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Abstract
Objectives: Probability distributions have great use in reliability engineering
where the researchers try to find the distribution of the different processes. To
meet the needs of the reliability engineers, we have proposed a simple proba-
bility distribution named as Beta Lehman-2 which may be proved more useful
as compared to already existing models of the probability distributions. The
aim of the study is to show the performance of the proposed distribution over
already existing distributions. Methods: In this study, a new Beta Lehmann-2
Power function distribution (BL2PFD) is proposed. We suggest a new generator
that will modify the Power function distribution called Beta Lehmann-2 genera-
tor (BL2-G). Findings: The various properties of the new distribution have been
discussed in detail such as moments, vitality function, conditional moments
and order statistics etc. We have also characterized the BL2PFD based on con-
ditional variance. This distribution can be used for approximately symmetric
data (normal data), positive and negative skewed data. Application: The appli-
cation of this distribution is illustrated by using data sets from medical and
engineering sources. The shape of the new distribution has been studied for
applied sciences. After analyzing data, we conclude that the proposed model
BL2PFD perform better in all the data sets while compared to different com-
petitor models.
Keywords: Beta Lehmann-2 Power function distribution; Characterization of
truncated distribution; Lehmann alternatives; Percentile estimator; Power
function distribution

1 Introduction
The researchers in Engineering sciences mostly study the reliability of different compo-
nents by taking the help from probability distributions that are simple in mathematical
expression instead of using mathematically complex probability distributions. In Dal-
las (1) introduced the power function as the inverse of Pareto distribution.Meniconi and
Barry (2) showed that power function distribution is better to fit for failure data
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over exponential, log normal and Weibull because it provides a better fit.
More studies about the application of this distribution and its applications can be found inAhsanullah et al. (3), Chang (4), van

Dorp and Kotz (5). For modeling heterogeneous population, Saleem et al. (6) talked about the two component mixture of one-
parameter Power function distribution. Estimation of the parameters of the two-parameter Power function distribution was
studied by Zaka and Akhter (7) through the methods of the least squares, relative least squares and ridge regression. According
to its applicability in real life situations for modeling survival data, Tahir et al. (8) proposed the modification of the Power
function distribution as Weibull-Power function distribution. By using the Bayesian inference, Hanif et al. (9) estimated the
parameter of the one-parameter Power function distribution. In Shahzad and Asghar (10) introduced the Transmuted Power
function distribution by following Shaw and Buckley Shaw and Buckley (11). In Okorie et al. (12) proposed the modification of
the Power function distribution by using Marshall and Olkin Marshall and Olkin (13) technique. In Haq et al. (14) proposed the
McDonald Power function distribution and Ibrahim (15) proposed the Kumaraswamy Power function distribution. In Jabeen
and Zaka (16) discussed the parameters estimation for continuous uniform distribution using modified percentile estimators.
Further Zaka et al. (17) introduced the exponentiated generalized class of power function distribution.

2 Materials and Methods

Lehmann alternatives were introduced by Lehman (18) in the two-sample hypothesis testing context and are useful in survival
analysis.

∅(x) = 1− (1−G(x)}α (Lehmann2 relationship)
In Eugene et al. (19) proposed the Beta generator (Beta-G).

F (x) =
B∅(x)(a,b)

B(a,b)

Then the mixture of these two techniques is known as Beta Lehmann-2 generator (BL2-G). The probability density function
(pdf) and cumulative distribution function (cdf) of the BL2-G are given as

F (x) =
B1−{1−G(x)}α (a,b)

B(a,b)
(1)

And

f (x) =

(
1− (1−G(x))α)a−1 (

(1−G(x))α)b−1 α (1−G(x))α−1 g(x)
B(a,b)

(2)

Where G(x) : cd f and g(x) : pd f o f any probability distribution
In this work, we suggest a new distribution that will generalize the Power function distribution (PFD) by using the above

mentioned technique. We have derived some of the main structural properties of this distribution. We have also characterized
the distribution by conditional moments (Right and Left Truncated mean), doubly truncated mean (DTM) and conditional
variance. Maximum likelihood method (MLM) and Percentile estimation (P.E) method are used to estimate the shape and
scale parameters of BL2PFD.The application of this distribution is illustrated by using data sets from medical and engineering
sources.

