existing when the probability mass of ak (n] relies on the network
history up ton instances. Being stochastic prediction based resource allocation strategy; ISP-DRACMobtains belief vector (1) in
advance to make optimal resource allocation decision. Let, sk [n] states the Boolean variable signifying unit value (i.e.,sk [n] = 1)
when the k-th spectrum band has been sensed at n. On contrary, if a spectrum band k is not sensed sk [n] = 0. Similarly, let v

ak [n]
be the estimated sensed outcome for ak [n] at nth instant (i.e.,sk [n] = 1).Thus, with above conditions, we obtained CSI including
the outdated CSI when sk [n] = 0) and probable noisy CSI due to error imposed during sensing and hence, ak [n] ̸=

v
ak [n].

To enable optimal and energy efficient resource allocation, it is must to avoid outdated CSI information and “gather and
exploit” dynamic CSI information of ak [n] during CRN network lifetime. To achieve dynamic information, in ISP-DRACM
model we applied the concept of controlled MDP, where we defined Transition Probability Matrix (TPM) Q possessing (i, j)th
activity entry. Mathematically, we define TPM as (2).

Qi j := Pr{ak[n] = i} | Pr{ak[n−1] = j} (2)

where i, j = 0, 1.
Majority of the classical radio sensing methods have not considered any error probability, which can’t be generalized under

dynamic conditions of CR based MANETs or CRN. Hence, to alleviate the issue of the sensing error, we considered a factor
called the likelihood of miss detectionPMD := {ak[n] = 0} | {ak[n] = 1}. Additionally, we define a term called the likelihood of
false alarm bePFA := {ak[n] = 1} | {ak[n] = 1}. Applying PMD and PFA values, we generate 2×1 matrix, given as follows:

q1 := [1−PFA,PMD]
T and

q1 := [PFA,1−PMD]
T (3)

The CSI values obtained signifies the estimated states of a HMMwhere we have applied a Recursive Bayesian EstimationModel
(RBEM) to estimate the instantaneous belief factor (1). Here, we update fak [n] using the following conditions.

• If sk [n] = 0, then fak [n] = Q fak [n−1].
• If sk[n] = 1 and

v
ak[n] = 0, then obtain the belief vector as fv

ak
[n] := fak [n−1]; for v

ak [n] = 1, correct fv
ak
[n] using Bayes’

rule. Here, we use (4) to update fv
ak
[n].

[
fak [n−1]

]
l =
(
[q0]l

[
fv
ak
[n]
]

l

)
/qT

0 fv
ak
[n] (4)
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• If sk [n] = 1 and v
ak [n] = 1,

fak [n]
]

l =
(
[q1]l

[
fv
ak
[n]
]

l

)
/qT

1 fv
ak
[n] (5)

To be noted, the above derived model is similar to the RBEMs, like Kalman filter based prediction-correction. However,
considering dynamic resource allocation scenario inmobile network likeMANET, the conventional approaches seems confined.
It becomes even more significant when the radio spectrum sensing error varies, and transition matrix Q becomes unknown.
Let, τk be the time consumed during two consecutive alterations ak [n]. In such case, to estimate τk, even the heavy-tailed
distribution concept can be applied. Practically, with dynamic CRN, ak [n] can no longer be retained Markovian and hence (4)-
(5) can’t be universal and thereforewe defined a jointmodel {ak [n] , tk [n]}, where tk [n] is obtained as the time consumed since the
previous ak [n] changed. We formulated ISP-DRACM as a Markovian which has helped applying RBEM for CSI estimation and
allied prediction. Obtaining the dynamic CSI information under interweave setup, we performed dynamic resource allocation,
without imposing additional sensing and allied energy exhaustion conditions.

3.1.2 Primary CSI in underlay CRN
In case of Underlay setup, NC needs knowing the channel gains of SU to the PU channels, where it is expected that the SU
might use available resource at PU, provided its interference level remains lower than a defined threshold to preserve QoS for
PUs. Here, the CSI involved encompasses the values of the instant squared fading coefficient between the mth SU and the kth
PU, divided by the noise power.We define CSI under overlay as hm

k,1, where subscript “1” signifies that the link contains primary
receivers or PUs. For interweave CRN, hm

k,2 signifies the interference power, while the CSI over underlay hm
k,1doesn’t consider

interference power. This is because we consider power of interference by PU as state variable. On contrary the same for SU is
considered as design variable and with known CSI, hm

k,1 [n] can be obtained deterministically for any time instant n. In case of

imperfections in detection or CSI hm
k,1 [n], the belief factor is derived as the composition of CDF Fhm

k,1[n]
(h) and PDF

v
h

m

k,1 values.
For underlay CRN, with CSI imperfections the belief vector (1) is obtained as per following approach.

