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Solving the cubic complex
Ginzburg-Laundau equation by
Homotopy analysis method

S Naghshband1∗, M A Fariborzi Araghi1

1 Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract
Objectives: This paper obtains the series solution of the cubic complex
Ginzburg-Laundau equation, by means of homotopy analysis method(HAM).
Methods: In addition to the homotopy analysis method, homotopy perturba-
tion and Adomian decomposition methods are applied to determine approxi-
mation solution of the cubic complex Ginzburg-Laundau equation and advan-
tage of using HAM. Also a theorem is proved to guarantee the convergence
of the HAM to solve this equation. Findings:Three examples are solved to
illustrate the efficiency of the proposed method, this method is compared
with other analytical approximate methods such as homotopy perturbation
method (HPM)and Adomiam decomposition method(ADM) and it can be seen
that these methods have the same results for this equation. Application:
Homotopy analysis method as a reliable and valid scheme can be used to work
out the cubic complex Ginzburg-Laundau equation which is nonlinear partial
differential equation.

Keywords: Homotopy analysis method; Ginzburg-Laundau

1 Introduction

The Ginzburg-Laundau equation is one of the partial differential equa-
tionswhich occurs in chemical reactions, fluidmechanic, andmany other
sciences.The cGL is the general amplitude model which is describing the
slow phase and amplitude modulations of a spatially distributed assem-
bly of coupled oscillators close to its Hopf bifurcation (1) . The cubic cGL
equation has been applied to investigate various applied issues such as
chemical turbulence, Poiseuille flow,Taylor-Coutte flow,Rayleigh-Benard
convection, reaction-diffusion systems, nonlinear optics, and hydrody-
namical stability problems. It shows rich dynamics and has been a model
for the transition to spatio-temporal chaos. The cGL can be considered
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as an usual form for a Hopf bifurcation in different types of spatially extended systems (2).
We consider cubic complex Ginzburg-Laundau equation(cGL) as follows.

∂w
∂ t

= (1+ ia)
∂ 2w
∂x2 +Rw− (1+ ib)|w|2w,w(x,0) = f (x), i2 =−1 (1)

where a,b,R are real constants and w = w(x, t) is a complex unknown function and t is a nonnegative real
quantity, also x is real (3–7) . The complex field w describes the modulations of the oscillator field b and
R are two real control parameters. In point of fact, the amplitude w explains slow modulations in space
and time of the underlying bifurcating spatially periodical pattern (8) , also some other details about other
types of this equation can be considered in (9–12) . Wazwaz studied this equation by using the separation of
variables method in (13). In this work, the HAM,HPM, ADM are considered in order to obtain the approx-
imate solution of Equation (1) . HAM is a strong analytical method to solve the nonlinear topics and was
first introduced and applied (14). Lately, this method has been well used to work out plenty types of prob-
lems in different branches of science and engineering (15–25) . Homotopy analysis method has an auxiliary
parameter hwhich gives us an easy approach to regulate the convergent region and the rate of convergence
of the series solution. HAM mostly generates a very fast convergence of the solution series, usually just
a few iterations attendant sufficient approximate solution, as well (24). Likewise, a theorem will be proved
which illustrates the convergence of HAM. Also HPM and ADM present satisfactory results (26,27). Total
explanation of the present paper is as follows: In section 2, some preliminaries are given, and in section
3, the main idea of this paper is explained. In section 4, the convergence theorem is proved, and finally in
section 5 three examples are solved by all three methods, and h-curves are plotted to show the region of
convergence.