2.1 Model Identification for Beta Lehmann-2 Power function distribution (BL2PFD)

The pdf and cdf of Power function distribution are given as follows

g(x) =
γxγ−1

β γ ; 0 < x < β , γ > 0 (3)

and

G(x) =
(

x
β

)γ
(4)

Where γ and β are the shape and scale parameters.
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Following the generator (1), the BL2PFD is obtained by putting (3) and (4) in (2) and simplifying, we get

f (x) =

(
1−
(

1−
(

x
β

)γ)α)a−1((
1−
(

x
β

)γ)α)b−1

α
(

1−
(

x
β

)γ)α−1 γxγ−1

β γ

B(a,b)
; 0 < x < β

(5)

and associated cdf is obtained by putting (4) in (1) as

F (x) =

B1−

{
1−

( x
β

)γ}α
(a,b)

B(a,b)

(6)

We may observe α , a and b are the tuning parameters. γ as the shape and β as scale parameter.
By definition, the survival function is

S (x) = 1−F (x) = 1−


B{

1−
{

1−
(

x
β

)γ}α}(a,b)
B(a,b)


And the Hazard Rate Function (HRF) of probability distribution is given as

2.2 Asymptotic behavior

The behavior of the pdf, cdf, hazard and survival functions of BL2PFD are being investigated as x→ 0 and x→ ∞.
i. limx→0 f (x) = 0;∀ possible values of α ,a,b,γ and
ii. limx→∞ f (x) = ∞;∀ possible values of α ,a,b,γ and
iii. limx→0 F(x) = 0;∀ possible values of α,a,b,γ and
iv. limx→∞ F(x) = 1; if x = β and ∀ possible values of α,a,b,γ and β
v. limx→∞ F(x) = 0; if x ̸= β if γ = 0 and α ̸= 0
vi. limx→0 F(x) = 1; if x ̸= β if γ > 0 and α = 0
vii. limx→0 S(x) = 1; if x ̸= β if γ = 0 and α ̸= 0
viii. limx→∞ S(x) = 0; if x ̸= β if γ > 0 and α = 0
ix. limx→0 H(x) = 0;∀ possible values of α,β ,γ,φ and θ
x. limx→∞ H(x) = ∞;∀ possible values of α,β ,γ,φ and θ

2.3 Characteristics of hazard function using glaser method

In Glaser (20) had defined the conditions of increasing, decreasing, and upside-down bathtub-shaped failure rate. We use these
conditions in our proposed distribution.

η (x) =− f ′ (x)
f (x)

η (x) =−β γ

 (γ −1)
x

− (αb−1)

 γxγ−1

β γ(
1−
(

x
β

)γ)
+α(a−1)


(

1−
(

x
β

)γ)α−1

(
1−
(

1−
(

x
β

)γ)α)
 γxγ−1

β γ


If x > 0, then the values of ή (x) under the following conditions are given in Table 1 .

The above conditions shows that the hazard function of BL2PFD is increasing but if (a,b or γ)→ 0, then it will be decreasing
function. (See Figure 1)
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Table 1. Values of ή (x) under the following conditions
a b γ α β η (x)

1 1 1 ≥1 ≥1 0
≥2 1 1 ≥1 ≥1 >0
1 ≥2 1 ≥1 ≥1 >0
1 1 ≥2 ≥1 ≥1 >0
0 1 1 ≥1 ≥1 <0
1 0 1 ≥1 ≥1 <0
1 1 0 ≥1 ≥1 <0

Fig 1. Plots of PDF, CDF and HRF of BL2PFD

2.4 Shapes

The BL2PFD can be approximately Normal Curve, whereas the HRF can be bathtub, monotonically increasing and decreasing
shapes. (See Figure 1)

2.5 Moments about zero

The rth moments about zero of any distribution is described below
µ ′

r =
∫ β

0 xr f (x)dx
By solving we get
µ ′

r =
a j ai al β r

B(a,b) (a+l+ j)

where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( r
γ +1)

Γ
(

r
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.6 Moment generating function

Apart from generating functions, the moment generating function can be utilized to describe the characteristic of the random
variable.