Let, sm
k [n] = 1, when CSI hm

k,1 is sensed at nth time instant and sm
k [n] = 0, when the channel is not sensed. Considering

v
h

m

k,1 to
be estimated value for hm

k,1 [n], it signifies sm
k [n] = 1. In such case similar to the interweave CRNs, there can be two predominant

kinds of imperfections; first the outdated CSI (when sm
k [n] = 0); and second noisy CSI, which could be caused due to the errors

during sensing. In ISP-DRACM, we considered the time evolution of the CSI hm
k,1 [n] as Markovian possessing qm

k (hnew,hold) as
the likelihood of having hm

k,1 [n+1] = hnew under the condition of hm
k,1 [n] = hold . Again, let f m

k (h,n) be the PDF of f m
k (h,n) = h,

we believe that

f m
k (h,n+1) =

∫
∀x qm

k (h,x) f m
k (x,n)dx (6)

Considering sensing error issue we hypothesized to have memory less additive noise model given as (7).

v
h

m

k,1 [n] = hm
k,1 [n]+ vm

k [n] (7)

where, the second term vm
k [n] signifies the white noise with known PDF and fvm

k (v]
independent of CSI hm

k,1 [n]. Thus, with all
noise andCSI conditions, we appliedHMM that helped obtaining the belief factorFhm

k,1[n]
(h) using RBEM. To implement RBEM

based HMM we apply the following method:
Forsm

k [n] = 0, obtaining the belief factor Fhm
k [n+1] (h) =

∫
∀x qm

k (h,x) f hm
k [n] (x)dx and using the next instant CSI information

v
h

m

k (n+1] to alleviate sensing error, we applied Bayes’ rule (8).

fh[n+1] (h) =

v
f h

m

k [n+1] (h) f vm
k

[
h−

v
h
]

∫
∀x

v
f hm

k [n+1] (x) f vm
k (x−

v
h)dx

(8)

Since, the number of unobserved HMM can be indefinite the denominator of (8) can be presented as an integral. To obtain
CSI under different CRN conditions, we applied different NCs, especially for PUs and SUs. Noticeably, the secondary CSI
states inter-SUs or CR-to-CR (inter-node) link gains, that states the primary interference. Primary CSI is obtained either by the
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PUs activity vector alone in interweave network. On contrary, for underlay CRN, it is obtained by CR-to-PU a channel gain
that doesn’t consider secondary interference. Here, the secondary CSI is hypothesized to be perfectly known and hence the
information pertaining to the instantaneous realization is deterministic in nature. Here, Primary CSI is stated to be uncertain,
so that the belief state for the instantaneous realization could be probabilistic in nature.

3.2 Channel state information estimation
With the resource allocation model and allied variables be the function of h, the total CSI, we introduced a Boolean scheduling
factorwm

k assigned with 1 only when them−th SU is permitted to transmit its data over the k−th spectrum band, else is updated
with 0 (i.e., wm

k = 0). For wm
k = 1, we estimated the instantaneous power transmitted by m−th SU over kth channel as pm

k .
ConsideringQoS centric and reliable transmissionwith Bit Error Rate (BER) constraints, we coupled pm

k aswell as instantaneous
rate and estimate a “Rate-Power Coupling Function (RPCF) Cm

k

(
hm

k,2, pm
k

)
. Noticeably, we assume that Cm

k

(
hm

k,2, pm
k

)
can be

presented using Shannon’s capacity formula log(1hm
k,2,

2pm
k

km
k
), where km

k signifies SNR-difference. For those systems applying
Adaptive Modulation and Coding (AMC) for power transmission scheduling, the formula can be replaced with a piecewise
linear function using the rates obtained through AMCmodes.The SU or allied network functions in block-by-block approach,
where the duration of each block signifies the coherence time of the respective fading channel. In this manner, NC estimates
CSI per slot h and obtains the value of wm

k and pm
k . Being time-dependent CSI h to varies per slot and therefore

{
wm

k , pm
k

}
as

well depend on CSI h. Thus,
{

wm
k , pm

k

}
too vary over time. In ISP-DRACM, wm

k (h) and pm
k (h) has been replaced by [n], wm

k [n],
and pm

k [n], to predict resource allocation stochastically. To implement it overMANET, we focus on employing adaptive resource
allocation leveraging the instantaneous secondary CSI and the uncertain primary CSI. It is accomplished by identifying which
SUmust be transmitting data per band, andwith what rate and permissible interference (power) level. Unlike classical methods,
we intend to optimize resource allocation to the SU in reference to the dynamic network conditions like interference, power
etc.

3.3 Resource allocation in CRN: An optimal reference model
Unlike classical resource allocation models, in ISP-DRACMwe intended to apply different constructs like network dynamism,
network parameters under different interference conditions, CSI information etc. that eventually strengthens it to enable QoS
centric and power efficient resource allocation strategy. To achieve it, we formulated overall resource allocation problem
by identifying optimal variables, optimization metrics and operations conditions or constrains to be meet. We considered
{wm

k , pm
k } as optimization variable while the weighted sum-average rate (9), is considered as optimization metrics.

−
C := ∑k,m Eh

[
β mwm

k (h)C
m
k

(
hm

k,2, pm
k (h)

)]
(9)

In (9),Eh signifies expectation throughout the CSI realizations, while β m > 0 presents a priority factor that depends on user’s
specific needs. Noticeably, the priority factor helps scheduling resources to the requesting SUs. In ISP-DRACM, we hypothesize
that only the rate of SU’s channel pair with wm

k (h) = 1 can perform resource access and transmission. To perform optimization,
pm

k must always be non-negative, while wm
k belong to the set {0, 1}.A SU can transmit over each band k, provided it fulfills the

following condition.

∑k wm
k (h)≤ 1, ∀k (10)

A SU fulfilling the condition ∑k wm
k (h) = 1, only can access the resource else can’t access it. This is because violating above

equationmight impose interference and can impactQoSprovision to thePUs.Under such condition,we schedule SU to transmit
data at the highest average (log-term) power of (11).

