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Abstract
Objectives: This review is focused on the effect of macronutrients (nitro-
gen, carbon and phosphorus) on biomass production of microalgae especially
concerned with biofuel.Methodology: The keyword search included "microal-
gae cultivation", "nitrogen sources", "phosphorus sources", "organic carbon",
"biodiesel", "biofuel", "carbon dioxide", "inorganic carbon", "macronutrient
deprivation", "macronutrient limitation", "lipid" and "organic waste" to search
the published journals in ScienceDirect, Scopus, Springer, and Google Scholar.
The search was performed from December 2019 until Mac 2020 to collect
all the journals and books that are published between 2006 and 2020. The
effect of each macronutrient (nitrogen, carbon and phosphorus) on microalgal
growth of the control and the samples were compared using biomass pro-
ductivity, concentration and biochemical content in each published article.
Findings: Review shows that nitrogen has more pernicious effect than other
macronutrients on most microalgal growth and lipid production. The concen-
trations and types of macronutrients have remarkable effects on the growth of
microalgae; hence these criteria must be chosen scrupulously to achieve the
desired biomass and metabolite production. In order to improve the biomass
and biochemical productivity in concomitant with the cost reduction, replace-
ment of cheap organic waste, genetic engineering of microalgae and two-stage
hybrid system have been suggested to simultaneously maximize the biomass
and biochemical production. The future research should focus on other bio-
chemical contents such as carbohydrates, proteins and pigment to achieve
the biorefinery context which can increase the profit. Besides, economic factor
such as factorial design should be included in the future research to obtain the
best combined factors with the maximum profit and minimal cost.
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1 Introduction
Microalgae-derived biofuel has several superior advantages over edible plant oil derived biofuel (1). High lipid pro-
ductivity and fast biomass generation without contend arable land for food production render microalgae become
ideal biofuel sources. The vast coastlines including creeks, mangroves and seashore waterlog areas can be used as
microalgal arable land. Somemicroalgae do not necessarily require freshwater to grow and would not exacerbate the
global freshwater crisis. Oppositely, some microalgae can effectively remove the pollutants from wastewater (2; 3).
Moreover, the desired biochemical content of microalgae can be achieved by altering nutrient composition or envi-
ronmental conditions and the outcome is feasibly detected within several weeks (4). Despite of lipids, other high
biomolecules possessed by microalgae can be converted into high value-added products and biofuel resources.

Previous studies have revealed that factors such as types of microalgae, nutrients composition, types of cultivation
medium, carbon dioxide concentration, temperature, photoperiod, light intensity, salinity and pH directly affect the
biomass and biochemical content of microalgae (5). Among these factors, nutrient is a prime factor that determine
the microalgal growth and metabolites composition. Several reviews have briefly discussed the importance of nutri-
ents on microalgal growth (4; 5; 6); but the mechanism of how these nutrients affect the microalgal growth and
metabolites is still untapped. Understanding the effect of nutrients on microalgal growth and its mechanism can
help to attain the maximum production efficiency whilst precluding any unnecessary dissipation.

Thepresent review is solely focused on the effect ofmacronutrients (nitrogen, carbon andphosphorus) on biomass
production of microalgae followed by the elucidation of the possible mechanism behind these macronutrients.
Therefore, other factors such as temperature, photoperiod, light intensity, pH and salinity conditions are not be a part
of this review.The aim of this review is to provide a glimpse for the better understanding on how the macronutrients
(nitrogen, carbon and phosphorus) affect the microalgal growth for biofuel production.

In this study, the cited bibliographic references were extracted from published journals and books. The keywords
include “microalgae cultivation”, “nitrogen sources”, “phosphorus sources”, “organic carbon”, “biodiesel”, “biofuel”,
“carbon dioxide”, “inorganic carbon”, “macronutrient deprivation”, “macronutrient limitation”, “lipid” and “organic
waste” were used to search the published journals in ScienceDirect, Scopus, Springer, and Google Scholar. The rele-
vant literatures were chosen by scrupulously analyzing abstract and using keywords to search through all the content
of literatures.Then, the content of literature was scrutinized to extract the significant information related to this pro-
posed review. The search was performed from December 2019 until Mac 2020 to collect all the related journals and
books that are published between 2006 and 2020. As most of the research papers cited were carried out in labora-
tory with “one-factor-at-a-time”, the commentaries in this review might be different with those performed at the
outdoor or with factorial design. Moreover, some vocabularies such as nutrient deprivation, limitations and low-
concentrations and stress were found out to have similar meaning in different journals.

2 Macronutrients Affecting Microalgal Growth and Biochemical Composition

2.1 Nitrogen

Nitrogen is an essential component of proteins, chlorophylls, nucleic acid, enzymes, and other nitrogen-containing
compounds that are indispensable in maintaining the microalgal growth. Extensive studies have indicated that
microalgal biomass productivity was decreased during nitrogen starvation or limitation due to perturbation of the
cell division and photosynthetic activities. By contrast, nitrogen abundance promotes the cell growth and cell divi-
sion due to high photosynthesis efficiency (7; 8).

Generally, lipid and carbohydrate storage of microalgae are increased rapidly whereas protein content is plum-
meted during nitrogen starvation or limitation compared to medium supplemented with abundant nitrogen (7; 9;
10; 11). Interestingly, Li et al. (12) observed varied results which Chlorella vulgaris JNU13 cultivated inmediumwith
nitrogen-repletion was capable to accumulate more lipid content at the late phase of cultivation. Similar results were
also reported by Jerez (9) and Kim et al. (13) who used Chlorella fusca BEA1005B and Tetraselmis sp. respectively.
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This erratic phenomenon could be explained with continuous aeration of CO2 or air throughout the cultivation
which sufficient carbon source is provided for lipid biosynthesis.