Mo (t) =
∫ β

0
etx f (x)dx

If X follows BL2PFD, the moment generating function may be derived as,
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Fig 2. Plots of moments underdifferent parametric values of BL2PFD

Mo (t) =
∞

∑
r=0

tr

r!
a j ai al β r

B(a,b) (a+ l + j)

where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( r
γ +1)

Γ
(

r
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.7 Random number generator

The random number of BL2PFD may be obtained from

F(x) =

B(
1−
(

1−
(

x
β

)γ}α}(a,b)
B(a,b)

After simplifying we get,

x = β
(

1− (1− rbeta(n,a,b)}
1
α
} 1

γ

Where “rbeta(n,a,b)” is the random numbers generated from Beta distribution.

2.8 Inverse moments

By definition Inverse moments may be obtained as

µ
′
−r =

∫ β

0
x−r f (x)dx

We get inverse moments for BL2PFD as

µ
′
−r =

a j ai al β−r

B(a,b) (a+ l + j)
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where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ(−r
γ +1)

Γ
(
−r
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.9 Vitality function

The vitality function is obtained for BL2PFD as

V (x) =
1

S (x)

∫ β

x
x f (x)dx

That may be obtained as

V (x) =

β
B(a,b) a j ai al

(
1−
(

1−
(

1−
(

x
β

)γ}α}(a+l+ j)
]

(a+l+ j)

1−


B(

1−
(

1−
(

x
β

)γ}α}(a,b)
B(a,b)



where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( 1
γ +1)

Γ
(

1
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.10 Information function

The Information Function is given as
IF =

∫ β
0 ( f (x)}sdx

For BL2PFD the information function is given as

IF =
(αγ)s−1β (γ−1)(s−1)a jaial

β (γs−γ)B(a,b)(s(a−1)+ j+ l)

where a j = ∑∞
j=0

(−1) jΓ
(

α(sb−1)−(s−1)
α +1

)
Γ
(

α(sb−1)−(s−1)
α +1− j

)
j!
, ai = ∑∞

i=0
(−1)iΓ

(
(γ−1)−(s−1)

γ +1
)

Γ
(
(γ−1)−(s−1)

γ +1−i
)

i!

and al = ∑∞
l=0

(−1)lΓ( i
α +1)

Γ( i
α +1−l) l!

2.11 Order statistics

The pdf of the order statistic may be written as

f1:n (x) =
1

B(1,n)
f (x)(1−F(x)}n−1

For BL2PFD, we may write the lower and upper order statistics as

f1:n (x) =
1

B(1,n)


(

1−
(

1−
(

x
β

)γ)α)a−1((
1−
(

x
β

)γ)α)b−1

α
(

1−
(

x
β

)γ)α−1 γxγ−1

β γ

B(a,b)

∗

1−


B(

1−
(

1−
(

x
β

)γ}α}(a,b)
B(a,b)




n−1
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and

fn:n (x) =
1

B(1,n)
f (x)(F(x)}n−1

fn:n (x) =
1

B(1,n)


(

1−
(

1−
(

x
β

)γ)α)a−1((
1−
(

x
β

)γ)α)b−1

α
(

1−
(

x
β

)γ)α−1 γxγ−1

β γ

B(a,b)

∗


B(

1−
(

1−
(

x
β

)γ}α}(a,b)
B(a,b)


n−1

2.12 Incomplete moments
The incomplete moments are given as

µX |(a,b,α ,β ,γ);r(p) =
∫ P

0
xr f (x)dx

By simplifying for BL2PFD we get

µX |(α,β ,γ,φ,θ);r(p) =
a j ai al β r

(
1−
(

1−
(

p
β

)γ}α](a+l+ j)

B(a,b)(a+ l + j)

where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( r
γ +1)

Γ
(

r
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.13 Conditional moments
The conditional moments may be obtained as

E (X r|X > t] =
1

−
F(t)

