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Abstract
Background/Objectives: For motions in off-road navigation, including sandy
or wet natural environments and space explorations legged machines,
mimicking anatomy of legged animals are efficient. However, the traditional
full-actuated legged robots are heavy with complex actuation and control
systems, as for each degree of freedom separate actuator is used. The purpose
of this work is to develop a kinematic model using a single-actuator for
hexapod legged robot taking advantage of bio-inspiration and mechanism
design techniques. Methods/Statistical analysis: A vector analysis method
was used for measuring the system kinematics equations. The simulation
of the walking process was performed using MATLAB. A real prototype of
the system has been fabricated based on the design, which is not bulky
due to use of single motor, and does not require complex control and
sensor systems. Findings: Simulations showed that the kinematic model along
with the hypothesis on the ground interaction describes the locomotion,
which can be used where robots with low-speed repositioning are required.
Theoretical analysis, virtual prototype simulations, aswell as initial experiments
with the physical prototype, showed an efficient functionality of the system.
Novelty/Applications: The design and kinematic model can be used for
developing low-energy environmental robots for remote areas with occasional
relocation requirements.
Keywords: Biomimetic environmental robot; kinematic analysis; mechanism
design; tripod gait; walking mechanism

1 Introduction
Ever since the very creation of the word robot, people think that robots should look
and act like humans. However, until recently, this has only been a fantasy. Making a
true robot that can actually walk like a human, or remotely look like a human, has been
trapped in the realm of science fictionmovies and books.The recent amazing humanoid
robotic development efforts have been conducted by large corporations and research
universities with multi-million dollar budgets, though humanoid robots can actually be
built at home by a common man. While there is no single correct definition of ”robot”
a typical robot will have several or possibly all of the following properties (1,2) :
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• It is artificially created.
• It can sense its environment, and manipulate or interact with things in it.
• It has some ability to make choices based on the environment, often using automatic control or a pre-programmed

sequence.
• It is programmable.
• It moves with one or more axes of rotation or translation.
• It makes dexterous coordinated movements.
• It moves without direct human intervention.
• It appears to have intent or agency.

The last property, the appearance of agency, is important when people are considering whether to call it a machine robot, or
just a machine.

Thehexapod is an insect inspired-robotwhich has six legs that permits navigation flexibility on various terrains.Theprinciple
benefit of this form of a walker is its balance. The character inspired the researchers and new progressive thoughts are available
in thoughts but occasionally they are easy and effective, occasionally bulky and vital. One of the first walksmachines turned into
reality was created in 1870 by Russian Mathematician Chebyshev (1). This walking system had four legs organized into pairs.

Legged gadgets were used for at least a hundred years and are advanced to wheels in a few aspects: Legged locomotion has
to be robotically superior to wheel or to tracked locomotion over a variety of soil situations and truly superior for crossing
obstacles. Wheeled walkers are the simplest and most inexpensive, and also tracked walker are superb for moving, but they
cannot cover almost all sorts of terrain. There are distinct sorts of legged taking walks robots. They are roughly divided into
groups based on the range of legs they possess. Bipeds have two legs, quadrupeds four, hexapods six, and octopods have eight
legs. Bipeds’ walker is dynamically strong but statically volatile, therefore, such robots aremore difficult to balance, and dynamic
balance can only be achieved through walking (3,4).

Mechanical engineering is not more involved in robotics since mechatronics and robotics found a vast application in
implementing the concept of running a robot model using servo motors and drives since it needs more amount of energy
to run the robot model. The two six-legged walkers are linked by using link mechanism and by coupling two kinematic walker
with separatemotor for each walker. By using separatemotor we can run each walker in the desired position like front and back,
thereby we can able to control the walker to turn left and right motion. In this project, a 6-legs robotic walker was designed and
fabricated (2,4).

