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Abstract
Objective: To improve the performance of an efficient satellite image based
CCF (Color, Climate, Flow) approximation model is presented in this article.
Method: We attempted for plant growth estimation and yield estimation
using artificial neural networks. The model receives the satellite images and
preprocesses to improve the quality of the image. From the quality improved
image, the method extracts the color values. Further, the features like climate
and flow features from the data set of the region have been extracted. Using
these features, for different time window, the method generates number of
neurons and initializes themwith the set of features. The set of images from the
data set are used to extract several features and used to train the network. The
classification is performed according to the same set of features obtained from
input satellite image and the other features of the region at current window.
The method estimates CCF plant growth and yield support measures as result.
Based on these values, the yield estimation is performed.Result: The proposed
method improves the performance of plant growth up to 97.25 and the yield
estimation performance is increased up to 985 which is higher than previous
approaches. Provide comparative estimation. Novelty: The proposed CCF
model consider color, climate and features in plant growth estimation which
differ from other approaches by consideringmaximum features obtained from
satellite images aswell as features collected from ground truth in different time
stamp.

Keywords: Sugarcane yield; plant growth; ANN; CCF model; feature
approximation; satellite images; CCF support

1 Introduction
This research is focused on increasing the yield of sugarcane plant, by estimating
the plant growth in different time span of plant cultivation. In most times, the
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yield becomes less due to the improper planning of the plant cultivations. First of all, the rain fall is getting reduced
every year due to the environment changes and global warming.This affects the yield and growth of sugarcane plants.
So, there exists water scarcity throughout the country in different time.Due to this, the farmers cannot supply enough
water to the plants to achieve higher plant growth and yield. By analyzing the various factors, the performance of
plant growth and yield can be improved.

The satellite images are used in several problems like predicting climate changes and rainfall. Such satellite images
of different agricultural lands can be used in estimating and predicting the plant growth of sugarcane. By predicting
the growth of the plant, the yield obtained can be measured (1). This would support the development of agricultural
sector and a number of decisions can be taken by the cultivators. The satellite images contain different features and
by extracting the features from the image, predictions on the plant growth can be made. When the plant growth
is higher, the empty lands will be less and by applying the image processing techniques, the plant growth can be
measured (2).

Towards the scope, there are number of methods have been discussed by various researchers. In general, the
plant growth is measured according to the value of rainfall, water poured, temperature and so on. However, they
suffer to achieve higher performance in sugarcane yield estimation. This article considers this problem and defines
an efficient satellite image based CCF approximation model. The image processing techniques are more useful in
variety of problems. The plant growth and yield estimation also can be performed using such images. The satellite
images are used for several problems like wind monitoring, cyclone prediction and so on. According to this, the
satellite images of agricultural lands can be used in estimating the plant growth and yield estimation. The satellite
images would be color full and from the color images, the area of cultivation, the plant region, soil type, and volume
of fluid available can be extracted. By extracting such features, the plant growth can be measured. Similarly, the yield
estimation can be performed using them.

Apart from satellite images, the details of previous records on the plant at the same land can be used in measuring
the plant growth. Different regions of any country would be having different climate conditions and rainfall ratio. By
considering various factors of climate, fluid and soil conditions the performance of plant growth can be improved.
Similarly, the artificial neural networks have been used in several problems where there is an issue ofmissing features
and high dimension.The neurons are capable of measuring weight which has been feed to the next layer neurons to
perform plant growth estimation. Such an approach is presented in this paper, and the proposed CCF approximation
model uses color, climate and fluid approximationmodel consider temperature, humidity, water poured rainfall, and
other features in estimating the plant growth and yield estimation.The detailed approach is discussed in detail in the
next section.

Number of approaches are available in estimating the plant growth and yield produced by sugarcane plants. Still
the methods suffer to achieve higher performance in the performance of estimating the growth and yield. With
the motivation to improve the performance of plant growth estimation and yield, a CCF approximation model is
presented in this article. The method is focused in estimating the plant growth of sugarcane according to satellite
images and the data set of different region.