∫ β

t
xr f (x)dx

The conditional moments for BL2PFD may be obtained by using above expression as

E (X r|X > t] =
1

−
F(t)

a j ai al β r
((

1−
(

t
β

)γ}α](a+l+ j)

B(a,b)(a+ l + j)

where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( r
γ +1)

Γ
(

r
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

2.14 Lorenz and Bonferroni curve
The Lorenz and Bonferroni curve may be obtained as

L(p) =
1
µ

∫ q

0
x

∞

∑
l=0

tlhl+1(x)dx

L(p) =
1
µ

a j ai al β
(

1−
(

1−
(

q
β

)γ}α](a+l+ j)

B(a,b)(a+ l + j)

where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( 1
γ +1)

Γ
(

1
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

B(p) =
1

Pµ

a j ai al β
(

1−
(

1−
(

q
β

)γ}α](a+l+ j)

B(a,b)(a+ l + j)
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2.15 Characterization of BL2PFD

Let “X” be Beta-Lehmann2- Power function variable with Probability density function

f (x) =

(
1−
(

1−
(

x
β

)γ)α)a−1((
1−
(

x
β

)γ)α)b−1

α
(

1−
(

x
β

)γ)α−1 γxγ−1

β γ

B(a,b)
; 0 < x < β

And let
−
F (x) be the survival function respectively. Then the random variable “X” has BL2PFD if and only if

V(X | x ≤ t) = ajaha1β 2

F(t)B(a,b)

[
1−
{

1−
(

t
β

)γ}
a+j+1

]α]a+j+1

−

 ajaia1β
F(t)B(a,b)

[
1−
{

1−
(

t
β

)γ}α

a+j+1

]a+j+1
2

where V(X | x ≤ t) : Conditionalvariance

Also a j = ∑∞
j=0

(−1) jΓ(b)
Γ(b− j) j! , ai = ∑∞

i=0
(−1)iΓ

(
1
γ +1

)
Γ
(

1
γ +1−i

)
i!
, al = ∑∞

l=0
(−1)lΓ( i

α +1)
Γ( i

α +1−l) l!
and

ah = ∑∞
i=0

(−1)iΓ( 2
γ +1)

Γ
(

2
γ +1−i

)
i!

Proof:
Necessary part:

E(Xr | x ≤ t) =
1

F(t)

∫ t

0
xr

(
1−
(

1−
(

x
β

)γ)α)a−1((
1−
(

x
β

)γ)α)b−1

α
(

1−
(

x
β

)γ)α−1 γxγ−1

β γ

B(a,b)
dx

Put 1−
(

1−
(

x
β

)γ)α

= z

E(Xr | x ≤ t) =
1

F(t)B(a,b)

∫ 1−
(

1−
(

t
β

)γ)α

0
β r
{

1− (1− z)1/α
}r/γ

(z)a−1(1− z)b−1dz



E(Xr | x ≤ t) =
ajaia1β r

F(t)B(a,b)

1−
{

1−
(

t
β

)γ}α

a+ j+1


a+j+1

E(X | x ≤ t) =
ajaia1β

F(t)B(a,b)

1−
{

1−
(

t
β

)γ}α

a+ j+ l


a+j+1
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Where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ai =
∞

∑
i=0

(−1)iΓ( 1
γ +1)

Γ
(

1
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

Put r=2

E
(
X2 | x ≤ t

)
=

ajaha1β 2

F(t)B(a,b)

1−
{

1−
(

t
β

)γ}α

a+ j+ l


a+j+1

Where a j =
∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

, ah =
∞

∑
i=0

(−1)iΓ( 2
γ +1)

Γ
(

2
γ +1− i

)
i!

and al =
∞

∑
l=0

(−1)lΓ( i
α +1)

Γ
( i

α +1− l
)

l!