2 Preliminaries

Let the following partial differential equation:

N[w(x, t)] = 0

where N is a nonlinear operator, x and t define the independent variables and w is an unknown function.
Via HAM, the zeroth-order deformation equation is:

(1−q)L [Φ(x, t,q)−w0(x, t)] = qhH(x, t)N[Φ(x, t,q)] (2)

Where q ∈ [0,1] is the embedding parameter, h ̸= 0 is an auxiliary parameter, L is an auxiliary linear
operator andH (x, t) is an auxiliary function.Φ(x, t,q) is an unknown function andw0(x, t) is an initiative
approximation of w(x, t) It is obvious, if q = 0 and q = 1 then:

Φ(x, t,0) = w0(x, t),Φ(x, t,1) = w(x, t)

respectively.Therefore, when q increases from 0 to 1, the solutionΦ(x, t,q) varies fromw0(x, t) to the exact
solution w(x, t) . Via Taylor’s theorem, it can be expanded Φ(x, t,q) in a power series of the embedding
parameter q as comes:

Φ(x, t,q) = w0(x, t)+∑∞
m=1 wm(x, t)qm (3)
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where

wm(x, t) =
1

m!
∂ mΦ(x, t,q)

∂qm

∣∣∣∣
q=0

(4)

Let the initiative approximation w0(x, t) the auxiliary linear operator L , the nonzero auxiliary parameter
h and the auxiliary function H(x, t) be correctly selected so that the power series Equation (3) converges
at q = 1, then, it can be seen:

w(x, t) = w0(x, t)+∑∞
m=1 wm(x, t) (5)

whichmust be the solution of themain nonlinear equation. Here, we consider the following set of vectors:

w⃗n = {w0(x, t),w1(x, t), . . . ,wn(x, t)} (6)

By differentiating the zeroth order deformationEquation (2),m timeswith regarding the embedding param-
eter q and then putting q = 0 and ultimately dividing by m!. we will have the following mth order defor-
mation equation:

L [wm(x, t)−χmwm−1(x, t)] = hH(x, t)Rm (w⃗m−1) (7)

where

Rm (w⃗m−1) =
1

(m−1)!
∂ m−1N[Φ(x, t,q)]

∂qm−1

∣∣∣∣
q−0

(8)

and

χm =

{
0 m ≤ 1
1 m > 1 (9)

It shoud be mentioned that wm(x, t) for m ≥ 1 is governed by the linear Equation (7) with linear boundary
situations that arise from the main problem. In order to study more about the HAM, (28) is suggested.

3 Main Idea

In this section, we apply the HAM, HPM and ADM to solve Equation (1) .

3.1 Homotopy analysis method

We consider Equation (1) as follows:

∂w
∂ t

= (1+ ia)
∂ 2w
∂x2 +Rw− (1+ ib)w2w,w(x,0) = f (x), i2 =−1 (10)

and

L[Φ(x, t,q)] =
∂Φ(x, t,q)

∂ t
,L(c) = 0 (11)
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where c is a real constant,

N[Φ(x, t,q)] =
∂Φ(x, t,q)

∂ t
− (1+ ia)

∂ 2Φ(x, t,q)
∂x2 −RΦ(x, t,q)+(1+ ib)Φ2(x, t,q)Φ̄(x, t,q) (12)

and H(x, t) = 1. The zeroth-order deformation equation is:

(1−q)L [Φ(x, t,q)−w0] = qhN[Φ(x, t,q)] (13)

Also, the mth-order deformation equation:

L [wm −χmwm−1] = hRm (ωw⃗m−1) (14)

Where

Rm (w⃗m−1) =
∂wm−1

∂ t
− (1+ ia)

∂ 2wm−1

∂x2 −Rwm−1 +(1+ ib)
m−1

∑
k=0

k

∑
j=0

w jwk− jw̄m−1−k (15)

So,

wm = χmwm−1 +h
∫ t

0 Rm (w⃗m−1)dt + c,m ≥ 1 (16)

3.2 Homotopy perturbation method

Consider Equation (10) as cubic complex Ginzburg-Laundau equation(cGL), to work out Equation (10)
via homotopy perturbation method, we make the following homotopy

(1− p)
(

∂w
∂ t

− ∂w0

∂ t

)
+ p

(
∂w
∂ t

− (1+ai)
∂ 2w
∂x2 −Rw+(1+ ib)w2w̄

)
= 0

or

∂w
∂ t

− ∂w0

∂ t
= p

(
−∂w0

∂ t
+(1+ai)