Eh
[
∑k wm

k (h) pm
k (h)

]
≤ v

p
m
,∀m (11)

Under such circumstances the optimal resource allocation can be performed by achieving the solution for the problem
mentioned in (12).

−
C∗ := max

wm
k (h)pm

k (h)
∑k,m Eh

[
β mwm

k (h)C
m
k

(
hm

k,2, pm
k (h)

)]
(12)

Before discussing the resource allocation under interference a brief of the optimal resource allocation without interference is
given in the sub-sequent section.
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3.4 Resource allocation in CRN

Before discussing resource allocation problem under interference, a brief of the resource allocation model without interference
is discussed in this section. As depicted in (12), even if it depicts a non-convexity problem, it can be solved or relaxed to an
equivalent convex problem using Karush-Kuhn-Tucker (KKT) conditions. The derived model (12) signifies a weighted sum-
rate optimization problem for a channel, where πm states the Lagrange relaxation parameter which is associated to the key
parameters or constraints as derived in (11). Thus, the solution for this problem can be give as follows:

φm
k

(
pm

k [n]
)

:= β mCm
k

(
hm

k,2 [n] , pm
k [n]

)
−πm[n]pm

k [n] (13)

pm∗
k [n] :=

[
argmax

pm
k (n]

φm
k

(
pm

k [n]
)]∞

0

(14)

=

[
β m

πm[n]
−

pm
k

km
k,2

]∞

0

(15)

wm∗
k [n] := 1{(

m=argmax
l

φ l
k((pl∗

k [n]
)
)̂φm

k (pm∗
k [n])>0

}
(16)

Observing above expressions, it can be found that φm
k (.) as derived in (13) can be vital to solve or provide solution for (12).

Here, we consider (13) as a factor signifying user’s “Quality” where the transmission rate is considered as “Reward”. Noticeably,
in ISP-DRACM cost signifies transmission power where β m and πm[n] would be corresponding prices. Here, φm

k (x)states the
results of the Lagrange relaxation for (12) where the transmission power is pm

k [n] = x with wm
k [n] = 1. Based on the estimated

value of φm
k (pm

k [n] ), (14) which signifies that the power pm∗
k [n] is estimated for each channel (SU-PU-pair) distinctly. Model

in (16) states that with the suitable or optimal scheduling variables
{

wm∗
k [n]

}M
m=1per channel k, we don’t require additional

information except k. Considering logarithmic rate-power function, we used classical water filling algorithm for power flow
analysis (15). The model derived (16) states the resource per user scheduling is opportunistic, which can be greedy in nature
as well, especially under CRN condition. It reveals that only those SUs possessing the highest “Quality” must be scheduled
for spectrum access. Even though πm [n] be constant and assigned as πm∗, it can be optimized to solve duality-problem with
(12), where stochastic model can be applied to solve it. In our proposed ISP-DRACMmodel, we applied HMM with Lagrange
relaxation to achieve optimal values of the optimization matrix to achieve interference resilient resource allocation to the users.
The detailed discussion of the proposed ISP-DRACM model for resource allocation under different CRN setups and allied
interference constraints is given in the subsequent sections.

3.4.1 Resource allocation under interference conditions
Observing literatures, it can be found that though numerous efforts have been made towards resource allocation; however
majority of the researches focus on CRN without interference and noise condition, which cannot be optimal in practical
MANET scenario. Considering this fact, we have focused on performing resource allocation under different noise and
interference conditions. Here, we assume that limiting the average interference power and noise can help making optimal
(interference-resilient) resource allocation. To ensure QoS to the licensed users or PUs in CR based MANET, we focused on
confining the interference caused by SUs. Towards this motive, identifying and suppressing the probabilistic constraints can
help reducing CSI imperfections that eventually will make resource allocation efficient. Interference cancellation and allied
resource allocation can be achieved under two distinct methods, short term interference or long term interference. These
interference models are also called as instantaneous and average interference, respectively. Here, instantaneous constraints
require maintaining a defined interference probability at each instant. On contrary, the average interference constraints enable
PUs to be interfered up to a tolerable level over certain duration. Functionally, instantaneous constraints are more restrictive
than the average interference constraint.Thus, for CRN a SU can expect transmitting higher data rate under average interference
constraints. Interestingly, resource allocation optimization is relatively easier in case of instantaneous constraints, while the same
can’t be easy for average interference constraints and hence it requires dual (optimization) scheme to solve it. In addition, there
are different interference conditions such as underlay and interweave that introduce interference distinctly in CRN settings.
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Here, we have defined the duality problem for resource allocation under underlay CRN setting. Unlike existing methods, in
ISP-DRACMwe considered different interference conditions such as interweave and underlay under instantaneous and average
constraints condition to perform resource allocation. Here, our prime motive is to design a robust dynamic resource allocation
model which can be applied in any operating MANET conditions without imposing computational overheads and energy
exhaustion. The details of the resource allocation for the instantaneous and average constraints is given in the sub-sequent
sections.