V(X | x ≤ t) =
ajaha1β 2

F(t)B(a,b)


1−
{

1−
(

t
β

)γ}α

a+ j+ l


a+j+1

−

 ajaia1β
F(t)B(a,b)


1−
{

1−
(

t
β

)γ}α

a+ j+1


a+j+1

2

(7)

Also Sufficient part

V(X | x ≤ t) =
1

F(t)

∫ t

0
x2dx−

{
1

F(t)

∫ t

0
xdx
}2

V(X | x ≤ t) = t2 −2
∫ t

0
xF(x)
F(t)

dx−
{

t−
∫ t

0

F(x)
F(t)

dx
}2

(8)

Equate (7) and (8), we get

t2 −2
∫ t

0

xF (x)
F (t)

dx−
(

t −
∫ t

0

F (x)
F (t)

dx
}2

=
a j ah al β 2

F (t)B(a,b)

1−
(

1−
(

t
β

)γ}
a+ j+ l

α
a+ j+l

−

 a j ai al β
F (t)B(a,b)

1−
(

1−
(

t
β

)γ}
a+ j+ l

α
a+ j+l

2

t −
∫ t

0

F (x)
F (t)

dx =
a j ai al β

F (t)B(a,b)

1−
(

1−
(

t
β

)γ}
a+ j+ l

α
a+ j+l

Therefore

t2 −2
∫ t

0

xF(x)
F(t)

dx
ajaha1β 2

F(t)B(a,b)

1−
{

1−
(

t
β

)γ}α

a+ j+1


a+j+1

Differentiate w.r.t “t”

t2 f (t) = a j ah al β 2

B(a,b)

(
1−
(

1−
(

t
β

)γ}α]a+ j+l−1

α
(

1−
(

t
β

)γ}α−1 γtγ−1

β γ
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As

a j ah al

(
1−
(

1−
(

t
β

)γ}α]a+ j+l−1

=

(
1−
(

1−
(

t
β

)γ)α)a−1((
1−
(

t
β

)γ)α)b−1(
t
β

)2

Therefore

t2 f (t) =
β 2

B(a,b)

(
1−
(

1−
(

t
β

)γ)α)a−1((
1−
(

t
β

)γ)α)b−1(
t
β

)2

α
(

1−
(

t
β

)γ}α−1 γtγ−1

β γ

f (t) =
1

B(a,b)

(
1−
(

1−
(

t
β

)γ)α)a−1((
1−
(

t
β

)γ)α)b−1

α
(

1−
(

t
β

)γ}α−1 γtγ−1

β γ

The pdf of BL2PFD

3 Results

3.1 Maximum Likelihood Method (MLM)

Let x1, x2 ,..., xn be a random sample of size “n” from the BL2PFD. The log-likelihood function for the BL2PFD is given by

L(a,b,α , β ,γ) = nln
(

αγ
β γ

)
+n(a−1) ln

(
1−
(

1−
(

xi

β

)γ)α}
+n(αb−1) ln

(
1−
(

xi

β

)γ)
+n(γ −1) lnxi

The score vector is

Ua (a,b,α, β ,γ) =
∂
∂a

L(a,b,α , β ,γ)

Ub (a,b,α, β ,γ) =
∂
∂b

L(a,b,α , β ,γ)

Uα (a,b,α, β ,γ) =
∂

∂α
L(a,b,α, β ,γ)

Uβ (a,b,α , β ,γ) =
∂

∂β
L(a,b,α , β ,γ)

Uγ (a,b,α, β ,γ) =
∂
∂γ

L(a,b,α, β ,γ)

The parameters of BL2PFD can be obtained by solving the above equations resulting from setting the five partial derivatives of
L(a,b,α,β ,γ) equals to zero.

3.2 Estimation of BL2PFD Parameters from 'common percentiles' (P, E)

InDubey (21) proposed a percentile estimator of the shape parameter, based on any two sample percentiles. AfterDubey (21),Marks (22)
also discussed it, in which he estimated the parameters of Weibull distribution with the help of percentiles.

