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Periodic orbits in the planar restricted
photo-gravitational problem when the
smaller primary is an oblate spheroid

Ritesh Arohan1∗, Ram Krishan Sharma1

1 Department of Aerospace Engineering, Karunya Institute of Technology and Sciences,
Coimbatore, 641114, Tamil Nadu, India

Abstract
Background/Objectives: This study deals wit h the stationary solutions of the
planar circular restricted three-body problem when the more massive primary
is a source of radiation and the smaller primary is an oblate spheroid with its
equatorial plane coincident with the plane of motion. The objective is to study
the location of the Lagrangian points and to find the values of critical mass.
Also, to study the periodic orbits around the Lagrangian points. Methods: A
new mean motion expression by including the secular perturbation due to
oblateness utilized by (1,2) is used in the present studies. The characteristic roots
are obtained by linearizing the equation of the motion around the Lagrangian
points. Findings: The critical mass parameter µcrit (3,4), which decreases radia-
tion force, whereas it increases with oblateness when we consider the value of
newmeanmotion. Through special choice of initial conditions, retrograde ellip-
tical periodic orbits exist for the case µ = µcrit, whose eccentricity increases
with oblateness and decreases with radiation force for non-zero oblateness,
although there is slight variation in L2 location.

Keywords: Restricted three body problem; Lagrangian points; Eccentricity;
Oblateness; Critical mass; Radiation force; Mean motion.

1 Introduction
The three-body problem, in general, is about the study of three massive bodies (m1,
m2, m3) in space which affect one another by their gravitational forces. In the restricted
three-body problem, one of these three bodies are considered to be very small and that
it has a very less mass which does not affect the motion of the other two bodies called
primaries with masses m1 and m2, but it is affected by their mutual forces. The circular
restricted three-body problem (CR3BP) studies the motion of a body with a negligi-
ble mass under the influence of two bigger bodies, called the primaries, which revolve
around their center of mass in ‘n’ circular orbit. To make the problem more applicable
to real cases, perturbations are also included. Here, time (t) is the independent vari-
able on which the other variables depend. When the restricted three- body problem is
solved, it has been observed that there are 5 points on the plane of the primaries where
the gravitational forces of the primaries nullify each other and there is no gravitational
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pull for any object which is placed in these points.These points are called ‘Lagrangian Points’, ‘Libration Points’ or ‘Equilibrium
Points’ (L1 to L5). Among these 5 points, three are collinear (L1, L2, L3) which lie in the line connecting the two primaries.The
other two (L4 and L5) form equilateral triangles with the two primaries above and below the line connecting the primaries.

Since the Sun — the source of radiation — is almost spherical, and some of the planets like Saturn and Jupiter whose equa-
torial and polar radii are approximately 60400, 54600 and 71400, 67000 km, respectively, and sufficiently oblate, hence a mod-
ification is considered that the smaller primary (planet) is an oblate spheroid. The more massive primary, the Sun, is a source
of radiation. It is considered that the equatorial plane of the smaller primary is coincident with the plane of motion and only
the planar case has been studied.

In this paper, case consideredwhen the gravitation prevails. As the solar radiation pressure forceFp changes with the distance
by the same law as the gravitational attraction forceFg and acts opposite to it.Thus, the Sun’s resultant force acting on the particle
is

F = Fg −Fp = Fg

(
1− Fp

Fg

)
= qFg,

Where q = 1−Fp/Fg is the mass reduction factor constant for a given particle. It can be expressed in terms of particle radius
(a), density (δ ), and the solar radiation pressure efficiency factor k (in CGS units) as

q = 1−
(

5.6×10−5

aδ k
)

Many of the celestial bodies do not have an exact sphere shape. Instead, they have an oblate spheroid shape. An oblate
spheroid is obtained by rotating an ellipse about its minor axis i.e., the equatorial radius becomes longer than the polar radius.
This oblateness of the planets render a change to the mean motion of orbit of the primaries, because of the variation of gravi-
tation. The effect of oblateness is quantified by the term J2, which varies for each planet. Oblateness (A2) =