3.4.2 Instantaneous interference constraints
Considering QoS provision to the PUs in CRN, it is inevitable to maintain and control the interference caused by SUs. To
achieve it under instantaneous interference condition (also called short-term interference), we applied a threshold level called
the maximum Interference probabilityv

ok ∈ (0, 1), which is assigned to the radio-band. In case of instantaneous interference
constraints, in a channel SU(s) are expected to maintain interference and noise to a predefined level to ensure QoS provision.
In ISP-DRACM, we performed resource allocation under instantaneous interference with both interweave setup as well as
underlay. A snippet of the methods applied is given as follows:

3.4.2.1 Interweave CRN
. For interviewCRN, interferencemight come into existencewhen ak [n] = 1 and∑m wm

k = 1, signifying that the SU can transmit
data over k−th channel. In such case, the interference probability can be obtained as (17).

Pr
{

ak[n]∑m wm
k [n] = 1 |n

}
≤ v

ok ∀n (17)

In (11), at time slot n, ak [n] is measured randomly. Thus, it can be reframed as (18).

Eak[n]

[
1{ak[n]∑m wm

k [n]=1}
]
≤ v

ok (18)

Hypothesizing ∑m wm
k [n] to be a deterministically known Boolean, we can derive (18) as (19).

Eak(n]

[
1
{

ak(n]=1∑m wm
k (n]

}]
≤ v

ok (19)

Being related to the belief factor ak[n]2, we derive it as (20).

∑m wm
k [n] = 1 only i f f ak[n]2 ≤

v
ok (20)

To meet the interference condition under interweave set up the optimal resource scheduling can be achieved as per (21).

wm∗
k [n] := 1{

f ak[n]2≤
v
ok
}
.
1
{

(φm
k [n]=max

l
φm

k [n])φm
k [n]>0.

}
(21)

Summarily, a SU can access the channel provided it maintains the likelihood of the spectrum accessed or to be used lower than
v
ok. In case of noisy and outdated CSI, the probability primarily depends on the past CSI and allied sensing accuracy. For known
and perfect CSI, the belief factor f ak[n]2 can either be zero or one, and therefore the SU can perform transmission only when
the spectrum is idle. In other words,

wm∗
k [n] := 1(ak(n]=0}.1{

(φm
k [n]=max

l
φm

k [n])(φ
m
k [n]

>0
}

(22)

3.4.2.2 Underlay network
. For underlay CRN, interference comes into existence when a PU finds received interference power caused due to SU’s
transmission higher than a threshold Γk. In such case, it follows the condition wm

k [n]> 0 and pm
k [n]hm

k,1 [n]> Γk. Under such
circumstances, to enable optimal resource allocation, we follow the following condition for each time-step.

Pr
{

pm
k [n]hm

k,1 [n]> Γk|n
}
≤ v

ok (23)

At n, hm
k,1 being random gives rise to the constraint (24).
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Ehm
k,1[n]

[
1pm

k [n]h
m
k,1[n]>Γk

]
≤ v

ok
And hence,

Ehm
k,1[n]

[
1{

hm
k,1[n]<Γk/[n]>Γk pm

k [n]
}]≥ 1− v

ok (24)

Applying the derived belief factor for primary CSI at n, we find

f hm
k,1 [n]

[
Γk

pm
k [n]

]
> 1− v

ok (25)

With pm′
k [n] as the root of v

ok = Fhm
k,1 [n] pm′

k [n]/Γk, it signifies pm
k [n] ≤ pm′

k [n] and therefore the interference constraint is
depicted in the form of the maximum power constraint. It exhibits a vital significance as the constraint stated in (24) signifies
non-convexity and hence the maximum power constraint can be convex. It avoids any multiplier to enforce the constraint and
maintains the same Lagrange (multiplier) and the value of φm

k (pm
k [n]) remains same as without interference condition (13).

Moreover, the scheduling can’t be vital in moulding interference to meet the condition for wm∗
k [n] in (16). Additionally, the

optimum power (14) needed to be updated to fulfill the condition pm
k [n]≤ pm′

k [n]. To deal with this problem, we applied a scalar
projection method that gives rise to (25).

pm∗
k [n] :=

[
argmax

pm
k (n]

φm
k

(
pm

k [n]
)] pm′

k [n]

0

(26)

Noticeably, with the perfect CSI, as there is no uncertainty in hm
k,1 [n]we schedule the upper limit of the SU’s power transmission

as pm′
k [n] := hm

k,1 [n]/Γk that as a result ensure no interference on PUs in CRN.
So far we discussed the interference-resilient resource allocation in CR-based MANET under short-term interference

conditions or instantaneous interference conditions. However, realizing the long-term interference which can be possible due to
pre-established CRN encompassing multiple cooperatively functional cognitive (MANET) nodes, we have developed resource
scheduling strategy to handle aforesaid issue. The detailed discussion of the proposed resource allocation model under long-
term interference constraint is given in the sub-sequent section.

A. Long-term interference under interweave CRN setup statistical analysis

In practice, for interweave CRN themain problem is not in satisfying the interference constraint, but in retrieving the likelihood
of a PU to be active. Though, it is possible by applying efficient sensing approaches. In case of long-term interference PUs
are expected to be in under interweave setup. We used a dual relaxation method to perform interference-resilient resource
allocation. For instantaneous interference condition interweave setting needs fulfilling the condition (27).