2 Literature Review
A large number of research papers have been studied on four-bar link mechanism. A review of related literature has
been described. Hamid and Saeed (5) concluded that Watt’s six-bar mechanism generates straight and parallel motion. This
mechanism can be utilized for legged machines. In this mechanism, the leg remains straight during its contact period due to its
parallel motion.The legs can be as wide as desired to increase contact area and decrease the number of legs required to keep the
body’s stability statically and dynamically. Burak et al. (6) designed a parallel hinged luggage doormechanism and its kinematics
analysis by an analogy to a four-bar mechanism.

Kumar and Mohanty (7) investigated the design, synthesis, and simulation of four-bar mechanisms to eliminate the plowing
depth fluctuation in tractors. The projected four-bar linkage mechanism can eliminate plowing depth fluctuations. The output
link generates an exponential path, which suggests that the initial stage link can provide low sensitivity and later output link
motion can generate high sensitivity.

Abdulkadar andDeshmukh (8) suggested that in the analysis of a four-barmechanism of various combinations, it is observed
that the path traced by the link of themechanism of input link-crank and the output link-rockermechanism are equal replicates
the path. It is essentially required in the case of micro-mechanisms. A US army investigation reports stated that about half of
the earth’s surface is inaccessible to wheeled or tracked vehicles, whereas this terrain is mostly exploited by legged animals. A
research study (9) concluded that legged locomotion should be mechanically superior to wheeled or tracked locomotion over a
variety of soil conditions and certainly superior for crossing obstacles.

It would be difficult to compete with the efficiency of a wheel on smooth hard surfaces but as condition increases rolling
friction, this linkage walking machines become more viable and wheels of similar size cannot handle obstacles. Based on the
literature review, the researcher has designed and fabricated four-bar walking machine.This linkage mechanism is capable and
enough to carry a battery and a small motor (10).
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In toy industries, robotic toys have got many applications and demand. It can also be used for military purposes. By placing
bomb detectors in the machines we can easily detect the bomb without a risk to human life. It can be used as heavy tanker
machines for carrying bombs as well as carrying other military goods. It can be used for space research where the wheeled
machines have difficulties to navigate. It is also applicable in the goods industries for the short distance transportation of goods
within the factory. The mountain roads or other difficulties where ordinary vehicles cannot be moved easily can be replaced
by our four-leg mechanical spider. Heavy loads can be easily transported if we made this as a giant one. It has got the further
applications for the study of linkagemechanism and kinematicmotions.The geometry and conditions can be changed according
to the application needs. This walking machine can travel on rough surfaces very easily, therefore, this machine can be used
efficiently with rough surfaces where ordinary moving machine cannot travel (9).

Nelson (11), in his report titled “Learning about Control of Legged Locomotion using a Hexapod Robot with Compliant
Pneumatic actuators”; described efforts to achieve a biologically-inspired hexapod robot, Robot III, to walk. Robot III is a
pneumatically actuated robot that is a scaled-upmodel of the Blaberus discoidalis (cockroach). It uses three-way solenoid valves,
driven with Pulse-Width-Modulation, and off-the-shelf pneumatic cylinders to actuate its 24 degrees of freedom. Single-turn
potentiometers and strain gage load cells provide joint angle and three axis foot force sensing respectively.

The Japanese craftsmanHisashige Tanaka (12), known as ”Japan’s Edison” or ”Karakuri Giemon”, created an array of extremely
complex mechanical toys, some of which served tea, fired arrows drawn from a quiver, and even painted a Japanese kanji
character (5). In 2010 Nikola Tesla publicly demonstrated a radio-controlled torpedo. Based on patents for ”teleautomation”,
Tesla hoped to develop it into a weapon system for the US Navy (6).

Arinjay and Kho (10) developed a bio-mimic hexapod and explained dynamic modeling and control in operational space of
a hexapod robot. The real time applications of hexapod robot for control were presented. Based on an operational trajectory
planner, a computed torque control for the leg of a hexapod robot was presented. This approach takes into account the real
time force distribution on the robot legs and the dynamic model of the hexapod. First, Kinematic and dynamic modeling were
presented.Then, amethodology for the optimal force distributionwas discussed.The force distribution problemwas formulated
in terms of a nonlinear programming problem under equality and inequality on straits.