(AE2−AP2)
5R2 ; AE, AP

being the equatorial and polar radii of the smaller primary, while R is the distance between the primaries.
In (5) the authors study the periodic orbits numerically for fixed values of the mass parameter and oblateness coefficient of

the smaller primary and by changing the radiation pressure and the energy constant. However, the value of oblateness coeffi-
cient was taken from (3). In (6) in the frame work of the perturbed photo-gravitational restricted three-body problem, the first
order exterior resonant orbits and the first, third and fifth order interior resonant periodic orders were analysed. The loca-
tion, eccentricity and periodic of the first order exterior and interior resonant orbits are investigated in the unperturbed and
perturbed cases for a specific value of Jacobi constant. In (7) a version of the relativistic restricted three-body problem which
includes the effects of oblateness of the secondary and radiation of the primary was considered to determine the positions and
analyse the stability of the triangular points. In (8) interior resonance periodic orbits around the Sun in the Sun-Jupiter pho-
togravitational restricted three-body problem by including the oblateness of Jupiter was studied using the method of Poincaré
surface of section. In (9) a passive micron size particle in the field of radiating binary stellar system in the framework of circular
restricted three body problem influenced from radial radiation pressure and Poynting-Robertson drag (PR drag) on the equi-
librium points and their stability in the binary stellar systems RW-Monocerotis and Krüger-60 was studied. In (10) the motion in
the vicinity of triangular equilibrium points of the circular restricted three-body problem of a passively gravitating dust particle
in the gravitational field for the binaries system (Kruger 60 and Achird) is investigated. The two bodies of the binary are both
oblate radiating stars possessing P-R drag.

We have calculated the value of the critical mass parameter, µcrit . It is found to decrease with radiation force of the more
massive primary and increase with oblateness of the smaller primary.

2 Equation of Motion

Following the terminology and notation of (11) and the unit of mass is considered equivalent to the sum of the primary masses,
the unit of length is equivalent to their separation and the unit of time is such that the Gaussian constant of gravitation is unity.
Similar to as in (3,6), the equation ofmotion in the dimensionless barycentric-synodic coordinate system (x, y) arex−2ny= dΩ

dx
(1)

y+2nx = dΩ
dy

where the force function equation is given by,

Ω =
n2

2
(
(1−µ)r2

1 +µr2
2
]
+

q(1−µ)
r1

+
µ
r2

+
µA2

2r3
2

(2)

where r1 and r2 are the magnitudes of the position of the spacecraft or satellite from the massive and smaller primary, respec-
tively; q is the mass reduction factor of the massive primary and A2 is the oblateness coefficient of the smaller primary. The
magnitudes of the position of the satellite or spacecraft are given as
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r2
1 = (x−µ)2 + y2, r2

2 = (x+1−µ)2 + y2 (3)
The Jacobian integral of Equations (1) and (2) is
x2 + y2 = 2Ω− c ; (4)
C is the Jacobian constant.
The curves of zero-velocity are given by
2Ω(x,y) = c ;
The curves are symmetric with respect to the x-axis, since Ω(x,y) = Ω(x,±y). The singularities of the manifold of the states

of motion are located at those points of the curves of zero-velocity, where
dΩ
dx = 0 = dΩ

dy ,
i.e.,
n2x− q(1−µ)(x−µ)

r3
1

− µ(x+1−µ)
r3
2

− 3µA2(x+1−µ)
2r5

2
= 0, (5)

y
(

n2 − q(1−µ)
r3

1
− µ

r3
2
− 3A2µ

2r5
2

]
= 0 (6)

2.1 Mean Motion

In this study, we have derivedmeanmotion expression including the secular perturbation effects. From (12,13) for planar motion
(inclination i = 0).