Pr
{

Σmwm
k [n]ak[n] = 1 | n

}
≤ v

ok Or Ehm
k,1[n]

[
1{ak[n]∑m wm

k [n]ak[n]=1}
]
≤ v

ok (27)

We, intend to enable long-term constraint where at each time instant the interference is maintained below a threshold while
enabling resource allocation to an optimal level. Here, we consider being the upper bound for those time spans for which
interference takes place. To achieve it, we apply the following condition.

Eh

[
1{ak ∑m wm

k (h)=1}
]
≤ v

ok (28)

The expectation function in (28), considers all CSI realizations. Additionally, the model developed above signifies the joint
probability of the PU being active and NC can schedule one SU to transmit over channel. In ISP-DRACMmodel, to confine the
likelihood of one SU to be active while satisfying PU uninterrupted active state, we multiply v

ok with the likelihood of the k-th
radio band to be occupied by the allied PU. Observing (12) and (28), it can be found that the equation (28) still depicts a convex
problem (asE

[
h ∑m wm

k (h) 1{1k=1}
]
≤ v

ok ). To enableQoS oriented resource allocation in CR-basedMANETs, especially under
long-term interference, we need to solve it by dualization. To achieve it, we introduce a component θk called Lagrangemultiplier.
Noticeably, in ISP-DRACM, θk signifies that the link-quality needs to be redefined as (29).

φm
k

(
pm

k [n]
)

:= β mCm
k

(
hm

k,2[n], pm
k [n]−πm[n]pm

k [n]−θk[n]Eak[n]
[
1{ak[n]=1}

]
(29)
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In case of CSI as imperfect, Eak[n]
[
1{ak[n]=1}

]
= f ak[n]2, On contrary, for perfectly known CSI, it would be ak [n]. Applying the

trade-off between transmission rate and power, (29) can penalize SU transmissions which can give rise to the interferencewhose
“price” can be multiplied by the instantaneous probability of interference. Additionally, (29) reveals the role of the primary CSI,
secondary CSI and CSI imperfections in resource allocation scheduling. Now, replacing (29) into (14) and (16), we obtain the
optimal power for transmission; however there can be the probability of different resource allocation in these cases. Observing
the equation it can be found that in short-term interference whenEak[n]

[
1
{

ak[n]=1
}]

>
v
ok there is no transmission or resource

access scheduled. On contrary, with (29), ISP-DRACM enables transmission even when the interference probability is high by
fulfilling the following condition.

maxm

{
β mCm

k

(
hm

k,2[n], pm∗
k [n]−πm[n]pm∗

k [n]
}M

m=1
> θk[n]Eak[n]

[
1{ak[n]=1}

]
(30)

Knowing the status that ak [n] = 1, it enables SU to access the spectrumprovided the SUpossess reward θk [n]higher than the cost
of interference. In ISP-DRACM, θk [n] has been tuned in such manner that the percentage of interfering transmissions remains
lower than the predefined limit fixed by v

ok. Additionally, φm
k

(
pm

k [n]
)
too is independent of pm

k [n], and thus the similarity
in between the transmission power in (14) and the Water Filling Concept” remains realizable and valid. Thus, the decisive
disparity in between the short term and the long-term solutions (in interweave CRN set up) primarily vary in the way in which
resource scheduling is performed. For short term scenario emphasis is not made towards winner SU-centric rather we focus
on giving priority to PU and allied QoS needs. A SU can transmit or access resource only when the interference caused due to
SU remains lower than the defined threshold. On contrary, for long-term condition resource scheduling is more flexible and
enables opportunistic benefits to SUs without impacting PU concerns.

B. Long-term interference in Underlay CRN

To enable optimal resource allocation in long-term constraints, we implement the concept of dualization that at first obtains
the likelihood of interference to the PU and allied resource allocation. This process, being independent of CSI imperfections
makes resource allocation optimization as non-convex. In ISP-DRACM to enable interference resilient resource allocation we
formulated our model by confining instantaneous interference probability under underlay setup that gives rise to the following
condition (31).

Pr
{

∑m pm
k [n]hm

k,1 [n]> Γk |n
}
≤ v

ok (31)

In other way, resource scheduling requires fulfilling (32).

Ehm
k,1[n]

∣∣∣∣1{pm
k [n]h

m
k,1[n]>Γk

}∣∣∣∣≤ v
ok (32)

For long-term interference which can be common in case of CRNs, with all channels while hypothesizing SUs to be causing
interference, we derive a constraint to be followed (33).

Eh

[
∑m wm

k (h) 1
{

pm
k [h]h

m
k,1[h]>Γk

}]
≤ v

o (33)

Thus, performing averaged CSI estimation over all h in (33), the resource allocation is performed even without assessing
constraints fulfillment over each realizations. Applying (33) in (12), the aforesaid problem turns out to be non-convex and
hence becomes complicate to solve. Here we apply averaging over time period that gives rise to the non-convexity problem and
hence the result can be leveraged by solving zero duality gap. To be noted, the zero duality gap states that any dual concept can be
applied to achieve or relax the interference constraints without compromising the optimality of resource allocation. However,
Lagrange remains as non-convex which requires certain robust method to achieve relaxation while enabling optimal resource
allocation under constrained interference condition. The following discussion presents the implementation of Lagrange
relaxation to achieve constrained resource allocation in CRN.