Themethods on sugarcane plant growth and yield estimation has been analyzed in this part. A satellite image based
sugarcane crop yield estimation is presented in (3), which consider different features and applies image processing
methods towards crop yield estimation. A mathematical model is presented towards crop yield estimation which
consider different features being extracted from satellite images and uses remote sensing approaches.

An android through yield estimation on Kiwi fruit is presented in (4), which consider features like cultivation area
and the total number of fruit. A wheat plant crop yield estimation technique based on image processing is presented
which subtracts the background and extract the features to estimate the crop yield. Similarly, a vision based infection
detection scheme for plants are presented in (5), where the color features are extracted tomeasure the rate of infection.
In this approach, the input image has been segmented using k means to generate gray level covariance matrix to
measure the similarity.
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The application of IoT devices are grown to different level and has been adapted to the agriculture industries.
The method extracts the color, texture and shape features to generate the pattern and based on that yield estimation
is performed (6). Similarly in (7), an image based yield estimation algorithm is presented which groups the area of
cultivation in to number of clusters and estimates set of weights towards estimation.

Different articles on crop yield estimation is presented in (8), which consider different image processing techniques
and in (9), an efficient plant disease recognition approach and applies region growing techniques towards yield
estimation. The deep learning pipeline techniques are adapted to the problem which uses threshold, and the size
of output (10).

The yield estimation of red macroalga from satellite image is presented in (11), where the images obtained from
Indonesia.Themethod identified that the plant yields higher valuewhen the temperature ismoderate and the growth
is depends onmass value. A remote sensing based evapotranspiration technique is presented in (12), where the remote
sensed data is used to measure the ratio of evapotranspiration from satellite images.

The artificial intelligence with satellite image based crop yield estimation algorithm is presented in (13), which
extracts temporal features like humidity, temperature, cultivation area and water sources in estimating the yield and
growth of plants. Similarly in (14), the random forest algorithm is clubbed with decision tree approach in measuring
the plant growth.The crop classification problem is handled with images obtained from satellite in (1), which extracts
texture, color features in classifying the plants towards yield estimation. In (15), the yield estimation is performed by
considering contextual and temporal features obtained from satellite images.TheMaize plant cultivated inZimbabwe
has been estimated for its yield in (16) which performs inference on yield according to the yield model maintained by
the country.

The corn plant is cultivated in many countries and the height of the plant support the yield to be calculated in (17)

, which extracts RGB features extracted from satellite images to estimate the yield. Similarly, for the application of
fertilizer support for the corn plants a satellite image based approach is presented (18). In (19), a chlorophyll estimation
approach with sat. Image is presented where the SMLR-PSO model extracts different features from spectral images
to estimate the yield. The prediction is performed with PSO technique.

In (20), the author presents set of route map towards crop farming.The article studies set of methods towards fruit
grading, counting, estimating the yield, and so on, also, the article focused onmonitoring the health of plants towards
weed, disease and insects.

In (21), the author discusses the importance of NDVI (Normalized Difference Vegetation Index) of leaf tissues
of plants in yield of sugarcane plants. The method has been adapted for the removal of straw from the plants. The
evaluation is performed inBrazil and straw removal rate are recorded andmonitored.According to the data recorded,
a prediction model is designed towards sugarcane yield estimation.

In (22), the author investigates the vegetation indices power in estimating the sugarcane yield and growth pattern.
The indices extracted from different satellite images are applied with time series analysis. According to the result of
time series analysis, the sugarcane yield estimation is performed.

In (23), the author presented detailed application of deep learning model in fruit tree crop load estimation. Also
various extrapolation of tree images counts to orchard yield estimation are reviewed in detail.Themethods analyzed
are subject to introduce poor performance in yield and growth estimation.