Roy et al. (13), highlighted the analysis of six-legged walking robots and the attempt was made to carry out kinematic and
dynamic analysis of a six-legged robot. A three-revolute (3R) kinematic chain had been chosen for each legmechanism in order
tomimic the leg structure of an insect. In 2011,Westinghouse Electric Corporation created Televox, the first robot employed for
useful work.They followed Televox with a number of other simple robots, including one called Rastus, made as the crude image
of a black man. Moreover, they created a humanoid robot known as Elektro for exhibition purposes, including the 2003 and
2004World’s Fairs. In 2005, Japan’s first robot, Gakutensoku was designed and constructed by biologist Makoto Nishimura (14).

Legged mechanisms have a long history. In 1850, Chebyshev designed a four-legged machine with mechanically
synchronized legs, based on straight-line linkages, Figure 1. In 1893, Rygg obtained a patent for the human-poweredmechanical
horse (15).

Fig 1. Early legged robots (Bombled and Verlinden, 2011).
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A purely mechanical solution is nice, and reliable, but is obviously limited to flat ground. The pioneers in terms of control
were Franck and McGhee (1968), Figure 2a. General Electric Walking Truck ( Figure 2 b) was developed by Mosher in 1969.
With its 1300 kg, this robot is still one of the most accomplished legged vehicles (15).

Fig 2. Remarkable quadrupeds in the late sixties (Bombled and Verlinden, 2011).

Another important contribution comes from theMITHumanoid Robotics group. R. Brooks (15) developed the subsumption
architecture and implemented it on Genghis, Figure 3 .

Fig 3. Robots with subsumption control architecture(Bombled and Verlinden, 2011).

TheAmbulatory Robotics Lab (1991-2003) of McGill University developed several robots with dynamic walking, under the
direction of M. Buehler. The most famous is the Scout’s series ( Figure 4a), and the RHex hexapod ( Figure 4 b). RHex is a quite
original robot that can travel across hard terrains, with only one actuator per leg. It was a collaborative work between McGill,
Michigan, and Berkeley universities (15).
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Fig 4.McGill legged robots (Bombled and Verlinden, 2011).

Mobile robots are employed increasingly for various applications such as search and rescue missions, disaster relief
operations, and surveillance. Where wheeled vehicles have difficulty in moving on uneven terrain such as rocky or sandy
areas, legged animals are able to move smoothly and energy-efficient in various environments. In fact, wheeled transport
devices require building and maintaining expensive level roads, which may not be possible in many environments. Therefore,
researchers are developing legged robots mimicking the mechanical structure, moving method, and control system of the
animals. As in the natural creatures, legged robots are developed with various numbers of legs, employing different software
packages for simulations and analysis. Singh and Bera (16) proposed a dynamic analysis of a quadruped robot with a Jansen
mechanism using the SimMechanics Toolbox of MATLAB. With a complex controller, as in the case of four-legged mammals
with big brains, fourth leg can provide static stability when three legs are on the ground. However, arthropods are more efficient
and more stable than four-legged animals in passing rough terrains (17), which has inspired the design of many six- or eight-
legged robots. In (18) an eight-legged robot has been simulated using Inventor and Mathematica software. They employed
a simple sine function as the gait generator for controlling the legs of the robot. Due to the rich static stability, six legged
locomotion has become the most popular legged locomotion systemwith tripod gait being the most common walking method.