Consider that the Lagrange relaxation or multiplier allied with certain k−th channel be ϑk in (33). Now, for interweave
CRNs, the use of any new or updatedmultiplier or relaxation parameter (in Lagrange method) might change link quality which
can eventually impact QoS provision. Noticeably, the link quality changed can be obtained as (34).

φm
k

(
pm

k [n]
)

:= β mCm
k (h

m
k,2 [n] , pm

k [n]−πm [n] pm
k [n]−ϑk [n]Ehm

k,1[n]

[
1{

pm
k [n]h

m
k,1[n]>Γk

}] (34)
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Now considering (29) and (34) the mathematical model derived in (34) use primary as well as secondary CSI in addition to
the trades off rate reward with cost of interference and associated transmission power. Replacing (13) with (34), it can be found
that the optimal power in (14) (i.e., without interference) and allied transmission (and/or resource) scheduling (16) remain
same; however, (26) losses relation with (15) because the third entity in (34) depends on the transmission power, while the
optimal power relies merely on initial two terms (15). Practically, due to non-convexity of φm

k

(
pm

k [n]
)
substituting (34) into

(14) is difficult to reward better power efficiency and transmission control. However, improving φm
k

(
pm

k [n]
)
requires single

variable and hence it can be optimized efficiently. Retrieving
(

pm∗
k [n]

}M
m=1weneed to estimate

(
wm∗

k [n]
}M

m=1. Noticeably, we need
addressing both users as well as spectrum aspects to optimize Lagrange multiplier which has been solved as a one-dimensional
non-convex problem. In ISP-DRACM for perfect CSI condition, the power transmission optimization has been performed as
follows:

Consider that themaximumpower to be transmitted (while ensuring interference resilient transmission and resource access)
bepm′′

k [n] := hm
k,1 [n]/Γk. Additionally, p̂m∗

k [n] be the optimal power (15) (without consider any interference presence). In this
case, it fulfills the following condition (35).

pm∗
k [n] :=


p̂m∗

k [n] if
(

p̂m∗
k [n]< pm′′

k [n]
)
∨

(
φm

k

(
p̂m∗

k [n]
)
>

φm
k

(
pm′

k [n]
) )

pm′′
k [n] Otherwise

(35)

In ISP-DRACM, in case of high interference cost, the power transmission is confined to a level pm′′
k [n]. On contrary, with

acceptable level of (low) cost of interference pm∗
k [n] is permitted to surpass the upper bound. In case of imperfect primary

CSI, obtaining Fhm
k,1 can be helpful to control power optimization. Maintaining Fhm

k,1 as monotonic, the power optimization
problem is always non-convex and with small search space of Fhm

k,1, the local optima of φm
k (pm

k [n]) can be small which can
eventually help achieving global optima for efficient resource allocation without imposing interference to the PU. To obtain
these suitable parameters and to achieve optimal power transmission control, we have applied Lagrange relaxation method. A
snippet of the Lagrange relaxation model is given as follows.

3.5 Lagrange relaxation
In our proposed resource allocation strategy we intend to estimate the optimal values for πm[n],θk[n] and vk [n]so as to achieve
optimal power transmission and allied resource allocation. Being the problem of zero duality gap, assigningπm [n] = πm∗,
θk[n] = θ ∗

k] andvk [n] = v∗k, can also achieve the solution, where (πm∗, θ ∗
k,v∗k} signifies corresponding values for optimizing

the dual function associated to (12). Substituting equation (13) into equation (35), the resource allocation can be achieved
as optimal for (12). However, this method are highly complex and intricate as there is the need to estimate (πm∗,θ ∗

k,v∗k}
iteratively for each time-step and even requires averaging over all possible states of h. In addition, such approaches can be
limited due to imperfect CSI condition and iteratively estimating the channel statistics(πm∗, θ ∗

k,v∗k} can be too complex and
costly. It can cause significant delay in resource allocation which may decisively impact the QoS of MANET. Considering the
efficacy of the stochastic prediction based approaches for multiplier estimation in dynamic learning and scheduling purposes,
we design a novel and robust model which estimates (πm∗,θ ∗

k,v∗k} and updates it iteratively.We have applied this method as it
maintains low computational complexity (which is common in classical methods where authors estimate the optimal values of
(πm∗,θ ∗

k,v∗k}, which in later phase turns out to be outdated due to network dynamism. Thus, the proposed model estimates
the decision parameters dynamically and hence adapts to the dynamic spectrum, which becomes of great significance when PU
is very close to the SU and there is the probability of interference. Thus, obtaining the optimal values of µπ ,µθ , µv, we derive
the optimal value of the relaxation coefficient or the multipliers.