2 Satellite image based CCF approximation model using ANN
Theproposed satellite image basedCCF approximationmodel uses both numerical and image data set of agricultural
sector. From the data set, the satellite images are preprocessed to remove the noise and enhance the quality of the
image.The features like color have been extracted to approximate the plant growth, as well as from the data set given,
the features like temperature, area of cultivation, humidity, soil type, rainfall, plant growth and yield. The same sets
of features are obtained from the test sample to perform yield estimation and plant growth.The detailed approach is
discussed in this section.
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Fig 1. Architecture of CCF approximation model

The working of proposed CCF Approximation model has been presented in Figure 1. This section details each
stages clearly.

2.1 Feature extraction

The preprocessing is performed in satellite images to eliminate the noise initially. First, the Gabor filter has been
applied to eliminate the noise introduced by the capturing device. Then, the histogram equalization is performed to
improve the noise. From the noise removed image, themethods perform segmentation according to the color values.
The result of segmentation is used to extract the number of pixels at each group like fluid, soil, plant. Similarly,
the features from the agricultural data are extracted by preprocessing them to eliminate the noise data points
with missing values. The features like area, water poured, rainfall, temperature, humidity, and yield are extracted.
Extracted features are converted into feature vector to perform ANN training in the next stage.

Algorithm
Input: Agriculture Data Set Ads, Satellite Image Data set Sis
Output: Feature Vector Set Fvs
Start
Read Ads, Sis
For each satellite image Si
Noise removed image Nri =

∫
GaF(Si) – (1)

Segmented Image Si = Segmentation (Nri, Color Threshold)
Compute No of Fluid pixels Fp =

∫ size(Segi)
i=1 ∑Segi(i) .value → G1 – (2)

Compute No of Soil pixels Sp =
∫ size(Segi)

i=1 ∑Segi(i) .value → G2 – (3)
Compute No of Plant pixels Pp =

∫ size(Segi)
i=1 ∑Segi(i) .value → G3 – (4)

Compute fluid volume Flv = F p
size(Sei) – (5)

Compute area of cultivation Ac = Sp
size(Sei) – (6)

Compute plant area Pa = Pp
size(Sei) – (7)

End
For each agriculture data Ad
Extract cultivation area Ca =

∫
Ad.Area

Extract temperature Temp =
∫

Ad.Temp
Extract Humidity Hum =

∫
Ad.Humidity

Extract Rainfall Rf =
∫

Ad.Rain f all
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Extract water poured wp =
∫

Ad.Water poured
Extract Yield Yi =

∫
Ad.yield

End
Generate feature vector fv = {Flv, Ac, Pa,Ca, Temp, Hum, Rf, Wp, Yi}
Add to feature vector set

Stop
The feature extraction algorithm extract the different features from the satellite image of the region on specific

time and extract different features according to the region on the same period from the agriculture log. Extracted
feature vectors are added to the feature vector set.The features extracted are used to perform plant growth estimation
and yield estimation.

Fig 2. (A) Healthy Crop Image. (B) Vacant and Cultivated Area

The health crops identified from USA has been captured and presented in Figure 2 (A) and the vacant and
cultivated area captured from satellite is presented in Figure 2(B). The images represent the result of segmentation
performed according to the color values. By segmenting the satellite images, the area of cultivation, the water source
present, type of soil can be extracted by applying image processing techniques to support plant growth and yield
estimation.

2.2 ANN training

The neural network is generated according to the features extracted. The method generates the neural network
according to the time window considered. At each time window, a separate layer of neurons are generated. Each
layer neuron is initialized with set of features extracted in the feature extraction stage. First, the method identifies
the list of time stamp and split the logs accordingly. Using them, the method generates number of layers and number
of neurons at different layer. Each layer neuron is initializedwith the feature values extracted by the feature extraction
algorithm. Generated ANN has been used to perform plant growth estimation and yield estimation.
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Algorithm:
Input: Agriculture data set Ads, Satellite Image Set SIS
Output: Neural Network Nn
Start
Read Ads, SIS
Identify time stamp Ns =

∫ size(Ads)
i=1 ∑Ads(i) .Timestamp ∋ Ns – (8)

Initialize Neural network NN =
∫ size(Ns)

i=1 Generate Neural layers NN(i) – (9)
For each time stamp Ts
Feature vectors set Fvs = Feature Extraction (Ads, SIS)
For each feature vector fv
Generate Neuron N.
Initialize N = {Fvs(Fv)}
Add neuron N to layer l.
NN ( l ) = Fv

End
Perform polling.