Simulation, design, and control of six-legged robots are still a current research field, attracting many researchers in recent
years (12,19–22). While many unmanned robots are already used practically in the real world environment, further research
is required for bringing six-legged robots in the real-world applications (12). Desirable optimization, for this aim, includes
reduction of acceleration of foot landing, the variation of the trunk body velocity (20), energy consumption (22), increasing
stability (23) , gait adaptation (24), etc. An important drawback of the six-legged robots is that they need numerous actuators
and sensors. For example, the hexapod robot HECTOR, introduced in (25), uses 18 modern actuators. RHex (26) is a six-legged
robot that uses only six motors located at the hip joints of the robot. Each limb of the robot (and similar versions of the six-
legged robot) consists of one curved flexible link actuated with a rotary motor. A comparison of various six-legged robots,
and the various DOFs they have, was given in the tabular form in (27), implying the minimum DOF number was six. Multiple
DOF systems can be used for many research reasons. Minimally actuated robots are more desirable for practical transportation
robots.

Amechanical mechanism or linkagemade of rigid links can be used to provide the required footmotion using rotarymotors
as the derivers. A single degree-of-freedomwalking legmechanism using planar Peaucellier-Lipkin type eight-link crank driven
linkage has been proposed in (28). A multi-legged robot driven by one driving motor mounted directly on the robot body to
transform the motor shaft rotation to the back-and-forth swing of the leg was proposed in (29), using a modified Jansen linkage.
A multi-legged robot using a slider-crank mechanism and spur-worm gears was proposed in (30).

In most of the previous studies on the multi-legged robots, the legs orientation with respect to the system body is frontal,
where legs are positioned perpendicular to the advancement direction, or circular, in which the legs are situated radially respect
to the robot body. In this work, the proposed walking robot presents sagittal disposal, where the robot moves parallel to the
legs plane. A minimally actuated six-legged walker with a single motor and four-link mechanism design is proposed for this
purpose. To the best of authors’ knowledge, kinematics of such a system has not been analyzed before. In this context, first, the
system mechanism and design are described. The kinematic equations are derived using a vector analysis method and some
hypotheses on the interaction with the ground. The tripod walking system is simulated based on the analysis and the design
parameters. Finally, the working prototype of the system is introduced.The experiments verified the walking ability and stability
of the system.

https://www.indjst.org/ 3805

https://www.indjst.org/


Al-Shammari / Indian Journal of Science and Technology 2020;13(36):3801–3819

3 The System Mechanism

Various mechanical linkages have been used as the power transport system in legged robots (29,30) . A four-link mechanism
contains the minimum number of rigid links for power transportation as well as the generation of desired motions of the
driving link. Another advantage is that the design and analysis of four-link mechanisms is well studied and various analytical
or simulations tools are available. The conceptual design of this robot is based on four-link mechanism. First, consider a leg of
the system with a forearm and upper arm of length l=180 mm as shown in Figure 5(a). To transmit power from a rotary motor
to the leg, a driver link, AB as shown in Figure 5 (b), is inserted. The conceptual design may work in different ways such as
a triple rocker mechanism, double crank, or double rocker (31). For walking with a rotary motor, the driver link is required to
have a complete revolution, and the foot is to follow a loop close to the floor. Therefore a crank rocker system is required. For
this aim, the shortest link (AB) has been pinned adjacent to the fixed body at point B. This is, in fact, one condition to achieve
a crank rocker mechanism.The second condition is an inequality representing the relation amongst the link lengths as follows:

s+ l < p+q
Where s = AB, p = OB, q = JA

Fig 5.Themechanism of a single leg.