πm [n+1] =
[
πm [n]−µπ(

v
p

m
−∑k wm∗

k [n]pm∗
k [n]

]∞

0
(36)

θk [n+1] =
[
θk [n]−µθ

(
v
ok−Eak[n]

[
1(ak[n]=1} ∑m wm∗

k [n]
])]∞

0
(37)

vk[n+1] =
[
vk[n]−µv

(
ǒk−Eak[n]

[
1{ak[n]=1}

])]∞
0

Ehm
k,1[n]

[
1{

pm
k [n]h

m
k,1[n]>Γk

}∑m wm∗
k [n]

]∞

0

(38)

Considering the optimization objectives, the above derived model (36-38) facilitates a fair stochastic sub-gradient of the
dual function for the optimal resource allocation (12). In ISP-DRACM resource allocation is scheduled under interference
constrained scenario without causing any performance degradation. Thus, obtaining the following values
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µ = max{µπ ,µθ , µv} ;
−
p

m
:= 1

n ∑n
l=1 ∑wm∗

k [l] pm∗
k [l] ;

−
c

m
:= 1

n ∑n
l=1 ∑k,m β mwm∗

k [l]Cm
k (h

m
k,2 [l] , pm∗

k [l]) and
−
ok (n] := 1

n ∑n
l=1 ∑wm∗

k [l]{ak [l] = 1} (for interweave) and
−
ok [n] := 1

n ∑n
l=1 ∑wm∗

k [l]1pm∗
k [l]hm

k,1[l]>Γk
(for Underlay)., we ensure the interference resilient resource allocation by fulfilling

conditions given as,
v

n → ∞ : 1).
−
p

m
[n] =

v
p

m
and −

ok [n] =
−
ok, and 2) −

c [n] ≥ −
c
∗
− δ (µ), where δ (µ) → 0 as µ → 0. The

simulation results obtained for the proposed ISP-DRACM resource allocation and power management strategy under different
interference setup is discussed in the next section.

4 Results and Discussion
This research focused on ensuring resource allocationwhilemaintaining low interference or noise onto the PUs. In our proposed
model and allied simulation, realizing network dynamism we introduced varying channel condition at the different instants,
where the channel condition and corresponding allocation scheduling was performed over continuous time-series over a
definite span. Noticeably, being stochastic prediction based resource allocation and/or power transmission strategy overmobile
topology of MANET, performing power transmission control over each time instant n is must and therefore we performed
scheduling over n. ∆T time span, which was considered as 10000. n.∆T can also be stated as the total simulated time instant
over which the resource scheduling was performed. In our proposed ISP-DRACM model SUs were assigned with the initial
transmission power, and the total number of SUs considered was 10, while only two nodes were assigned as PU. Some of the
key simulation parameters used in ISP-DRACM is given in Table 1 .

Table 1. Simulation environment
Parameter Value
Network type CRN
Number of users 8
Number of frequency bands 10
Average transmit power constraint per CR Pavg =ones(No. of users,1)
Maximum Interference probability from SU onto PU .04*ones(No. of frequency bands,1)
SNR for which interference occurs .5*ones(No. of frequency bands,1)
Average Power allowed at Prim. Rx Side (for comp. purposes) .5*ones(No. of frequency bands,1)
User priority coefficient ones(No. of users,1)
Average SNR of the secondary channel 9*ones(No. of users, No. of frequency bands)
SNR gap of the modulation w.r.t. Shannon’s limit 1*ones(No. of users, No. of frequency bands)
Activity Sensing duration 3 sec
Time correlation coefficient 0.95
Inverse noise (1- Time correlation coefficient)
Error in the analog measurement 0.01
Estimation interval of the primary channel 6 sec
Number of simulated time instants 10000 sec

To assess robustness of the proposed ISP-DRACM resource allocation model, we simulated it for the different interference
conditions or constraints such as interweave setup, underlay setup with both short-term as well as long-term interference
constraints. We simulated ISP-DRACM under both known CSI as well as unknown CSI conditions; though in this simulation
results we have discussed the outcome for known CSI only. To adopt realistic noise conditions in MANET systems, we
considered the amplitudes of the SU channels as Rayleigh and distributed for which we maintained real and imaginary
components independent. On the other hand, the primary CSI was considered to be Gaussian distributed with mean as zero
and unit variance. We considered time correlated model as Hm

k,1 [n] =
√γHm

k,1 [n−1] +
√

1− γAm
k where γ = 0.98 and Am

k is
white and distributed in exponential manner. The deployed network controller model senses SUs every 3 second, while PUs at
the interval of 6 seconds. In ISP-DRACMwe considered likelihood of false alarm as 3%, while the likelihood for miss detection
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was limited to merely 2%.
To examine performance of the proposed ISP-DRACM resource allocation model, we assessed its efficacy in terms of power

transmission, interference, channel utilization etc. As stated, to achieve optimal resource allocation we tried to maintain high
weighted sum rate of the secondary users by maintaining interference below a defined threshold. To achieve it, we solved (6)
by applying RBEM-HMM with Lagrange relaxation, where it predicted interference stochastically with reference to which the
Lagrangemultipliers were obtained to reduce interference.The simulations were performed for instantaneous as well as average
interference conditions over underlay and interweave (overlay) CRN setup (for CR-based MANET). To illustrate dynamic
performance by ISP-DRACM, we have plotted evolution of the noise, interference, Lagrange relaxation variables etc. over
simulation period. Some of the key performance assessment variables are discussed as follows. Noticeably, being based on
duality solving problem, we have obtained simulation results in the form of trajectory evolution for the different primal and
dual variables which are plotted against the standard performance with known optimal values. Due to the space constraints in
this manuscript, we have examined parametric evolution and respective resource allocation performances under known CSI
condition for both interweave as well as underlay network.

The parametric evolution and respective interference condition over interweave CR setup is given in Figures 1, 2 and 3.
Noticeably, the simulation results obtained are simulated with ISP-DRACM over five channels (i.e., k=5). Figures 1, 2 and 3
presents the evolution or trajectory of primal and dual variables for CR setup with known CSI condition.