∂ 2w
∂x2 +Rw− (1+ ib)w2w̄

)
(17)

Suppose, the solution of Equation (10) is in the following form

w = w0 + pw1 + p2w2 + . . . (18)

by putting Equation (18) into Equation (17), and equating the coefficients of the partswith the samepowers
of p, we get

p0 :
∂w0

∂ t
=

∂w0

∂ t

p1 :
∂w1

∂ t
=−∂w0

∂ t
+(1+ai)

∂ 2w0

∂x2 +Rw0 − (1+ ib)w2
0w̄0,w1(x,0) = 0
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p2 :
∂w2

∂ t
= (1+ai)

∂ 2w1

∂x2 +Rw1 − (1+ ib)
(
2w0w̄∂ w1 + w̄1w2

0
)
,w2(x,0) = 0

p j :
∂w j

∂ t
= (1+ ia)

∂ 2w j−1

∂x2 +Rw j−1 − (1+ ib)

(
j−1

∑
i=0

j

∑
k=0

wkwi−kw̄ j−t−1

)
,w j(x,0) = 0

Obviously,

w0(x, t) = w0(x, t) = f (x) (19)

and, by having these assumptions, we can write the following recursive relation

w1(x, t) =
∫ t

0

(
−∂w0

∂ t
+(1+ai)

∂ 2w0

∂x2 +Rw0 − (1+ ib)w2
0w̄0

)
dt

w j(x, t) =
∫ t

0

(
(1+ai)

∂ 2w j−1

∂x2 +Rw j−1 − (1+ ib)

(
j−1

∑
i=0

i

∑
k=0

wkwt−kw̄ j−t−1dt, j ≥ 2 (20)

The approximate solution of Equation (10) can be obtained by setting p = 1, in Equation (18), that is,

w = lim
p→1

w0 + pw1 + p2w2 + . . .= w0 +w1 +w2 + . . .

3.3 Adomian decomposition method

Consider Equation (10) and operator Lt =
∂
∂ t , applying the inverse operator L(−1)

t =
∫ t

0(.)dt to both sides
of Equation (10), we have

w(x, t) = w(x,0)+
∫ t

0

(
(1+ ia)

∂ 2w
∂x2 +Rw− (1+ ib)w2w̄

)
dt

then

w(x, t) = f (x)+
∫ t

0

(
(1+ ia)

∂ 2w
∂x2 +Rw− (1+ ib)w2w̄

)
dt (21)

to solve Equation (10) by ADM, as usual the series solution w = ∑∞
n=0 wn is considered.then, the compo-

nentswn can be determined recursively, nowwe considerw2w̄=∑∞
n=0 An , whereAn (w0,w1, . . . ,wn) , n≥

0 are Adomian’s polynomials which are computed by using this method, so we get

∞

∑
n=0

wn = f (x)+
∫ t

0

[
(1+ ia)

∂ 2 ∑∞
n=0 wn

∂x2 +R
∞

∑
n=0

wn − (1+ ib)
∞

∑
n=0

An

]
dt
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then, we obtain the following recursive relation:

w0(x, t) = f (x)

wn+1 =
∫ t

0

(
(1+ ia)

∂ 2wn

∂x2 +Rwn − (1+ ib)An

)
dt,n ≥ 0 (22)

where,

A0 = w2
0w̄0

A1 = 2w0w1w̄0 +w2
0w̄1

A2 = 2w0w2w̄0 +w2
1w0 +2w0w1w1 +w2

0w2

A3 = 2w0w3w̄0 +2w1w2w̄0 +2w0w2w̄1 +w2
1w̄1 +2w0w1w̄2 +w2w̄3, . . .

4 Convergence of the HAM

In this section, we prove the convergence of the series solution obtained from the HAM to the exact solu-
tion of the Equation (10).