dMs
dt = n

(
1+ 3J2

2a2(1−e2)
3
2

]
, dws

dt = n
(

3J2

a2(1−e2)
2

]
, dΩs

dt = n
(

−3J2

2a2(1−e2)
2

]
Using the relationship, ndt = (1− ecosE)dE, in the above equation and averaging over one revolution,

1
2π
∫ 2π

0 dMs =
1

2π
∫ 2π

0

(
1+ 3J2

2a2(1−e2)
3
2

]
(1− ecosE)dE,

1
2π
∫ 2π

0 dωs =
1

2π
∫ 2π

0

(
3J2

a2(1−e2)
2

]
(1− ecosE)dE ,

1
2π
∫ 2π

0 dΩs =
1

2π
∫ 2π

0

(
−3J2

2a2(1−e2)
2

]
(1− ecosE)dE

We get
n = 1+ 3J2

2a2(1−e2)
3
2
,

△ωs =
3J2

a2(1−e2)
2 ,

△Ωs =
−3J2

2a2(1−e2)
2 ,

The mean motion including the precession effect due to oblateness is calculated as:
ñ = n+△ωs +△Ωs = 1+ 3A2R2

2a2((1−e2)Re]
2

(
1+

√
1− e2

)
Since our study is based on CR3BP, substituting the value of eccentricity (e) = 0 in the above equation,
or, n = 1+ 3A2R2

a2Re2 where, R2

a2Re2 = K
In dimensionless unit
n = 1+3A2,
or n2 = 1+6A2(taking only first-order terms in A2). (7)

3 Equilibrium points location
When we take y=0, equation (5) determines the location of the collinear points L1(x1, 0), L2(x2, 0), L3(x3,0) where

x1 = µ −1−ξ , x2 = µ −1+ξ , x3 = µ +ξ
ξ1,ξ2,ξ3 satisfying the seventh-degree polynomials:
((12A+2)ξ 7 +((−12A−2)µ +36A+6)ξ 6 +((−24A−4)µ +36A+6)ξ 5 +((2q−12A−4)µ −2q+12A+2)ξ 4 −4µξ 3

+(−3A−2)µξ 2 −6Aµξ −3Aµ)/(2ξ 6 +4ξ 5 +2ξ 4) = 0
(((12A+2)α6 +(−24A−4)α5 +(12A−2q)α4 +4α3 +(−3A−2)α2 +6Aα −3A)µ +(12A+2)µ
+(12A+2)α7 +(−36A−6)α6 +(36A+6)α5 +(2q−12A−2)α4)/(2α6 −4α5 +2α4) = 0
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(((12A+2)β 6 +(48A+8)β 5 +(2q+72A+10)β 4 +(8q+48A+4)β 3 +(12q+9A)β 2 +8qβ +2q)µ +(12A+2)β 7 +(48A+8)β 6 +(72A+12)β 5

+(−2q+48A+8)β 4 +(−8q+12A+2)β 3 −12qβ 2 −8qβ −2q)/(2β 6 +8β 5 +12β 4 +8β 3 +2β 2) = 0
where, ξ1 = ξ ,ξ2 = α ,ξ3 = β
Solving the equations (5) and (6), where y̸=0 we get
r3

1 = q/n2, r2 = 1 (8)
By the help of equation (7), we can locate the other two points L4&L5. These points forming isosceles triangles with the

primaries are called as triangular points. And r1 ≤ 1.

4 Stability of the libration points
Replacing x = a+ξ , y = b+η in the equations of motion (1) for studying themotion near any of the equilibrium points L(a,b),
we get the first variational equations as :

ξ ” −2nη ′
= Ωxx (a,b)ξ +Ωxy (a,b)η , (9)

η” +2nξ ′
= Ωxy(a,b)ξ +Ωyy(a,b)η

The Characteristic equation of Equations (9) is

λ 4 +(4n2 −Ωxx −Ωyy)λ 2 +ΩxxΩyy −Ωxy
2 = 0 (10)

4.1 Stability of the collinear points
At the collinear points, we get

Ωxx = n2 + 2q(1−µ)
r3
1

+ 2µ
r3
2
+ 6µA2

r5
2

> 0,
Ωxy = 0,
Ωyy = n2 − q(1−µ)

r2
1

− µ
r3
2
− 3A2µ

2r5
2
.