In Figure 1, the first subplot states the instantaneous power of the detected signal from the perfectly known CSI, which
the corresponding sample average power is depicted in Figure 1(b). Figure 1(c) presents the trajectory of the primal and
dual variables of instantaneous power multipliers, and as it can be observed here, the proposed model achieves convergence
just within 600 iterations. It exhibits robustness of the proposed HMM-Lagrange relaxation model to achieve convergence
soon while reducing interference to zero on PUs. In the proposed stochastic resource allocation strategy, the formulation was
made in such manner that ISP-DRACM maximizes the weighted sum-rate of orthogonally transmitting SUs under sample
average-power and probabilistic interference constraints. It can be well visualized through the results. Observing the result
it can be found that the proposed method with stochastic resource allocation ability achieves zero-duality. Results depict the
instantaneous values for the Lagrange relaxation for power transmission control and interference suppression, respectively.
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Fig 1. Signal sensing and corresponding primal and dual parametric evolution with 10 SU and 5 channels (known CSI using NC). (a)
Instantaneous powers, (b) sample average power and (c) instantaneous power multipliers (Lagrange).
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Fig 2. Evolution of the different primal and dual variables with known CSI. (a)Instantaneous interfering powers over different channel,
(b)Sample average interference power and (c)Instantaneous power (Lagrange) multipliers over varying time iteration index [n].

Fig 3. Evolution of the different primal and dual variables with known CSI. (a)actual interference, (b) estimated interference power with
sample average (x-axis states time iteration index [n]
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Observing overall performance it can be visualized that the proposedmodel achieves convergence just after a fewhundreds of
the iterations and achieves stated constraints successfully to enable dynamic resource allocation to the users without imposing
interference to the PUs in CRN. The resource allocation performance too affirms that the proposed model achieves optimal
resource allocation while maintaining efficient transmission scheduling for SUs. The proposed model and allied simulation
outputs substantiate the efficacy of the proposed resource allocation model under different CRN conditions. The proposed
model fulfils expected constraints while indicating that avoiding CSI perfection might cause sub-optimal solution for resource
allocation. Our proposed model affirms that exploiting statistical information and allied CSI/Interference over SU-to-PU
channels can help making optimal resource allocation decision. This study confirmed that the resource allocation average
or the long-term interference constraints yields slightly better resource allocation, as compared to the instantaneous one;
however yields satisfactory performance in terms of noise resilience. Additionally, the interference probability estimation by
our proposed stochastic prediction model helped updating belief states as per the real channel and node condition that avoided
further collision and QoS violation.The resource allocation performance by the proposed ISP-DRACMmodel with known CSI
information is depicted in Figure 4. Considering buffer occupancy performance Figure 4 depicts that the proposed system
intends to use resources maximum possible while maintaining minimum interference on PU(s). Noticeably, the proposed
method has exhibited satisfactory performance towards spectrum allocation to the SU without imposing any significant
interference for both interweave as well as underlay CR setup. Additionally, the robustness of the proposed ISP-DRACMmodel
over varying CSI and associated network parameters enable it to be compatible forMANETs, where it can work as amiddleware
to perform optimal QoS-centric resource management.

Fig 4. Transmission control and corresponding buffer occupancy over n samples.

5 Conclusion
In this study, the predominant emphasis was made on designing a robust interference resilient dynamic resource allocation
strategy for CR-based MANETs. Realizing the dynamic topology and opportunistic resource demand nature of CR-based
MANET which can be of both interweave and underlay types, the proposed model intended to maintain high weight sum
rate for SUs while maintaining interference and noise lower than a defined threshold. Here, the prime objective was to maintain
interference and noise component caused due to SUs lower than an acceptable level while ensuring optimal source allocation
to the users, under interweave and underlay conditions. As interference constraints, the proposed model considered both
instantaneous as well as average interference constraints for which the optimal resource allocation was performed. In the
proposed model, the dynamic resource allocation was scheduled as a Markov Decision Problem (MDP), where it intended to
maintain or providemaximum resource utilization while limiting interference caused by SUs onto the PUs. As stated, to achieve
stochastic resource allocation the proposed method intended to achieve sum-rate maximization while constraining maximum
average power and interference probability. Considering network dynamism the probabilistic interference wasmodeled in such
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manner that it depicted errors and imperfections in spectrum sensing andCSI estimation.The consideration of both short-term
as well as long term interference and allied dynamic resource allocation exhibits robustness of the proposed model. For short
term interference the proposed model considered CSI imperfections to ensure that the interference probability at any instant
remains lower than a defined level. On the other hand, the long term interference exploited the differences of the interference
over different time period to ensure that the time-span during which interference occurs doesn’t exceed a defined level or
threshold.The proposed model considered above stated problem as non-convex problem which was solved as zero-duality gap
problem.Thus, maximizing the rate (signifying the quality of secondary links), transmission power and optimizing interference
with reference to the PUs, the proposed model achieved optimal resource allocation. To achieve swift convergence, Lagrange
multiplier or relaxation parameters were multiplied with above stated parameters, where Lagrange multiplier value itself was
obtained with reference to the demands of the PUs and SUs in CR-based MANETs. Summarily, the use of stochastic model
helped achieving probability of interference and optimal values of the Lagrange multipliers which helped enabling optimal
resource allocation to the users across CRNs.
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