Arrangement of six legs, as depicted in Figure 6, makes the walking mechanism. The dimension is given in millimeters in
the front view. Note that in this case, link AB is in the horizontal state along OB in order to show an arrangement of legs with
respect to each other. A tripod gait that is the most static stable gait, was used to arrange the legs assembly. In this pattern, at
each time the two exterior legs of one side and the inner leg of the other side are moved together. Supposing Figure 7 as the
top view of the hexapod, the gait can be described with the leg numbers 1 to 3 and left or right location of the legs shown by L
and R in the figure. The solid circles represent the contact of the feet with the ground (supporting legs), while the moving feet
(swinging legs) are shownwith the hollow circles.The imaginary polygon obtained by connecting the solid points can represent
the stability of the robot. As long as the center of gravity lies within the polygon area, the system has static stability. In this case,
the hexapod experiences two conditions (namely step A and step B) where either L1, R2, and L3 make the polygon (step A) or
R1, L2, and R3 represent the vertices. The advantage of such an arrangement is that the stability condition is satisfied in both
of the cases. To realize the walking system in the design, put legs L1, and L3 with the same phase, while R2 has a half-cycle lag.
Similarly, R1, R3, and L2 follow the same rule, as in Figure 2.

Both of the driver shafts are connected to a single rotary motor using a pulley. From Gruebler’s equation with n being the
number of links and f the total number of joints, the degrees of freedom F is calculated as F=3(n-1)-2f=1. Nevertheless, the
mechanism synthesis cannot show the walking capability of the system. In the classical methods of mechanism analysis, one
part of the machine, e.g. the main frame of the body in our system, is considered as the reference link or ground, respect to
which motion of the other links is obtained. In order to investigate the walking ability, further kinematic analysis is required.
The next subsection is devoted for this aim.
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Fig 6. Structure of the six-legged walker and the dimensions.

Fig 7. Footfall formula of the system: (a) Step A, (b)Step B.

4 Kinematic Modeling and Simulations
Feasibility of walking can be shown experimentally or using simulation. Forward kinematics of the system represents the system
motion based on a given input that is the motor speed in this case. The interaction of the robot with the ground needs to be
considered and the body frame of the robot is not fixed. Suppose the points O, A, J, and B are attributed to the legs according
to Figure 8.The interaction is defined as the boundary conditions, BCs, at the feet points (e.g. FL1, FR1, etc.). The BCs are very
complex to determine precisely and some hypothesis is required for developing the model. The following vectors are defined
according to the free body diagram and the link vectors given in Figure 9.

u⃗1L1 Vector from point FL1 to AL1 u⃗1R2 Vector from point FR2 to AR2
−→u 2L1 Vector from point O to JL1 −→u 2R2 Vector from point O to JR2
−→u 3L1 Vector from point BL to AL1 u⃗1R2 Vector from point BR to AR2
−→u 4L1 Vector from point AL1 to JL1 −→u 4R2 Vector from point AR2 to JR2
−→u 5L1 Vector from point O to BL −→u 5R2 Vector from point O to BR
−→u 0 Vector from point FL1 to O −→u s Vector from point FL1 to FR2
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Fig 8. Schematic of the legs and joint denominations.

Fig 9. Free body diagram and vector representation ofthe mechanism
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The loop closure equation for the mechanism can be obtained using vector analysis as follows. Let point O be the origin of
the O_xy frame of coordinates attached to the body.The configuration equations of the L1 and R2 legs as four link mechanisms
is given as:

u⃗4L1 − u⃗2L1 + u⃗5L1 + u⃗3L1 = 0 (1)

u⃗4R2 − u⃗2R2 + u⃗5R2 + u⃗3R2 = 0 (2)

As the points, BR, BL, and O are connected to the frame we have

u⃗5L1 =−u⃗5R2 (3)

Note that each vector −→u xxx can be expressed by its magnitude and angle as axax (C cos(θxxx)+ isin(θxxx)) = axaxeiθxxx . Then
the time derivatives are represented as

v⃗xxx =
d
dt

u⃗xxx = iaxxωxxxeiθxxx

where ωxxx = d
dt θxxx . As FL1, AL1, and JL1 belong to the same rigid part we have v⃗1L1 = v⃗4L1 and similarly v⃗1R2 = v⃗4R2 .