Theorem: If the series solution

w(x, t) = w0(x, t)+w1(x, t)+ . . .

obtained from the HAM is convergent, it converges to the exact solution of the Equation (10).
proof : Let the series

∞

∑
m=0

wm(x, t)

be convergent. Then we consider

w(x, t) =
∞

∑
m=0

wm(x, t)

In this case, we can write,

limm→∞ wm(x, t) = 0 (23)

So

∑n
m−1 [wm(x, t)−χmwm−1(x, t)] = wn(x, t) (24)

https://www.indjst.org/ 2392

https://www.indjst.org/


Naghshband and Araghi / Indian Journal of Science and Technology 2020;13(24):2387–2403

assuming convergence of series solution, we have:

∑∞
m=1 [wm(x, t)−χmwm−1(x, t)] = limn→∞ wn(x, t) = 0 (25)

then,

∑∞
m−1 L [wm(x, t)−χmwm−1(x, t)] = L(∑∞

m=1 (wm(x, t)−χmwm−1(x, t))) = 0 (26)

By applying the following statment

L [wm(x, t)−χmwm−1] = hH(x, t)Rm (w⃗m−1) (27)

we get:

∑∞
m−1 L [wm(x, t)−χmwm−1] = hH(x, t)∑∞

m=1 Rm (w̄m−1) (28)

Moreover, since h,H(x, t) ̸= 0 ,

∑∞
m=1 [Rm (w̄m−1)] = 0 (29)

According to Equation (15) , it can be seen:

∑∞
m=1 [Rm (w̄m−1)] = ∑∞

m=1
∂ wm−1

∂ t − (1+ ia)∑∞
m=1

∂ 2wm−1
∂x2 −R∑∞

m=1 wm−1+

(1+ ib)∑∞
m=1 ∑m−1

k=0 ∑k
j=0 w jwk− jw̄m−1−k

Therefore,

∑∞
m=1 [Rm (w̄m−1)] = ∑∞

m=1
∂ wm−1

∂ t − (1+ ia)∑∞
m=1

∂ 2wm−1
∂x2 −R∑∞

m=1 wm−1+

(1+ ib)∑∞
k=0 ∑∞

m−k+1 ∑k
j=0 w jwk− jwm−k−1

then

∑∞
m−1 [Rm (w̄m−1)] = ∑∞

m=1
∂ wm−1

∂ t − (1+ ia)∑∞
m=1

∂ 2wm−1
∂x2 −R∑∞

m−1 wm−1+

(1+ ib)∑∞
j=0 ∑∞

k=1 ∑∞
m=1 w jwk− jw̄m−1

so, we obtain

∑∞
m=1 [Rm (w̄m−1)] = ∑∞

m=1
∂ wm−1

∂ t − (1+ ia)∑∞
m=1

∂ 2wm−1
∂x2 −R∑∞

m=1 wm−1+

(1+ ib)∑∞
j=0 ∑∞

k=0 ∑∞
m−1 w jwkw̄m−1

then, it is found that

∑∞
m=1 [Rm (w̄m−1)] = ∂ t

∂
m
−0

− (1+ ia)
∂ 2 ∑∞

m−0 wm

∂x2 −R
∞

∑
m=0

wm +(1+ ib)
∞

∑
j=0

w j

∞

∑
k=0

wk

∞

∑
m=0

w (30)

From Equation (29) and Equation (30) and the relation
∞

∑
m−0

w̄ =
∞

∑
m=0

wm

we conclude that

w(x, t) =
∞

∑
m=0

wm(x, t)

is the exact solution of Equation (10).
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5 Sample Examples

In this section, we solve three cubic complexGinzburg-Laundau equations via theHAMand the results are
compared with the ADMand theHPM. Also, the region of convergence are shown in theHAMby plotting
the h-curves. The programs have been provided and the figures have been plotted by Matlab package.