End
Stop
The ANN training algorithm identifies the list of time stamp available. According to the time stamp available, the

method generates neural network with number of layers. The time stamp logs are split and features are extracted.
According to the features extracted, the method generates neurons and initializes them to add to the layer. Generate
neural network is used to perform yield estimation.The number of layers of ANN decided according to the data size
which represent the number of time window. For example, if the data has tuples for one year, then it can be decided
as 12 layers; similarly, if the tuples are generated in 2 years then the number of layers considered are 24. Further, it
can be considered as quarterly, half yearly and yearly time stamp as single time window when the number of records
increases or number of years covered.

2.3 CCF Approximation

The color climate fluid approximation algorithm estimates the plant growth and yield according to the different
features of satellite color image, climate features andfluid features of the region identified. Eachneuronof the network
generated is capable of performing this approximation which forwards the result of approximation to the next layer
neurons.Theneuron reads the features initialized and estimates climate growth induction rate (CGIR), ColorGrowth
Induction Rate (COGIR), Fluid Growth Induction Rate (FGIR), and Soil Growth Induction Rate (SGIR). All these
measures estimated are given to the next layer towards approximation.

Algorithm:
Input: Feature Vector Fv, Feature vector set Fvs
Output: CGIR, COGIR, FGIR, SGIR.
Start
Read feature vector Fv, Fvs
Compute Climate Growth Induction Rate

CGIR =

(
Fv(Temp)

∑size(Fvs)
i=1 Fvs(i) · temp/size(Fvs)

× Fv(Hum)

∑size(Fvs)
i=1 Fvs(i) ·Hum/size(Fvs)

)

×∑size(Fvs)
i=1 Fvs(i) ·Yield/size(Fvs)

(10)
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Compute Color Growth Induction Rate COGIR.

COGIR =

(
Fv(Flv)

Σsize(Fvs)
i=1 Fvs(i) ·Flv/size(Fvs)

× Fv(Ac)

∑size(Fvs)
i=1 Fvs(i) ·Ac/size(Fvs)

× Fv(Pa)

Σsize(Fvs)
i=1 Fvs(i) ·Pa/size(Fvs)

)

× ∑size(Fvs)
i=1 Fvs(i) ·Yield/size(Fvs)

(11)

Compute Fluid growth induction rate

FGIR =

(
Fv(R f )

Σsize(Fvs)
i=1 Fvs(i) ·R f/size(Fvs)

× Fv(W p)

Σsize(Fvs)
i=1 Fvs(i) ·W p/size(Fvs)

)

×∑size(Fvs)
i=1 Fvs(i) ·Yield/size(Fvs)

(12)

Compute Soil Growth Induction Rate SGIR.

Fv(Pa)

Σsi ze(Fvs)
i=1 Fvs(i) ·Pa/size(Fvs)

×
si ze(Fvs)

∑
i=1

Fvs(i) ·Yi eld/size(Fvs) (13)

Stop
The above discussed algorithm represents how the CCF approximation is performed by each neuron towards yield

and plant growth estimation.

2.4 Growth-Yield estimation

The proposed real time satellite image based CCF Model uses artificial neural network for growth and yield
estimation of sugarcane plants. The input satellite image and agriculture features are used for estimation of different
factors. First themethodperforms feature extraction from the input satellite imagewhich is preprocessed to eliminate
the noise and perform segmentation to group the similar pixels which represent the plants, soil andwater fields. From
the segmented image, the method extracts the features and estimate fluid volume, area cultivation and area of plant.
Such features extracted with the field features like temperature, humidity, rainfall, water poured has been used to
perform plant growth estimation and yield estimation. Obtained features are tested with the generated artificial
neural network, which produces four different factors like climate growth induction rate (CGIR), color growth
induction rate (COGIR), Soil growth induction rate (SGIR), and Fluid growth induction rate (FGIR). Based on
the values obtained by the artificial neural network, the plant growth and yield estimation are computed.