With some calculation, it can be proved that Ωyy < 0at L1,2,3. Consequently,
ΩxxΩyy −Ωxy

2 < 0
We can note that the roots λi(i = 1,2,3,4) of the Characteristic Equation (10) are

λ1,2 =±
(
−β1 +

(
β 2

1 +β 2
2
) 1

2

] 1
2
=±λ ,

λ3,4 =±
(
−β1 −

(
β 2

1 +β 2
2
) 1

2

] 1
2
=±is ,

where
β1 = 2n2 − (Ωxx +Ωyy)/2,
β 2

2 =−ΩxxΩyy > 0.
The General solution of Equations (9) can be written as

ξ =
4

∑αieλit

i=1
, η =

4

∑γieλit

i=1
, (11)

And
(λ 2

i −Ωxx)αi = (2nλi +Ωxy)γi .
It is noted that λ1,2are real and λ3,4 are pure imaginary. Hence, in general case the collinear equilibria are unstable. However,

according to (4), we can choose the initial conditions (ξ0,η0) such that α1,2 = 0 and then Equations (11) represent an ellipse
whose eccentricity is given by√

1−β−2
3

respectively, where
β3 = (s2 +Ωxx)/2ns
Considering a theoretical problem. Where, µ=0.1,0.2,0.3; ε =0,0.01 and A2 (oblateness)=0,0.01.
Properties and nature of L1 .
We can see that, eccentricity increases with oblateness and slightly increases with radiation pressure. And orbit is elliptical.
P roperties and nature of L2.
We can see that, eccentricity increases with oblateness and eccentricity decreases with radiation force. And orbit is elliptical.
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Table 1. Locationof L1 and eccentricity of conditional periodic orbits around L1.
µ ε A2 ξ x1 Eccentricity (e)
0.1 0 0 0.35969983 -1.25969983 0.92543667
0.1 0.01 0 0.35889138 -1.25889138 0.92572111
0.1 0.01 0.01 0.36100212 -1.26100212 0.94471622
0.2 0 0 0.47104869 -1.27104869 0.91600058
0.2 0.01 0 0.47035553 -1.27035553 0.91619536
0.2 0.01 0.01 0.46785205 -1.26785205 0.93117171
0.3 0 0 0.55673469 -1.25673469 0.90787718
0.3 0.01 0 0.55613915 -1.25613915 0.90802208
0.3 0.01 0.01 0.55080979 -1.25080979 0.92163148

Table 2. Location of L2 and eccentricity of conditional periodic orbits around L2.
µ ε A2 ξ x2 Eccentricity (e)
0.1 0 0 0.29096488 -0.60903511 0.96842307
0.1 0.01 0 0.29223645 -0.60776354 0.96813137
0.1 0.01 0.01 0.30720465 -0.59279534 0.97304460
0.2 0 0 0.36192404 -0.43807595 0.97132709
0.2 0.01 0 0.36319101 -0.43680898 0.97111656
0.2 0.01 0.01 0.37481534 -0.42518465 0.97382094
0.3 0 0 0.41387021 -0.28612978 0.97276616
0.3 0.01 0 0.41511790 -0.28488209 0.97092712
0.3 0.01 0.01 0.42467365 -0.27532634 0.97438134

Table 3. Location of L3 and eccentricity of conditional periodic orbits around L3.
µ ε A2 ξ x3 Eccentricity (e)
0.1 0 0 0.94160890 1.04160890 0.86835862
0.1 0.01 0 0.93840960 1.03840960 0.86836855
0.1 0.01 0.01 0.91962433 1.01962433 0.87972477
0.2 0 0 0.88283946 1.08283946 0.87750511
0.2 0.01 0 0.87979735 1.07979735 0.87333010
0.2 0.01 0.01 0.86147227 1.06147227 0.88140032
0.3 0 0 0.82320559 1.12320559 0.87932469
0.3 0.01 0 0.82033371 1.12033371 0.87936718
0.3 0.01 0.01 0.80254908 1.10254908 0.88560716