When nitrogen is scarce, either in nitrogen starvation or deprivation, photosynthetic apparatus in photosynthetic
system II such as chlorophyll and thylakoid membrane are degraded (9; 14). Accordingly, the flow of electrons from
the photosystems to the electron transport chain is impaired, and the reactive oxygen species (ROS) are formed.
Antioxidant defense is subsequently activated but ROS are aggregated along with prolonged nitrogen starvation
therefore create the permanent damage to the cells (15). Interestingly, these exogenous oxidant stresses induce signif-
icantly of the lipid accumulation, especially triacylglycerol (TAG) which is suitable used as biodiesel feedstock (15).
On the other hand, Safdar et al. (16) revealed that during the extended nitrogen starvation, enzymes of tricarboxylic
acid (TCA) cycle are downregulated whereas enzymes of lipid biosynthesis are upregulated. This in turn redirect
substrate of citrate from TCA cycle to lipid biosynthesis ( Figure 1). The possible reason behind a trigger in the lipid
accumulation under nitrogen starvation might be the requirement of substantial energy of adenosine triphosphate
(ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) (17).The TAG synthesis could reduce oxidation
stress by serving as a receptor for dissipation of the excess electron of ROS.

Fig 1. Simplified diagram of microalgae metabolisms (18). G3P: glyceraldehyde-3-phosphate.

Some researchers have also analyzed the effect of different nitrogen sources on microalgal growth and their
metabolite composition ( Table 1). Most of the microalgae are capable of utilizing nitrate, nitrite, urea and ammo-
niumwith different responses on the basis of species (19; 20). Urea is favorable for large-scale microalgae cultivation
because of its low cost compared to other sources (21). In several studies, the utilization of nitrate and urea as nitrogen
source results in higher biomass and lipid content than that of using ammonium as nitrogen source (20; 21; 22; 23). In
contrast, Chlorella variabilis with optimum ammonium concentration was demonstrated to have the better growth
than those utilized urea and nitrate. On the downside, the cells growth was reduced beyond optimum ammonium
concentration. The inhibitory effect on cell growth by ammonium can be elucidated by two possible reasons. The
pH in the medium with ammonium usually is acidic and it is likely attributed to the release of hydrogen ion during
ammonium assimilation (24). The acidic environment is unpleasant for most of the microalgal growth. Second, the
excessive transport of ammonium to the cells can forbid some enzymes activity and ATP formation in the chloro-
plast, results in the inhibition of photosynthesis (25).

While very few studies focused on the effect of nitrogen sources on lipid accumulation and composition, the
effect on carbohydrate and protein is still untapped. Different nitrogen sources can diversify lipid accumulation and
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composition (21; 26; 27; 28) therefore affect biodiesel quality. It is noteworthy to mention that nitrogen sources
that superior for microalgal growth are not necessarily promote microalgae to generate fatty acid that suitable for
biodiesel. Nannochloropsis salina supplemented with urea was grow faster and had the highest cell density than
nitrate and ammonium. However, TAG accumulation was the lowest due to small cell size (29). Moreover, Zhan et
al. (24) demonstrated the high lipid accumulation induced by nitrogen sources do not ensure produce high amount
of TAG using the same nitrogen sources. Thus, it is imperative to control nitrogen sources and concentrations in
order to attain the desirable metabolite amount and composition.

Table 1. Impact of nitrogen source and concentrations on microalgal metabolites change
Microalgae
species

Type of
medium

Nitrogen
sources

Concen-
tration
(g/L)

Other specific experiment
factor (if available)

Biomass
productivity
(mg/L/d)

Metabolite (%) Ref

Lipid Protein Carbs
Nannochloropsis
salina

f/2 NaNO3 18.75 30 ◦C under 150 µmol
photons m-2 d-1 with 12:12
h (light: dark) photoperiod

0.53 g/L 59.3 - - (8)

Nannochloropsis
salina

f/2 NaNO3 75 30 ◦C under 150 µmol
photons m-2 d-1 with 12:12
h (light: dark) photoperiod

0.61 g/L 34.6 - - (8)

Chlorella fusca
BEA1005B

BG-11 NaNO3 0 1.5 % CO2 (v/v) in 28-32
◦C under 1200 µmol pho-
tons m−2 s−1

250 27 9 49 (9)

Chlorella fusca
BEA1005B

BG-11 NaNO3 75 1.5 % CO2 (v/v) in 28-32
◦C under 1200 µmol pho-
tons m−2 s−1

820 31 18 29 (9)

Chlorella vul-
garis

BG-11 NaNO3 5.8
mM

1 % CO2 (v/v) in 25 ◦C
under 300 µmol photons
m−2 s−1 with 24h: 0h
(light: dark) photoperiod

4750 mg/L 9.5
ρg/cells

0.2
ρg/cells

5.0
ρg/cells

(12)

Chlorella vul-
garis

BG-11 NaNO3 17.6
mM

1 % CO2 (v/v) in 25 ◦C
under 300 µmol photons
m−2 s−1 with 24h: 0h
(light: dark) photoperiod

7130 mg/L 12
ρg/cells

2.5
ρg/cells

2.5
ρg/cells

(12)

Tetraselmis sp.
KCTC 12236BP

f/2
medium
without
Na2SiO3

NaNO3 0 mM 0.2 vvm air in 20 - 25 ◦C
under 110 - 120 µmol pho-
tons m−2 s−1

78 19.9 - - (13)

Tetraselmis sp.
KCTC 12236BP

f/2
medium
without
Na2SiO3

NaNO3 0.88
mM

0.2 vvm air in 20 - 25 ◦C
under 110 - 120 µmol pho-
tons m−2 s−1

110 21.3 - - (13)