Algorithm
Input: ANN, Satellite Image Simg, Current Agri. Feature CAF
Output: Yield Y, Growth G
Start
Read ANN, Simg, CAF.
Noise removed image Nri =

∫
GaF(Simg)

Segmented Image Si = Segmentation (Nri, Color Threshold)
Compute No of Fluid pixels Fp =

∫ size(Segi)
i=1 ∑Segi(i) .value → G1

Compute No of Soil pixels Sp =
∫ size(Segi)

i=1 ∑Segi(i) .value → G2
Compute No of Plant pixels Pp =

∫ size(Segi)
i=1 ∑Segi(i) .value → G3

Compute fluid volume Flv = F p
size(Sei)

Compute area of cultivation Ac = Sp
size(Sei)
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Compute plant area Pa = Pp
size(Sei)

[CGIR, COGIR, FGIR, SGIR] = ANN-Test (Flv, Ac, Pa, CAF)
Compute Plant Growth G = CGIR

SGIR ×FGIR – (14)
Compute Yield value Y = CGIR×CGIR

SGIR ×FGIR – (15)
Stop
The above discussed algorithm represents how the plant growth is measured. The method extracts the features

from satellite image and agricultural trace. Using them, the features are tested with ANNwhich returns the different
induction rate on various features. Obtained induction rate are used to measure the plant growth and yield value.

3 Results and Discussion
The CCF model proposed uses the satellite images and the model has been hard coded with mat lab. The

performance of the method is evaluated using various data set which are collected from agricultural sectors of India.
The satellite images are collected from ARI (Agricultural Research India).

Table 1. Evaluation Detail
Key Value
Implemented Using Matlab
Period of Data 5 years
Source Of Data ARI
Type of Data Image and Numeric

The parameters and values used for the performance evaluation is presented in Table 1. The performance of the
method is measure on different parameters and presented. The ARI provides the data set towards the cultivation
of different plants in different regions of the country. Such data set can be obtained from each regional agricultural
center. The data set contains both image and numeric features related to various properties considered.

Fig 3. Analysis on plant growth estimation

The efficiency of estimating the plant growth is measured for different techniques and populated in Figure 3 ,
which debit that the CCF model introduced higher efficiency in plant growth estimation. The inclusion of CCF
model encourages the plant growth estimation to be performed by considering color, climate and flow features
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increases the estimation to be performed in most efficient manner. The proposed CCF model introduces the plant
growth estimation performance up to 97%which is higher thanDeep learning, DecisioniTree, SMLR-PSO andCHIS
models.

Fig 4. Analysis crop yield estimation

The performance on estimating the yield is measured for various approaches and presented in Figure 4 . The
CCF model has achieved higher yield estimation performance compare to other techniques. The proposed CCF
model consider the color, climate and flow features in estimating the crop yield. This supports the improvement of
performance in crop yield estimation up to the ratio 98%which is higher than existing Deep learning, Decision Tree,
SMLR-PSO and CHIS model.
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Fig 5. Analysis on water regulation

The analysis in water regulation is performed to measure the efficiency of the methods in regulating the water
required. The CCF model is achieved great performance compare to other techniques. The proposed CCF model
consider the color, climate and flow features in estimating the water required and water regulation performance.
This supports the improvement of performance in water regulation performance up to the ratio 98% which is higher
than existing Deep learning, Decision Tree, SMLR-PSO and CHIS model.

4 Conclusion
We presented an efficient satellite image based CCF (climate color fluid) approximationmodel.Themethod extracts
features from satellite image set and features from the agricultural data set. Using the extracted features of different
time stamp, the method generates number of layers and each layer has been generated with number of neurons
according to the number of trace available at each time stamp. Similarly, at the test phase, the method extract
the features and test on the ANN generated where each neuron performs approximation and produces different
induction rate on color, climate, fluid and soil features. Based on the induction rate of different features, the method
estimates the plant growth and yield value. The proposed method improves the performance in growth estimation
and yield estimation than other methods.
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