Let x1 ,x2,x3, . . . , xn be a random sample of size n drawn from Probability density function of BL2PFD. The cumulative
distribution function of BL2PFD with shape and scale parameters γ and β , respectively

F (x) =


B(

1−
(

1−
(

x
β

)γ}α}(a,b)
B(a,b)
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By solving we get

x = β

1− (1− rbeta(n,a,b))
1
α


1
γ (9)

Where “rbeta(n,a,b)” is the random numbers generated from Beta distribution.
Let P75 and P25 are the 75th and 25th Percentiles, there f ore (9) becomes

P75 = β

1− (1−0.75}
1
α


1
γ (10)

P25 = β

1− (1−0.25}
1
α


1
γ (11)

Solving the above equations, we get

(
P75

P25

)γ
=

 1− (1−0.75}
1
α(

1− (1−0.25}
1
α
}


γln
(

P75

P25

)
= ln

 1− (1−0.75}
1
α(

1− (1−0.25}
1
α
}


γ̂ =

ln
(

1−(1−0.75}
1
α

1−(1−0.25}
1
α

}
ln
(

P75
P25

)

and β̂ =
P75(

1− (1−0.75}
1
α
] 1

γ̂

generally γ̂ =

ln
(

1−(1−H}
1
α

1−(1−L}
1
α

}
ln
(

PH
PL

)

and β̂ =
PH(

1− (1−H}
1
α
] 1

γ̂

Where H= Maximum Percentage, L= Minimum Percentage and P = Percentile
A simulation study is used in order to compare the performance of the proposed estimation methods. We carry out this

comparison taking the samples of sizes as n = 40 and 150with pairs of (β , γ) = {(1, 2), (2, 1) and (1.5, 1.5)}.We generated random

https://www.indjst.org/ 2381

https://www.indjst.org/


Zaka et al. / Indian Journal of Science and Technology 2020;13(23):2371–2386

samples of different sizes by observing that if Ri is random number taking (0, 1), then xi = β
(

1− (1− rbeta(n,a,b)}
1
α
} 1

γ is
the random number generation from BL2PFD with (a, b,α, β and γ) parameters. All results are based on 5000 replications.

Such generated data have been used to obtain estimates of the unknown parameters. The results obtained from parameters
estimation of the 2-parameters (shape and scale parameters) of BL2PFD using different sample sizes and different values of
parameters with mean square error MSE.

M. S.E (β̂ ) = E
[
(β̂ −β )2

]
, M. S. E(γ̂) = E

[
(γ̂ − γ)2]

Table 2. Estimates for the parameters of BL2PFD with different estimation methods under the sample size 40 when a = 1, b = 2 and α = 3
METHODS True Values Estimated Values M.S.E

β γ β̂ γ̂ β̂ γ̂
MLM 1 2 0.9434932 1.9464116 0.1030683 0.059389

2 1 2.3387613 0.8781634 0.5333875 0.0111197
1.5 1.5 1.401726 1.440550 0.2055521 0.0289

P.E 1 2 0.753597 2.039228 1.56648 0.1911323
2 1 1.572147 1.012443 0.8186342 0.04862102
1.5 1.5 1.33692 1.518119 0.9712043 0.09801185

Table 3. Estimates for the parameters of BL2PFD with different estimation methods under the sample size 150 when a = 1, b = 2 and α = 3
METHODS True Values Estimated Values M.S.E

β γ β̂ γ̂ β̂ γ̂
MLM 1 2 1.022541 1.896632 0.05892636 0.014971

2 1 2.033640 1.055156 0.19859548 0.0155028
1.5 1.5 1.485175 1.429680 0.11660383 0.01384723

P.E 1 2 0.7660154 1.919106 1.52632 0.04705253
2 1 1.680933 0.961805 0.7078477 0.01222795
1.5 1.5 1.351793 1.43825 0.9112946 0.02562018

If we study the results of the Tables 2 and 3, in which sample sizes are (40, and 150) and the combinations of the values of
(β , γ) = {(1, 2), (2, 1) and (1.5, 1.5)}. Then we get the results that MLM is the best for the estimation of β and γ . After MLM,
the P.E is best for the estimation of scale and shape parameters of the BL2PFD.

4 Application and Discussion
In this section, we have analyzed two real life data sets to demonstrate the performance of BL2PFD. The comparison of the
Probability distributions has been made in all the data sets on the basis of Akaike information criterion (AIC), the correct
Akaike information criterion (CAIC), Bayesian information criterion (BIC) andHannan-Quinn information criterion (HQIC).