Supposing the motor has a constant velocity of one cycle per second we have

ω3L1 = ω3R2, θ3L1 = θ3R2 (4)

When the driver link BA is rotated by θ3L1 , the vector enclosure equations can be written as

u⃗4L1 exp(θ4L1)− u⃗2L1 exp(θ2L1)+ u⃗5L1 + u⃗3L1 exp(θ3L1) = 0 (5)

u⃗4R2 exp(θ4R2)− u⃗2R2 exp(θ2R2)+ u⃗5R2 + u⃗3R2 exp(θ3R2) = 0 (6)

Equations (5) and (6) are solved usingMATLAB to obtain new vectors with the given rotation of the driver or motor. Figure 10
shows the results obtained by solving the vector equations for 8 increments of the shaft rotation. In the first figure, the green
lines show the initial state. Note that only two feet, L1 and R2, are sufficient to represent overall status due to symmetry. In
this case, the links are obtained respect to the robot body (the black line). The configuration with respect to the ground will be
obtained as follows:
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Fig 10.Configurations formotor shaft rotations of $$ \theta_{3 L 1}= \ f rac{\pi}{8}, \ f rac{2 \pi}{8}, \ldots, \ f rac{7 \pi}{8}, \pi $$

An additional equation is related to the constraint that foot R2 should be on the ground. The equation can be expressed as

Im (⃗vs) = Im (⃗us) = 0 (7)

Knowing the link vectors, the vectors−→u O and −→u s are obtained from the vector equations:

u⃗O − u⃗1R2 + u⃗5R2 + u⃗3R2 = 0 (8)

u⃗s = u⃗o + u⃗5R2 + u⃗3R2 − u⃗1R2 (9)
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Then, knowing−→u s from (9), to satisfy (7) we should multiply−→u s by exp(π −θs) . The rotation, in fact, puts the configuration
on the horizontal ground.The solution gives numerical values of the position of various points, which is best represented in one
graph of system configuration. Figure 11 represents the solution of the vector equations graphically. The cyan line represents
the ground.

Fig 11. Configuration of the robot respect to the ground.

As the solution gives the position of each point for any rotation of the shaft, the velocity and acceleration of each point can
now be measured by differentiation. The robot overall velocity can be given by the following equation:

Re (⃗vo) =−aoωo sin(θo) (10)

A vector analysis of the velocity and acceleration vectors reveals the unknown values with respect to the system input, which is
the rotation of driver or motor shaft. As the legs move symmetrically, the results of one leg are simply repeated for other legs.
Figure 12 shows the linkage with L1 and R2. The black line represents the body. To study velocity vectors, a diagram of L1 has
been shown separately.
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Fig 12. Velocity vectors respect to body.

When the driver link rotates with an angular velocity, ω , the linear velocity of point AL1 is obtained as

vAL1 = |⃗u3L1|ω

Then, considering Figure 7, the normal and tangent components will be

vN
AL1 = vAL1 ·C OS(α1)

vT
L1 = vAL1 · sin(α1)

The tangential component vT
L1 is actually the lateral velocity of the link, so

vT
JL1

= vT
L1 (11)

Thus, knowing the vT
JL1

, the velocity of JL1 is obtained as follows

vL1 = vT
L1/cos(α2)

vN
J1 = vT

L1 tg(α2)
(12)

As represented in Figure 13 , the method of velocity measurement is described with the graphical method in 9 steps as follows:

Fig 13. Vector analysis with graphical method.

1. Sketch line 1 normal to the driver link (−→u 3L1). DrawVAL1 on 1 based on Eq (b.11)
2. Draw line 2 from the tip ofVAL1 normal to JA to obtainV T

L1

3. Assign vectorV T
JL1 = V T

L1 on J, then from its tip draw line 3 normal to JA

https://www.indjst.org/ 3812
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4. Depict line 4 at J and normal to OJ
5. Draw line 5 parallel to JA from the intersection of lines 4 and 3. ThenV N

JL1 will be the vector from J, normal to JA, and
intersecting line 5.