Chlorella vari-
abilis

Modified
BG-11

NaNO3 1.5 25 ± 2 ◦C under 3.8 klux
with aeration rate of 300
L/h

1300 mg/L 15.2 - - (19)

Tetraselmis sp. Artificial
seawater
with f/2
nutrient

Yeast
extract

8.82
mM

20 - 25 ◦C under 100 -120
µmol photons m-2 s-1 with
24 h: 0 h (light: dark) pho-
toperiod

140000 19.6 45.0 19.7 (20)

Tetraselmis sp. Artificial
seawater
with f/2
nutrient

NaNO3 8.82
mM

20 - 25 ◦C under 100 -120
µmol photons m-2 s-1 with
24 h: 0 h (light: dark) pho-
toperiod

140000 19.6 45.0 19.7 (20)

Monoraphidium
sp. SB2

Artificial
medium

KNO3 3.6
mM

pH 6.8, 25 ◦C under 25
mmol photons m-2 d-1
with 14:10 h (light: dark)
photoperiod and shaken at
120 rpm

93 31.5 - - (23)

Continued on next page
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Table 1 continued
Microalgae
species

Type of
medium

Nitrogen
sources

Concen-
tration
(g/L)

Other specific experiment
factor (if available)

Biomass
productivity
(mg/L/d)

Metabolite (%) Ref

Chlorella sp. HQ Modified
BG-11

NaNO2 0.015 25 ◦C under 60 µmol pho-
tons m-2 s-1 with 14 h: 10 h
(light: dark) photoperiod

1.87 cells
mL-1 d-1

44.16 - - (24)

Scenedesmus
Dimorphus

BG-11 Beef
extract

- 25 ◦C 85.8 30.28 1.94 23.98 (30;
2)

Scenedesmus
Dimorphus

BG-11 NaNO3 - 25 ◦C 144.17 21.40 7.40 23.98 (30)

Ankistrodesmus
sp.

ASM-1 NaNO3 0.04 0.01 g/L P and 5.0 g/L
NaCl; 22 ± 2 ◦C under
1.4 mmol photons m-2 d-1
with 12:12 h (light: dark)
photoperiod

18.2 27.6 - - (29)

Ankistrodesmus
sp.

ASM-1 NaNO3 0.17 0.01 g/L P and 5.0 g/L
NaCl; 22 ± 2 ◦C under
1.4 mmol photons m-2 d-1
with 12:12 h (light: dark)
photoperiod

36.8 18.0 - - (29)

Chlamydomonas
sp.

ASM-1 NaNO3 0.04 0.01 g/L P and 5.0 g/L
NaCl; 22 ± 2 ◦C under
1.4 mmol photons m-2 d-1
with 12:12 h (light: dark)
photoperiod

45.3 36.5 - - (29)

Chlamydomonas
sp.

ASM-1 NaNO3 0.17 0.01 g/L P and 5.0 g/L
NaCl; 22 ± 2 ◦C under
1.4 mmol photons m-2 d-1
with 12:12 h (light: dark)
photoperiod

88.0 10.9 - - (29)

Scenedesmus
vacuolatus

BG-11 NaNO3
and
glu-
ta-
mate

10 mM
and 1
mM

25 ◦C under 10 Wm-2 with
16 h: 8 h (light: dark) pho-
toperiod

700 mg/L 16.02 130
µg/mL

140
µg/mL

(31)

Chlorella
pyrenoidosa

Selenite
enrich-
ment
medium

NH4
+ 0.28 pH 8.3-8.5, 25 ◦C under

127 µmol photons m-2 s-1
with 12 h: 12 h (light: dark)
photoperiod

18.5 30.2 46.5 15.5 (32)

Chlorella
pyrenoidosa

Modified
BG-11

NaNO3 0 pH 8.0, 25 ◦C under 140
µmol photons m-2 s-1

0.74 52.03 - - (33)

Chlorella
pyrenoidosa

Modified
BG-11

NaNO3 1.5 pH 8.0, 25 ◦C under 140
µmol photons m-2 s-1

0.97 34.68 - - (33)

Synechococcus
sp.

Modified
BG-11

NaNO3 0 pH 8.0, 25 ◦C under 140
µmol photons m-2 s-1

0.28 27.41 - - (33)

Synechococcus
sp.

Modified
BG-11

NaNO3 1.5 pH 8.0, 25 ◦C under 140
µmol photons m-2 s-1

1.81 18.90 (33)

Chlorella
sorokiniana

BBM NaNO3 0.030 air flow of 0.1 vvm, 2%
CO2 and 25 ± 1 ◦C under
300 µmol photons m-2 s-1
with 24 h: 24 h (light: dark)
photoperiod

450 41.3 41.5 15.1 (34)

2.2 Carbon

Carbon plays a critical role in microalgal growth and biochemical synthesis of microalgae. Carbon sources either
in inorganic or organic form can be supplied from microalgae medium. Different sources and concentrations of
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carbon have significant effects on the microalgal growth, metabolite content and composition in microalgal cells. In
the inorganic form of carbon sources, carbon dioxide (CO2) is more favorable than bicarbonate salt, attributes to the
benefits of greenhouse gas mitigation and low cost (35). The optimal CO2 concentration for microalgae often falls
between the ranges from 2 to 15 % (v/v) and might species-specific ( Table 2). Typically, low CO2 level is insufficient
for microalgal growth, whereas high CO2 level often exerts detrimental effect (35; 36; 37). Chloroplast damage and
organelles disorder which in turn render cell lysis were observed in high CO2 level (38).