Example 1: Consider the following cGL equation:

wt = (1−3/2i)wxx +2w− (1+ i/2)|w|2w,w(x,0) = eix, i2 =−1

We solve the equation by the HAM, using Equation (16), we get:

w0(x, t) = eix

w1(x, t) =−hti exi

w2(x, t) =−
(
htexi(2hi+ht +2i)

)
/2

w3(x, i) =−
(
htext (−h2t2i+6h2t +6h2i+6ht +12hi+6i

))
/6, . . .

When h =−1 , we can write

w0(x, i) = ek

w1(x, t) = itek

w2(x, t) =−
(
t2exi)/2 =

(it)2

2!
eh̄

w3(x, t) =
−
(
it3eix)
6

=
(it)3

3!
ei, .....,

so, we can easily see

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

etπ + itet +
(it)2

2!
etx +

(it)3

3!
ett + . . .= ei(x+t)

that is the exact solution of the equation.
Table 1 shows the errors of HAM at x =−2 with different t when n = 12 and h =−1
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Table 1.The errors of the HAM at x =−2 when n = 12 and h =−1
t 0.2 0.4 0.6 0.8 1
Error 2.2204e-016 9.9093e-016 2.0959e-013 8.8161e-012 1.6024e-010

Fig 1.The h-curve of 5-approximation (n = 5) of example1 when x = 1 and t = 0

Table 2.The errors of the HAM at the point (2,1)
n Approximation at by HAM (h =−1) Error
2 -1.117370845099253e+000 +3.850187686569845e-002i 1.635717717580491e-001
4 -9.831607254844369e-001 +1.457470757412923e-001i 8.251233356899829e-003
6 -9.901602223238910e-001 +1.410162723439193e-001i 1.972131260047780e-004
8 -9.899901272698717e-001 +1.411213931802091e-001i 2.744500998182562e-006
10 -9.899925183709056e-001 +1.411199958130925e-001i 2.497871950008141e-008
12 -9.899924964598675e-001 +1.411200081367663e-001i 1.602361278494555e-010
14 -9.899924966011185e-001 +1.411200080595068e-001i 7.635667678970700e-013
16 -9.899924966004430e-001 +1.411200080598685e-001i 2.769027319221402e-015

Figure 1 shows, the region of convergence of the example 1 at the point (1,0), which is−1.5 < h < 0
Table 2 shows the convergence of the HAM at the point (2,1) and n= 2,4,6,8,10,12,14,16 and error is

calculated by |∑n
i=0 wi −w|

Now, we solve the equation by HPM to compare the results. By using Equation (19) and Equation (20),
we obtain

w0(x, t) = ex

w1(x, t) = ti eix

w2(x, t) =−
(
t2eix)/2 =

(it)2

2!
eix

https://www.indjst.org/ 2395

https://www.indjst.org/


Naghshband and Araghi / Indian Journal of Science and Technology 2020;13(24):2387–2403

w3(x, t) =−
(
t3exii

)
/6 =

(it)3

3!
eix, . . .

so, we get

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

eix + iteix + (it)2

2! eix + (it)3

3! eix + . . .= ei(x+t)

which is the same results of HAM when (h =−1) . The results of the ADM by using Equation (22) are as
follows:

w0(x, t) = eix

w1(x, t) = ti eix

w2(x, t) =−
(
t2eix)/2 =

(it)2

2!
eix

w3(x, t) =−
(
t3exii

)
/6 =

(it)3

3!
eix, . . .

therefore, we can write

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

eix + iteix + (it)2

2! eix + (it)3

3! eix + . . .= ei(x+t)

which is the same results of HPM and HAM when (h = −1) . It can be seen that all three methods are
able to produce the similar results, via the HAM, we can avoid of difficulties in calculation of Adomian’s
polynomials specially for larger values of n , and computation of powers of p by the HPM.