6. Draw line 6 connecting the tip ofV N
JL1 and the tip ofV N

AL1

7. Set line 7 from F normal to AF. Draw vectorV N
FL1 from F to intersection of line 6 and 7

8. Considering O_XY (attached to the robot body as mentioned before), draw line 8 parallel to link JA and draw vector
−V T

L1 obtained from number 2.
9. Assign −V N

FL1 on O. Connect the tips of the two vectors by line 9. The connecting vector will beV0, the velocity of the
robot.

Fig 14. a) Start of step A, b) Passing step A, c) End of step A, d) Starting step B, e) Passing step B, f) End of the cycle.

Note that the BC implies that the foot velocity, for the supportive leg, is zero. It is supposed that the swinging and supporting
legs are switching in steps A and B. Figure 9 shows a full cycle of the motion in 6 stages. The moving feet follow the trajectory
of the mechanism as shown by orange lines. A full cycle includes two steps:

STEP A: In step A, three feet including L1, L3, and R2 are on the ground and other feet move forward. The time to pass
the trajectory depends on the speed of the motor, which is set to 15 RPM. Therefore, at time t=2 s step A is finished and the
moving feet reach the ground. At the moment a mechanical impact will happen. In Figure 14(a to c) the robot is shown in step
A, starting from 15 (a). In Figure 14(b) the robot is in the middle of the step. Figure 14 (c) shows step A is finished.

STEP B: The start of step B is considered at the end of step A. Figure 14d, e, and f shows the model in step B, recovering its
initial configuration. Note that at the start themoving feet R1 and L2 switch their boundary condition to the ground connection.
The feet constrained in step A, including L1, L3, and R2, move in step B to back to the initial angles of the robot. Note that the
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trajectory followed by themoving points is changed in (c) and (d).This step change produces discontinuity in themotion graphs
as we will see later. In Figure 14 (f) the cycle is finished and the robot is in the initial configuration as shown by gray lines in
the graph.

5 Torque and Stresses Calculations
The torque T applies a force on the legs which is shown as ft in Figure 15.

From equation:

T = |⃗u3L1| · fT

We have:

fT (max) =
602
25

= 24[N]

The normal component of the force (normal to the link) is approximately

p1 = f N
T (max) = 14[N]

To calculate the strength of the material a constant force p1 = 14[N]

Fig 15. External and internal forces on leg L1.

Supposing quasi-static conditions the sum of the moments about the pins at point J is zero ΣMJ = 0
−P1 ∗140+RF ∗228 = 0
Similarly, the sum of the moments about point F is zero, so ΣMF = 0
−R∗

J 228+P∗
188 = 0

The reaction of pin support at the point F is RF = (P∗
1140)/228 = (14∗140)/228 = 8.60(N)

The reaction of the pin support at the point J RJ = (P∗
1 88)/228 = (14∗88)/228 = 5.40(N)

To check, the sum of the forces about the y axis is zero: ΣFx = 0 : RJ −P1 +RF = 5.40∗1−14+8.60∗1 = 0
Considering the first span of the beam 0≤ x1 < 140, the bending moment M is M(x1) = RJ*(x1)
The values of M at the edges is
M1(0) = 5.40*(0) = 0 (N*mm)
M1(140) = 5.40*(140) = 756.49 (N*mm)
For the second span of the beam 140≤ x2 < 228 we have M(x2) = RJ*(x2) - P1*(x2 - 140)
The values of M at the edges of the span:
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M2(140) = 5.40*(140) - 14*(140 - 140) = 756.49(N*mm)
M2(228) = 5.40*(228) - 14*(228 - 140) = 0 (N*mm)
The maximum bending stress is given by

σ =
MC

I

In which:
M=the internal bending moment about the section’s neutral axis, calculated above as 756.49 (N.mm).
c=the perpendicular distance from the neutral axis to the farthest point on the section, approximately 5mm.
I=the moment of inertia of the section area about the neutral axis. The second moment of the area at the maximum M is

I=85 mm4

So

σmax =
756.5×5

85
= 45

[
N.mm−2]

Note that yield strengths for Ductile Iron typically is 275 MPa. Therefore the safety factor is obtained as

n =
σYield
σmax

=
275
45

= 6

The values measured based on the worst-case shows the legs stand the exerted forces. Figure 16 shows the moment and shear
diagrams.