Manymicroalgae have evolvedCO2 concentratingmechanism (CCM) to enhance the efficiency of photosynthetic
carbon fixation by raising the CO2 level around carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase
(RuBisCO) which responsible for the first step of carbon dioxide fixation ( Figure 2). CCM contains transporter
for actively transport bicarbonate ions into the cells and a key enzyme of carbonic anhydrase (CA) that catalyzes
interconversion between CO2 and bicarbonate ion for RuBisCO (39). CCM is induced when the external inorganic
carbon is limited. However, carbon source becomes a limiting factor for the grow of microalgae and results in idle
of microalgal growth in very low CO2 level. Besides, the enzyme of RuBisCO from microalgae is known to have
very low affinity to CO2. On the other hand, oxygen gas (O2), one of the products of photosynthesis also acts as
a substrate for RuBisCO. When the ratio of O2 to CO2 is high, RuBisCO uses O2 rather than CO2 to catalyze the
energy wasting photorespiration (40). Hence, the presence of O2 might compete with low level of CO2 and avert
carbon fixation. Oppositely, high CO2 level restrains microalgal growth. High CO2 level usually concomitants with
the reduction of pH which ascribes to the dissociation of carbonic acid (H2CO3) into carbonate ions (CO3

2-) and
hydrogen ion (H+) (41). Although CCM can get sufficient CO2 under high CO2 level condition, previous study
implied that the enzymes of CCM are suppressed in acidic pH (42) and this damage is irreversible under prolonged
high CO2 level (43).

Fig 2. A general diagram for CO2 concentration in microalgae. The diagram is slightly changed from (5) .

The CCM from microalgae is still not clearly explicated especially for those competent to thrive under very high
CO2 level. Three indigenous microalgal isolates viz., Desmodesmus sp., Kirchneriella sp. and Acutodesmus sp iso-
lated through CO2-tolerance screening can grow in 30% (v/v) of CO2 level. The biomass concentration, specific
growth rate, chlorophyll and carbon dioxide fixation rate were enhanced two to four-fold after a period of sixteen
days cultivation (44).
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Apart from inorganic carbon, microalgae can harness organic carbon as carbon source. Glucose is a prevalent
organic carbon consumed by many microalgae for rapid cell growth and high biochemical accumulation because
of its easy assimilation into intermediate product of many metabolic pathway (45; 46; 47). Other organic carbon
sources including sucrose (48), glycerol (49), galactose (50), xylose (51), gluconate (52) are also suitable for some
microalgae. The utilization of organic carbon is species-dependent, and the effects are summarized in Table 2. In
an investigation on the effect of organic sources on marine microalgae of Pavlova lutheri, sucrose was identified
as prime organic carbon source for growth, followed by glucose, glycerol and acetate (53). Notwithstanding, some
microalgae are devoid ofmetabolize sucrose. Sharma et al. (54) reported stunt growth was observed in four Chlorella
sp. that grew in medium supplemented with sucrose whereas microalgae with optimal growth was ensued from
medium supplemented with glucose. The differences on the metabolism of these organic carbon sources in stimu-
lating microalgal growth might be dependent on the availability and activation of suitable hexose transporters such
as monosaccharide-H+ symport to catalyze the transport of sugars across the cell membrane (55; 56). Hexose trans-
porters have been identified in Chlorella sp. but still not imparted in other microalgae species. Moreover, leverage
of the organic carbon is also as contingent on the availability of metabolic pathway to transform the organic carbon
into usable intermediate product (57).

Similar to inorganic carbon, the concentration of organic carbon sources in culture medium must be carefully
modulated. Appropriate amount of organic carbon sources can induce microalgal cell growth andmetabolites accu-
mulation whereas excessive amount can decline the growth and metabolites accumulation (53). Danesh et al. (49)
cultivated Isochrysis galbana under different concentration of glycerol. The results showed that the cell density and
lipid content were reduced at the concentration exceed 25 mM. Besides, Chai et al (58) revealed galactose had no
effect onChlorella sorokiniana growth and lipid accumulation in all tested concentrationwhile xylose had inhibitory
effect on C. sorokiniana.

The effects of CO2 and organic carbon on total amount of microalgal metabolites composition especially lipid
have been investigated in literature studies ( Table 2). Many researchers (35; 58; 59; 60)proved that appropriate CO2
level under autotrophic condition stimulated the biosynthesis of lipid content whereas high CO2 level (> 5 to 10%)
stifled lipid accumulation. On the other hand, apparent escalating of lipid content was not observed in microalgae
that can thrive in highCO2 level (44; 61).The intensity of the reduction or enhancement in carbohydrate, protein and
lipid composition is species-dependent. Different microalgae responded individually with varied biochemical com-
position (62; 63; 64). Zhang et al. (60)reported that the protein content in Chlorella pyrenoidosa relatively constant
regardless of the change in CO2 concentration while carbohydrate and lipid content increased with CO2 concen-
tration up to 3% followed by declined with further increase in CO2 concentration. Whereas the carbohydrate and
lipid content of Scenedesmus bajacalifornicus BBKLP-07 elevated with CO2 concentration up to 25% while protein
content decreased in 20 and 25% of CO2. Consequently, it is difficult to judge the influence of CO2 level on these
biochemical compositions. Different microalgae species have different cell size, shapes, CCM and growth rate hence
their sensitivity to CO2 concentration is varied. Small or slow growing cells are less sensitive to the declined CO2
concentration (65). In other word, leverage of CO2 concentration alone might not an efficient strategy for certain
species to stimulate the high microalgal growth with low CO2 concentration.