Example 2: Consider the following cGL:

wt = (1−9i)wxx +10/9w− (1− i)|w|2w,w(x,0) = e−ix/3, i2 =−1

By using Equation (16), namely HAM, it can be seen:

w0(x, t) = e−ix/3

w1(x, t) =−2ht
(

1/e(ix)/3)i
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w2(x, t) =−2ht
(

1/e(ix)/3)(hi+ht + i)

w3(x, t) =−
(

4ht
(

1/e(xx)/3) (−h2t2i+3h2t +
(
3h2i

)
/2+3ht +3hi+(3i)/2

))
/3, . . .

When (h =−1), we can see

w0(x, t) = e−ix/3

w1(x, t) = 2t
(

1/e(ix)/3i = 2ti e−ix/3

w2(x, t) =−2t2
(

1/eix/3
)
=

(2ti)2e−ix/3

2!

w3(x, t) =−
(

4t3
(

1/eix/3
)

i
)
/3 =

(2ti)3e−ix/3

3!
, . . .

so,

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

e−ix/3 +2ti e−ix/3 + (2ti)2

2! e−ix/3 + (2ti)3

3! e−ix/3 + . . .= e2ti−ix/3

which is the accurate solution of the equation.
Figure 2 presents the convergence region of the example 2 at the point (-1,0).
Table 3 shows the errors of HAM (h=-1) at x=1 with different values of t, when n=18.

Table 3.The errors of HAM (h=-1) at x=1, when n=18
t 0.2 0.4 0.6 0.8 1
Error 1.1189e-016 3.1402e-016 1.5701e-016 6.1733e-014 4.2904e-012

Figure 3 shows the real part of the approximate solution for n=6 and the real part of exact solution,
respectively. Also, Figure 4 compares the imaginary part of the approximate solution for n=6 and the exact
solution respectively.

Table 4 shows the convergence of this method at the point (1,0.6) and for n=3,6,9,12,15,18 and the error
is |∑n

i=0 wi −w|
Table 5 shows the errors, at the point (1,0.6), for different values of h.
Applying HPM, namely Equation (19) and Equation (20), we get

w0(x, t) = e−ix/3

https://www.indjst.org/ 2397

https://www.indjst.org/


Naghshband and Araghi / Indian Journal of Science and Technology 2020;13(24):2387–2403

Fig 2.The -curve of 6-approximation (n=2) of example 2 when x=-1 and t=0

Fig 3. Real parts of the approximate(left) and the exact solutions of example 2 when n=6 and h=-1

Table 4.The errors of the HAM at the point (1, 0.6).
n Approximation at (1, 0.6) via HAM (h=-1) Error
3 5.629895084462173e-001 +7.701862199361181e-001i 8.476063171568474e-002
6 6.474995723928192e-001 +7.628681672182660e-001i 7.047727373065257e-004
9 6.473723785312548e-001 +7.621748949527030e-001i 1.697855943744531e-006
12 6.473707228589358e-001 +7.621752712533816e-001i 1.712756669817200e-009
15 6.473707232781010e-001 +7.621752729140687e-001i 8.816695142989886e-013
18 6.473707232789525e-001 +7.621752729138399e-001i 1.570092458683775e-016
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Fig 4. Imaginary parts of the approximate(left) and the exact solutions of example 2 when n=6 and h=-1

Table 5.The errors of the HAM, at the point (1,0.6)
h -1.25 -1 -0.75 -0.5
3 2.8584e-001 8.4761e-002 1.3122e-001 2.8949e-001
6 3.0911e-002 7.0477e-004 8.1473e-003 6.7683e-002
9 2.3592e-003 1.6979e-006 4.0043e-004 1.4635e-002
12 1.4666e-004 1.7128e-009 1.7133e-005 3.0039e-003
15 7.9268e-006 8.8167e-013 6.6626e-007 5.9337e-004

w1(x, t) = 2t
(

1/e(ix)/33i = 2ti e−ix/3

w2(x, t) =−2t2
(

1/eix/3
)
=

(2ti)2e−ix/3

2!

w3(x, t) =−
(

4t3
(

1/eix/3
)

i
)
/3 =

(2ti)3e−ix/3

3!
, . . .