Fig 16. Evaluation of the mechanical strength.

6 Simulations vs Experimental Work
In order to obtain numerical values, the driver link is supposed to be rotating with a constant angular velocity of 15 RPM
provided by a velocity controlled motor. Figure 17 shows the results for the robot velocity and acceleration.The values show the
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ideal case, while the experiment may depend on the ground specifications including friction and hardness effects. Note that at
t=2 s there is a discontinuity due to the collision of the feet and switching steps. The research was followed by the fabrication of
the actual system shown in Figure 18 .

Fig 17.The gross motion velocity and acceleration.

Fig 18.The fabricated prototype of the hexapod walker with a solar panel for future studies (right).

The dynamic equation of the system during walking is not presented in this paper, as a model-based controller has not
been planned. The equations may be described by the motion equations as well as impact mechanics for the interaction of the
feet with the ground. The dynamic equations are achieved by deriving the governing equations of motion for the mechanism.
Well-known methodologies are Newton-Euler and Euler-Lagrange method. The Newton-Euler method is based on the vector
approach and consists of three translation equations and three rotation equations for each link. The equations are combined
with constraint equations of the joints and loop closure. The Euler-Lagrange equation is generally written in the matrix form
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of:

M(θ)+C(θ ,θ)+G(θ) = T

As an approximation, the overall mass of the stationary parts can be supposed at point O, and half of the mass of each link can
be considered as lumped masses at the ends of the links. The following masses can be defined

MJL1 Lumped mass at point JL1 0.5*Mass of upper arm +0.5*Mass of forearm
MAL1 Lumped mass at point AL1 0.5*Mass of driver link
MFL1 Lumped mass at point FL1 0.5*Mass of forearm
MO Lumped mass at point O Mass of fixed parts+0.5*Mass of upper arms and drivers

As L1 and L3 legsmove together, one can combine themass of L3 in L1 (likewise R3 in R1). A lumped inertia Io is considered
to include inertial effects. The numerical values are as follows:

MO = 2.600,MJ1 = 0.2,MAL1 = 0.05,MFL1 = 0.2,
IO = 0.1,MJ2 = 0.1,MAL1 = 0.05,MFL2 = 0.1

Figures 19 and 20 show the approximated value of the required torque to provide a 15 RPM speed for the driver link. Note that
the diameters of the pulleys are supposed to be equal for all of the pulleys. With a speed controlled servomotor, the dynamics
is treated as perturbations which are rejected by the built-in automatic feedback control of the servomotor.

Fig 19.Motion and torque of the driver link.

Dynamic effects are generally ignored at low speeds. With the solar panel, the robot can be used in remote lands, where
short and occasional repositioning is required. Further investigations are in progress to use the robot in the real environment,
various surfaces, etc.
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Fig 20.The required torque and the control block diagram.

7 Conclusions
The main focus of this paper was on the kinematics of a single actuator hexapod robot. A six-legged robot was designed and
fabricated based on crank rocker mechanisms.The overall dimensions of the mechanism were selected so that the crank rocker
function is ensured. Then, the six-legged robot was designed with connecting six of the mechanisms. The kinematic equations
were derived using vector analysis and hypothesis on the boundary conditions representing the ground interaction with the
feet. The robot gait analysis was performed with the velocity analysis and simulations, and the overall motion of the robot was
presented. The simulation results showed that the robot was able to walk based on the described gait. The robot was fabricated
and tested successfully. The robot is proposed for moving in remote environments where low-speed repositioning is required.
As future work, it is suggested that the gait should be investigated experimentally for various surfaces with different friction
properties.
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