Finally, using the above mentioned criteria’s, our proposed BL2PFD is better than the different competitor models for the
same data sets.

4.1 Bladder Cancer Data

We have adopted the data set consisting the remission time of 128 bladder cancer patients to demonstrate the performance of
our proposed BL2PFD.These data were also studied by Zea et al. (23) and Lee andWang (24). The remission times in months are
given: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54,
2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34,
4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09,
7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75,
11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14,
17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01,46.12 ,79.05.
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We have compared our proposed BL2PFD with the Beta Exponentiated Pareto distribution (BEPD) by McDonald‘s Power
function distribution (McPFD) by Haq et al. (14), Kumaraswamy Power function distribution (KPFD) by Ibrahim (15), Beta
exponentiated Pareto (BEPD) by Zea et al. (23), Marshall-Olkin Power Lomax distribution (MOPLx) by Haq et al. (25), and
Power function distribution (PFD).

Fig 3. TTT Plot for Bladder Cancer Data

The TTT-plot of the remission time(in month) for bladder cancer patients is exhibited in Figure 3 , we may see that the
Hazard rate function has little bit bathtub shape, So, we may easily fit BL2PFD on the bladder cancer data.

Table 4. “Statistics of bladder cancer data”
Models -logL AIC BIC CAIC
BL2PFD 401.2683 810.5365 822.586 810.8644
McPFD 811.5785 821.9553 811.9064 816.2008
KPFD 814.0711 822.6037 814.2662 817.5378
MOPLx 827.075 832.483 825.5162 847.3287
BEPD 826.1318 837.5085 826.4596 830.7540
PFD 942.4546 945.2988 942.4866 943.6102

From Table 4 , we may see that BL2PFD provides better fit for the above data set as it provides minimum AIC, BIC, CAIC,
HQIC.

4.2 Failure Times Data of Air-Conditioned System

The 2nd data set is reported by Aarset (26) Dallas (1), which corresponds to the 30 failure times of air-conditioned system of an
airplane. The data are as follows: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16,
90, 1, 16, 52, and 95.

We have compared BL2PFD with the alpha power transformed inverse exponential (APTIE) distribution by Dey et al. (27),
Marshall Olkin length biased exponential (MOLBE) distribution by ul Haq et al. (28), APT invertedWeibull (APTIW) distribu-
tion by Ramadan andMagdy (29), APT Pareto (APTP) distribution by Ihtisham et al. (30) and Alpha Power Transformed Inverse
Lomax distribution (APTIL) by ZeinEldin et al. (31).
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Fig 4. Estimated pdf and cdf curves for Bladder CancerData

Fig 5. TTT Plot for Failure Times Data of Air-Conditioned System
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The TTT-plot is displayed in Figure 5 , which indicates that the HRF associated with the data set has a bathtub shape, since
the plot shows a first concave curvature. So, we can easily fit BL2PFD on the failure time’s data of air-conditioned system.

Table 5. “Statistics of air-conditioned system”
Distribution -logL AIC BIC CAIC
BL2PFD 143.0891 294.735 300.6473 296.5248
APTIL 151.910 309.819 314.023 311.652
APTIW 153.147 312.293 316.497 314.653
APTIE 153.372 310.744 313.546 312.847
APTP 156.025 314.169 316.972 316.235
MOLBE 155.336 314.673 317.475 317.984

Fig 6. Estimated DensityPlot for Failure Times Data of Air-Conditioned System

From Table 5 , we may see that BL2PFD provides better fit for the above data set as it provides minimum AIC, BIC, CAIC,
HQIC.

5 Conclusion
Wehave proposed a new distribution called Beta Lehmann-2 Power function distribution (BL2PFD).This distribution can have
applications in the fields of reliability, economics, actuaries and survival analysis. We have studied the properties of the new
distribution including moments, survival function, hazard function, inverse moments, conditional moments, Lorenz curve,
incomplete moments and order Statistics. We have also characterized the distribution by conditional variance. Data sets from
different scenarios of applied sciences are used to show the efficiency of the proposed model over the already available models.
It is hoped that the findings of this study will be useful for researchers in different field of applied sciences.
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