The effects of organic carbon sources on themicroalgaemetabolites on lipid content have been investigated by sev-
eral studies. However, limited studies focused on the effects of protein and carbohydrate production. Despite of the
type of organic carbon source, maximum lipid productivity is also relied on the concentration and presence of light.
Moreover, the responses of metabolite accumulation under the conditions thereof are species-dependent (54; 66).
Several literature studies advocated the organic carbon that induced maximummicroalgal biomass and also exerted
maximum lipid production (30; 57; 67; 68; 69). In some cases, organic carbons that induce maximum biomass are
not necessary render maximum lipid production. In the scrutiny of organic carbon sources on Monoraphidium
minutum, 15 g/L fructose and 15 g/L glucose promoted maximum biomass productivity of M. minutum, how-
ever, the maximum lipid production was ensued from 20 g/L fructose and 5 g/L glucose amended medium which
induced mediocre biomass productivity (70). The supplementation of 3 g/L glucose has been proved as optimal car-
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bon sources for stimulating high cell density of C. pyrenoidosa but contemporaneous with significantly curtailing of
lipid and protein content (56). Similar result was also attained by He et al. (71) which glucose promoted the greatest
biomass of Scenedesmus sp. LX1 but lowest lipid content. Medium imbued with other sugars such as sucrose, mal-
tose and xylose did not buoy up inferior biomass but high lipid accumulation was occurred in these mediums. This
occurrence probably due to the nutrient trauma caused by the organic sugars.

Generally, concentration of organic carbon wields the hormesis effect on microalgal metabolite accumulation.
Low concentration of organic carbon has no significant effect on lipid production. On the other hand, lipid pro-
duction is balked in concentration beyond the optimum (72; 73). Supplementation of 3.0 g/L glucose and galactose
notably reduced the lipid content of C. pyrenoidosa by 27.5% and 27.9% (50). Addition of 5.0 g/L glucose remarkably
dampened lipid content of Phaeodactylum tricornutum (74). Wan et al. (73) revealed that large amount of glucose
still remained in the medium after cultivated with C. sorokiniana. In other word, high concentration of glucose
molecules was not transported into microalgal cell and consumed sequentially. Further analysis of gene expression
disclosed that the genes coded for lipid and RuBisCO biosynthesis were downregulated in the presence of excessive
concentration of glucose. It should be noted that fatty acid composition and amount are varied with the supplemen-
tation of different organic carbon sources (70) and different concentrations of carbon source (75).

Table 2. Impact of carbon source and concentrations on microalgal metabolites change
Microalgae
species

Type of
medium

Carbon
sources

Concen
tra-
tion

Other specific
experiment factor
(if available)

Biomass
productivity
(mg/L/d)

Metabolite (%) Ref

Lipid Protein Carbs
Isochrysis gal-
bana

f/4 CO2 10% Open raceway; 10-
30 ◦C under 447 -
1081 µmol photons
m-2 s-1 in photo-
bioreactor

142.42 g/m2/d 40.7 8 - 45.98 (35)

Nannochloropsis
sp.

f/4 CO2 10% Open raceway; 10-
30 ◦C under 447 -
1081 µmol photons
m-2 s-1 in photo-
bioreactor

149.92 g/m2/d 37.54 - 46.88 (35)

Scenedesmus
bajacalifornicus

Modified
BG-11

CO2 0.04% pH 7 27 15.48 23.03 6.88 (37)

Scenedesmus
bajacalifornicus

Modified
BG-11

CO2 15% pH 7 61 20 32.89 20 (37)

Desmodesmus
sp.

BG-11 CO2 10% 25 ± 1◦C under 30
µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

97 21.4 - 50.33 (44)

Desmodesmus
sp.

BG-11 CO2 0.03% 25 ± 1◦C under 30
µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

25 11.5 - 43.82 (44)

Acutodesmus sp BG-11 CO2 20% 25 ± 1◦C under 30
µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

98 18 - 49.87 (44)

Acutodesmus sp BG-11 CO2 0.03% 25 ± 1◦C under 30
µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

32 6.3 - 41.63 (44)

Kirchneriella sp. BG-11 CO2 20% 25 ± 1◦C under 30
µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

109 14.8 - 50.49 (44)

Continued on next page
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Table 2 continued
Kirchneriella sp. BG-11 CO2 0.03% 25 ± 1◦C under 30

µEm-2 s-1 with 16 h:
8 h (light: dark) pho-
toperiod

37 9.6 - 47.74 (44)

Chlorella sp. Y8-
1

modified
Walne

CO2 10%
(2
vvm)

30 ◦C under 4300
lux with 24 h: 0
h (light: dark)
photoperiod

220 mg/L 16.5 - - (57)

Scenedesmus
quadricauda
FACHB-1297

BG-11 CO2 - 25 ± 1 ◦C under 60
µmol photons m-2

s-1

18.6 20.92 26 - (72)

Auxenochlorella
protothecoides

SAG CO2 1 g/L 26 ± 1 ◦C under
80 µmol photons
m-2 s-1with 18 h:
6 h (light: dark)
photoperiod

38 6.84 - - (75)

Chlorella vul-
garis ESP-31
(wild type)

BG-11 CO2 25%
(0.1
vvm)

Indoor photobiore-
actor; 40 ◦C under
300 µE photons m-2

s-1 with 14 h: 10
h (light: dark) pho-
toperiod

120 3.72 - - (76)

Chlorella vul-
garis ESP-31
mutant 283

BG-11 CO2 25%
(0.1
vvm)

Indoor photobiore-
actor; 40 ◦C under
150 µmol photons
m-2 s-1 with 12 h: 12
h (light: dark) pho-
toperiod

420 17.84 - 29.98 (76)

Chlorella vul-
garis CCAP
211/79

BBM with 3x
N and vita-
min

CO2 15% Blue luminescent
dye photobioreac-
tor; under 200 µmol
photons m-2 s-1

90.12 25.6 - - (77)

Scenedesmus
dimorphus

BB CO2 15%
(0.26
vvm)

25± 1 ◦C under 150
µmol photons m-2

s-1 with 12 h: 12
h (light: dark) pho-
toperiod

80 19.6 58.93 (63)