So, we have

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

e−ix/3 +2ti e−ix/3 + (2ti)2

2! e−ix/3 + (2ti)3

3! e−ix/3 + . . .= e2ti−ix/3

which is the same results of HAMwhen h=-1. Using Equation (22), the results of the ADM are as follows:

w0(x, t) = e−ix/3

w1(x, t) = 2t
(

1/e(ix)/3i
)
= 2ti e−ix/3
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w2(x, t) =−2t2
(

1/eix/3
)
=

(2ti)2e−ix/3

2!

w3(x, t) =−
(

4t3
(

1/eix/3
)

i
)
/3 =

(2ti)3e−ix/3

3!
, ..

therefore, we can write

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .=

e−ix/3 +2ti e−ix/3 + (2ti)2

2! e−ix/3 + (2ti)3

3! e−ix/3 + . . .= e2ti−ix/3

Example 3: consider the following PDE:

iut +uxx +2|u|2u−u+ iu = 0,u(x,0) = eix30

Applying the HAM for this equation, we get

u0(x, t) = eix

u1(x, t) = hteix

u2(x, t) =
(
hteix(2h+2+ht(1−4i))

)
/2

u3(x, t) =
(
hteix

(
h2t2(1−20i)+h2t(6−24i)+6h2 +ht(6−24i)+12h+6

))
/6

u4(x, t) =
(
htexi (h3t3(−72i−47)+h3t2(12−240i)+h3t(36−144i)+24h3 +h2t2(12−240i)+

h2t(72−288i)+72h2 +ht(36−144i)+72h+24
))

/24

u5(x, t) =
(
htexi (h4t4(−232i−559)+h4t3(−1440i−940)+ | h4t2(120−2400i)+h4t(240−960i)+
120h4 +h3t3(−1440i−940)+h3t2(240−4800i)+h3t(720−2880i)+480h3+

h2t2(120−2400i)+h2t(720−2880i)+720h2 +ht(240−960i)+480h+120
))

/120

Setting h=-1, we obtain

u0(x, t) = eix

u1(x, t) =−teix
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u2(x, t) = t2exi(1/2−2i)

u3(x, t) = t3exi((10i)/3−1/6)

u4(x, t) = t4exi(−3i−47/24)

u5(x, t) = t5exi((29i)/15+559/120)

so with the help of these computations, we have

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ . . .=
eix − teix + t2exi(1/2−2i)+ t3exi((10i)/3−1/6)+

t4exi(−3i−47/24)+ t5exi((29i)/15+559/120)+ . . .=

∑∞
n=0

(−t)n

n! eix + ieix (−2t2 +10/3t3 −3t4 +29/15t5 − . . .
)
+ eix (−2t4 +4t5 − . . .

)
Which is the same series solution that has been calculated by HPM and ADM (29). According to the h-
curve at any point and by changing h. it is possible to obtain other approximation solution. Also, Figure 5
shows the region of convergence of the example 3, when x=1 and t=0.

Fig 5.The h-curve of 6-approximation (n=6) of example 3 when x=1 and t=0.
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6 Conclusion

This paper used, the homotopy analysis method, homotopy perturbation method, and Adomian decom-
positionmethod to solve the cubic complex Ginzburg-Laundau equation and a theorem of convergence of
the HAMwas proved. Also, three examples were solved and the h-curves of the examples were drawn and
some numerical results were presented to show the importance and applicability of the HAM, likewise one
can observe that all three methods produce the similar results, however the HAMprovides a situation that
one can avoid of difficulties in calculation of Adomian’s polynomials specially for larger values of n, and
computation of powers of p by the HPM, also if necessary, by different values of h, region of convergence
can be controlled via the HAM. Furthermore, the ADM and HPM are a specific case of the HAM when
h=-1. Consequently, the HAM can be used to work out the cGL as a reliable and valid scheme.
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