Scenedesmus
obliquus

BB CO2 14.1% 25± 1 ◦C under 150
µmol photons m-2

s-1 with 12 h: 12
h (light: dark) pho-
toperiod

45 22.8 - 23.6 (63)

Chlorella vul-
garis

BG-11 Glycerol
and
CO2

0.5
g/L
and
10%

22- 30 ◦C under
3000 lux with 16
h: 8 h (light: dark)
photoperiod

- 24.32 - - (54)

Chlorella sp. Y8-
1

modified
Walne

Sucrose 1 g/L 30 ◦C without light 170 mg/L 5.9 (57)

Chlorella sp. Y8-
1

modified
Walne

Sucrose
and
CO2

1 g/L
and
10%
at 2
vvm

30 ◦C under 4300
lux with 24 h: 0
h (light: dark)
photoperiod

450 mg/L 35.5 (57)

Continued on next page

https://www.indjst.org/ 2253

https://www.indjst.org/


Chai et al. / Indian Journal of Science and Technology 2020;13(22):2245–2263

Table 2 continued
Chlorella sp Modified

TAP
Glycerol
and
CO2

16
g/L
and
0.5%

30 ◦C under 48
µmol photons
m-2 s-1with 16 h:
8 h (light: dark)
photoperiod

1440 43.2 - - (66)

Scenedesmus
Dimorphus

BG-11 Glucose 1%
(w/v)

25 ◦C without light 180 32.7 1.57 13.88 (30)

Scenedesmus sp.
LX1

Modified
BG-11

Glucose 10
g/L

pH 7, 25 ± 1 ◦C
without light

156.36 1.28 - - (71)

Scenedesmus sp.
LX1

Modified
BG-11

Sucrose 10
g/L

pH 7, 25 ± 1 ◦C
without light

9.09 26.66 - - (71)

Auxenochlorella
protothecoides

SAG Glucose
and
CO2

1 g/L 26 ± 1 ◦C under
80 µmol photons
m-2 s-1with 18 h:
6 h (light: dark)
photoperiod

58 19.38 - - (75)

2.3 Phosphorus

Phosphorus is an indispensable nutrient for the formation of nucleic acids, phospholipids and energy molecules in
microalgal cells. The utilization of phosphorus is species-dependent and the effects are summarized in Table 3. The
phosphorus acquisition varies greatly betweenmicroalgal species. Compared to nitrogen, phosphorus starvation has
little detrimental effect onmicroalgal growth (29; 78). Similar to nitrogen and carbon, too low concentration of phos-
phorus unable to support microalgal growth thereby result in reduction of biomass concentration (79). In contrast,
when the external phosphorus is abundant, the excess inorganic phosphorus will be deposited as polyphosphate in
microalgal cells. In the condition of phosphorus deprivation, microalgae still can anabolize the polyphosphate and
continue to grow as long as nitrogen supply is still sufficient. (80; 81; 82; 18; 83; 84). Besides, several types of trans-
porters such as vacuolar transporter chaperone are promoted to facilitate the external phosphate uptake (85; 86; 87).

In addition of external phosphorus uptake, photosynthesis and carbohydrate accumulation during phosphorus
starvation have been reported (86; 87). However, when the microalgae initiate stationary phase, chlorophylls are
gradually degraded and the genes involved in carbon fixation and glycolysis are upregulated in which acetyl-CoA
andNADH are synthesized for storage accumulation of either carbohydrates or lipids or both (84; 87). In this regard,
TAG biosynthesis is activated to ingest excess carbon and reduce energy generated from photosynthesis. As a result,
TAG is accumulated during phosphorus starvation (85; 86; 87).

Phospholipid is the main component for biosynthesis of microalgal cell membrane (88). In concomitant with
metabolisms thereof are carried out, Mühlroth et al. (82) evinced that the genes related to phospholipid degradation
were surged in microalgae during phosphorus starvation. In other words, phospholipids are degraded from cell
membrane in order to compensate the phosphorus acquisition. Alternatively, synthesis of non-phosphorus lipid
including sulfolipids and non-phosphorus glycolipids are diverted to substitute the phospholipidmembrane (81; 89).
Thismechanismmight allow themicroalgae to grow under phosphorus starvation. On the other hand, phospholipid
degradation releases glycerol-3-phosphate, fatty acid and diacylglyceride which could serve as precursors for TAG
biosynthesis.

Phosphorus starvation can eventuate to the apparent change in lipid composition. Lipid composition is varied to
the microalgal species. Saturated and unsaturated fatty acid in microalgae were gradually increased with the reduc-
tion of phosphorus concentration (90). Howbeit, synthesis of saturated and unsaturated fatty acid would be declined
if the phosphorus concentration is too low (91; 92). This occurrence is probably due to the low biomass concentra-
tion. It worth mentioning that fatty acid content is increased in different extent either in phosphorus starvation with
or without nitrogen sources (~0 mg/L). Isochrysis zhangjiangensis has higher amount of fatty acid in phosphorus
starvation with nitrogen sources (78) whereas reversed result was attained from Chlorella sp (83). Several studies
have investigated the effect of phosphorus onmicroalgal protein content. Since phosphorus is not a primary element
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in the protein, little effects on protein content were observed in phosphorus starvation (83; 86). Protein content did
not changed significantly and was slightly lower than the control (93; 94).

Large excessive amount (> ~45 mg/L) of phosphorus results in hormesis effect and hinder microalgal growth (88;
92). Li et al. (88) elucidated that the overabundant storage of polyphosphate granule in Chlorella regularis dis-
torted both cell membrane and cell wall. Meanwhile, Fu et al. (95) revealed that the contorted structure of excess
polyphosphate granule was observed concomitant with the mitochondrial and DNA disorder. Consequently, no
energy molecules were synthesized to sustain the metabolism which in turn induce the cell death.

Table 3. Impact of phosphorus concentrations on microalgal metabolites change
Microalgae
species

Type of
medium

P sources Conce-
ntration
(mg/L)

Other specific exper-
iment factor (if avail-
able)

Biomass
produc-
tivity
(mg/L/d)

Metabolite (%) Ref

Lipid Protein Carbs
Chlorella
pyrenoidosa

Modified
BG-11

K2HPO4 0 pH 8.0, 25 ◦C under
140 µmol photons
m-2 s-1

17.22 49.08 - - (33)

Chlorella
pyrenoidosa

Modified
BG-11

K2HPO4 40 pH 8.0, 25 ◦C under
140 µmol photons
m-2 s-1

17.22 29.56 - - (33)

Synechococcus
sp.

Modified
BG-11

K2HPO4 0 pH 8.0, 25 ◦C under
140 µmol photons
m-2 s-1

16.11 22.81 - - (33)

Synechococcus
sp.

Modified
BG-11

K2HPO4 40 pH 8.0, 25 ◦C under
140 µmol photons
m-2 s-1

16.11 17.06 - - (33)

Rhopalosolen
saccatus

ASM K2HPO4 and
Na2HPO4

0.32 25 ◦C under 400- 450
µmol photons m-2 s-1
with aeration of 43
L/min

28.75 19 - - (90)

Rhopalosolen
saccatus

ASM K2HPO4 and
Na2HPO4

0.65 25 ◦C under 400- 450
µmol photons m-2 s-1
with aeration of 43
L/min

35.83 13 - - (90)

Porphyridium
purpureum

ASW K2HPO4 0 pH 7.6 under 165
µmol photons m-2

s-1 with aeration of 1
or 3 L/min (contain
3% CO2)

425.0 2.32 21.22 36.28 (92)

Porphyridium
purpureum

ASW K2HPO4 35 pH 7.6 under 165
µmol photons m-2

s-1 with aeration of 1
or 3 L/min (contain
3% CO2)

808.57 5.88 22.26 32.74 (92)

Scenedesmus
obliquus

BG-11 K2HPO4 14 pH 7.5, 28 ± 2 ◦C
under 180 µE m-2 s-1

- 16 27.81 13.72 (93)

Scenedesmus
obliquus

BG-11 K2HPO4 0.035 pH 7.5, 28 ± 2 ◦C
under 180 µE m-2 s-1

- 9 31.18 15.78 (93)

Chlorella sp. BG-11 K2HPO4 32 µM 25± 2 ◦C under 30 µ
mol photons m-2 s-1

- 23.60 22.50 22.25 (83)

Messastrum
gracile

f medium Na2HPO4 ·
2H2O

4.54 µM 20 ◦C under 25 µE
m-2 s-1 with aeration

0.69 g/L 38.1 - - (84)

Messastrum
gracile

f medium Na2HPO4 ·
2H2O

145.2
µM

20 ◦C under 25 µE
m-2 s-1 with aeration

0.50 g/L 25.4 - - (84)

Chaetoceros
muelleri

f medium NaH2PO4 · 7 µM 22 ± 1 ◦C under 220
µmol photons m-2 s-1
without aeration

199.92 4.42 4.29 44.60 (86)

Continued on next page
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Table 3 continued
Chaetoceros
muelleri

f medium NaH2PO4 144 µM 22 ± 1 ◦C under 220
µmol photons m-2 s-1
without aeration

248.07 3.18 4.22 56.18 (86)

3 Future Recommendations
Microalgae has been identified as potential candidate for biofuel production. To serve the purpose, the lipid content
of microalgae have been studied worldwide. Although the microalgae consist of high amount of lipid which is com-
parable to other oil crops, no commercial production is established until now because of their mass production and
harvesting are not cost affordable as compared to fossil diesel (96).

Several hindrances should be tackled to turn microalgae production from lab scale to pilot scale and industrial
scale. In order to achieve industrial scale, economical mass production with high amount of biochemical products
must be attained. Expensive artificial medium used in lab scale is not feasible for mass production (97). In this sce-
nario, integrating wastewater and flue gas have been employed to cultivate microalgae (4; 98; 99). This integrating
approach is not only could offset the capital and operation cost, but also can help the mitigating air and water pollu-
tions. In particular, microalgal cultivation in wastewater is mainly performed at lab scale whereas pilot scale study
is still scarce. Besides, several obstacles might be faced in pilot scale study such as presence of invading microor-
ganisms, fluctuating compositions in wastewater, high turbidity and light penetration (100; 101; 102). These issues
should be properly tackled in the future study.

Despite of lipids, proteins and carbohydrates can be obtained from microalgae. These metabolites have shown
to possess high nutritional value which can be utilized in agricultural application and biogas production (103;
104). Simultaneous production of these metabolites as co-products is another smart tactic to increase the profit.
The research relevant to proteins, carbohydrates and pigments should be performed concomitant with the lipid of
microalgal study.

Reducing environment pollution is the main purpose of developing microalgal biomass as biofuel.Thus, it is crit-
ically important to ensure the extraction process is eco-friendly. Currently, extraction using conventional solvent
extraction is more favorable as they are inexpensive and easy to perform. Howbeit, the solvents used such as chlo-
roform are toxic and possess a danger to environment and human. Moreover, the volume of solvent required will
become enormouswhen extraction process is carried out in industrial scale. In this regard, a cleaner and eco-friendly
production is vital in present day to avoid exacerbation of environmental pollution. Recently, green solvents such as
deep eutectic solvents (105), bio-derived solvent (106), ionic liquids (107) and switchable solvents (108) have been
invented. Extraction process of microalgal biomass using recyclable green solvents thereof is recommended to be
studied.

Selection of suitablemicroalgae is a critical factor to achieve the economicalmass production.As such, the selected
microalgae should be able to produce high amount of desired products while easily to be extracted. Microalgal
cell morphology such as thin cell wall, large cell size and filamentous allowed easier separation from the medium.
Whereas small cell size and thick cell wall render the harvesting process become costly and energy consuming (109).
To select a microalgal strain with high biochemical yield per unit cultivation area, screening and isolating potential
microalgae from nature or wastewater can be performed in future study (110; 111). Development of high perfor-
mancemicroalgal strains through genetic engineering is another option for making economical feasible microalgae-
derived products (112; 113). Several researchers have revealed that genetic engineering can improve the biochemical
production of microalgae. For instance, the recombinant strain of Scenedesmus obliquus CPC2-G1 showed success-
fully increases in biomass and lipid productivity, at 16.3% and 84.9% higher than the wild-type strain (114). In
Nannochloropsis salina, overexpressing a bHLH transcription factor led to increase the biomass production with a
simultaneous increase of fatty acid methyl esters in lipid (115).

Genetic engineering could also render microalgae to acclimatize the harsh outdoor conditions with desired bio-
chemical production. For example, wild Chlorella sp. is difficult to thrive in the outdoor photobioreactors which
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frequently surpasses 40 ◦C at subtropical or tropical area due to sunlight irradiation during the daytime. After N-
methyl-N′-nitro-N-nitrosoguanidine mutagenesis and screening, mutated Chlorella sp. exhibited thermo- and high
CO2-tolerance in the indoor or outdoor photobioreactor with the high biomass and biochemical production (116).
However, the genetic modified organisms-derived products are still recognized as negative and not consented by
the public opinion. In this regard, more studies including genomics and proteomics analysis are utterly required to
exploit the understanding of the underlying genetic engineering and its safety to the environment.

There are various types of available microalgae cultivation system such as open system, closed system, offshore
cultivation and dark system. Open and closed systems are the prevalent systems among all the cultivation systems.
Open system such as open ponds and raceway ponds offers several benefits such as low operational and capital cost,
and minimal energy requirement. Nevertheless, open system is susceptible to high contamination risk, long growth
period, low controllable conditions and large area for construction. On the other hand, closed system which mostly
referred as bioreactor can overcome the problems of the open system. Closed system provides biomass with bet-
ter quality as it is performed at controllable conditions. Moreover, the bioreactor can be designed particularly in
compliance with the need of microalgae species. On the downside, the closed system requires high cost and high
energy to build up the construction and maintain the optimal conditions such as light and temperature. The biore-
actor also needs the oxygenmanagement. Too high concentration of oxygen in bioreactor will inhibit the microalgal
growth (117). Several literatures have indicated that the closed system can be more efficient when combined with
continuous cultures (118; 119). Continuous supply of nutrient can ensure high growth rate of microalgae but not
favorable for high lipid production of most microalgae as most microalgae produce lipid during stress. In order to
assure high biomass production with desired biochemical, two-stage hybrid system has been suggested (120). In
two-stage hybrid system, microalgae are initially cultured in nutrient-rich closed system to increase the cell den-
sity. When the microalgae reach the desired cell density, appropriate volume of microalgae culture is transferred
into the nutrient-poor open pond to induce biochemical production. Meanwhile, closed-system is replaced with
another fresh nutrient medium. The results revealed that two-stage hybrid system is more effective in biomass and
biochemical production compared to open and closed systems (120; 121; 122). Moreover, two-stage hybrid system
can mitigate the disadvantages of both open and closed systems. In spite of advantages, two-stage hybrid system is
more complex and laborious when transferring the microalgae from the nutrient-rich medium to the nutrient-poor
medium. In this manner, the development of advanced automate system will reduce the need of manual opera-
tion and ensure the uniform transfer of biomass. Moreover, integrating two-stage hybrid system with automation
for the auto control of the light intensity, aeration rate and temperature could help to increase the productivity in
accordance to the microalgal growth in the closed system. The program such as smart phone application could be
developed with automation system to allow operator to change the system when needed.

In most case, one-factor-at-a-time experimental design is still prevailing. Despite of macronutrient, other param-
eters such as pH (32; 42; 69), temperature (8; 23; 32), metal (123), light intensity (42; 68; 124) , salinity and pho-
toperiod (123) also have critical effects onmicroalgal growth and biochemical production.With the advancement of
information technology, low-cost and effective programming can be developed to allow the performing of factorial
design. On the other hand, expensive capital cost is one of the obstacles of microalgal biofuel therefore economic
factor should be included in the future to ascertain the best group of combined parameters for the lucrative biomass
and biochemical production.

4 Conclusion
Literature studies have confirmed that nitrogen has more pernicious effect than other macronutrients on most
microalgal growth and lipid production. Besides, the concentrations and types of macronutrients have remarkable
effects on microalgae hence must be chosen scrupulously to achieve desired biomass and metabolite production.
High or low supply of nitrogen, carbon or phosphorus have inhibitive effect on microalgal growth but might induce
certain metabolite accumulation. There is no universal medium that can be applied to cultivate all the microalgal
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strains with high biomass and metabolite production. An efficient medium should be based on microalgal strain
and desired metabolite. Normally, microalgae accumulate more lipids under nutrient deprivation, but biomass and
other metabolites are also compromised. This situation is not economical as simultaneous production of several
metabolites can maximize the profit in concomitant compensate for the cultivation cost. Consequently, an effective
strategy should be commenced in the near future to curtail this offset. Despite of concerning on lipid productivity,
carbohydrates and proteins need more research and development activities. To obtain high biomass and metabo-
lites accumulation with minimum cost, several innovative methods including wastewater cultivation with flue gas,
genetic engineering and automated two-stage hybrid system have been suggested. Additionally, economical factor
should be studied in the future using factorial design to confirm the best group of combined parameters for the
lucrative biomass and biochemical production.
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