Properties and nature of L3.
We see that, eccentricity increases with oblateness, and eccentricity increases slightly with radiation force. And orbit is ellip-

tical.
Considering some real examples from our solar system
Properties and Nature of L1.
Properties and nature of L2.
Properties and nature of L3.
Periodic orbits around the Sun in Sun-Jupiter system for L1 is generated by MATLAB for the mass ratio of µ =0.00095333

and solar radiation pressure q = 1 and 0.99, as shown in [ Figure 1 & Figure 2].
Periodic orbits around the Sun in Sun-Jupiter system for L2 is generated by MATLAB for the mass ratio of µ =0.00095333

and solar radiation pressure q = 1 and 0.99, as shown in [ Figure 3 & Figure 4 ].
Periodic orbits around the Sun in Sun-Jupiter system for L3 is generated by MATLAB for the mass ratio of µ =0.00095333

and solar radiation pressure q = 1 and 0.99, as shown in [ Figure 5 & Figure 6].
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Table 4. Location of L1 and eccentricity of conditional periodic orbits around L1 for Sun-planet systems.
System µ A2 ε x1 Eccentricity(e)
Sun-Mars 3.2127*10-7 5211.14188981*10-16 0 0.001 0.01 -1.00475597

-1.00464773
-1.00386702

0.94985821
0.92214540
0.96819065

Sun-Jupiter 9.5333*10-4 211.71783905*10-12 0 0.001 0.01 -1.02506012
-1.02495138
-1.02401151

0.99599793
0.99604663
0.99645211

Sun-Saturn 2.85639*10-4 65.276555555*10-12 0 0.001 0.01 -1.04606463
-1.04595722
-1.04501136

0.94712293
0.94736490
0.94949755

Sun-Uranus 4.36431*10-5 6713.99789137*10-16 0 0.001 0.01 -1.02596188
-1.02585315
-1.02491275

0.94255895
0.94300822
0.94691164

Sun-Neptune 5.14805*10-5 2037.88920652*10-16 0 0.001 0.01 -1.04117099
-1.04094671
-1.03897779

0.89538651
0.89592653
0.90098599

Table 5. Location of L2 and eccentricity of conditional periodic orbits around L2 for Sun-planet systems.
System µ A2 ε x2 Eccentricity(e)
Sun-Mars 3.2127*10-7 5211.14188981*10-16 0 0.001 0.01 -0.99525841

-0.99514427
-0.99384034

0.95049170
0.94809550
0.92227849

Sun-Jupiter 9.5333*10-4 211.71783905*10-12 0 0.001 0.01 -0.93237854
-0.93226238
-0.93119681

0.95468743
0.95452551
0.95303883

Sun-Saturn 2.85639*10-4 65.276555555*10-12 0 0.001 0.01 -0.95475377
-0.95463906
-0.95357825

0.95320893
0.95296564
0.95071447

Sun-Uranus 4.36431*10-5 6713.99789137*10-16 0 0.001 0.01 -0.97574465
-0.97563121
-0.97455947

0.95180148
0.95134427
0.94702807

Sun-Neptune 5.14805*10-5 2037.88920652*10-16 0 0.001 0.01 -0.97437855
-0.97426504
-0.97319526

0.95189331
0.95146075
0.95327614

Table 6. Location of L3 and eccentricity of conditional periodic orbits around L3 for Sun-planet systems.
System µ A2 ε x3 Eccentricity(e)
Sun-Mars 3.2127*10-7 5211.14188981*10-16 0 0.001 0.01 1.00000013

0.99966668
0.99665562

0.86602540
0.86602540
0.86602512

Sun-Jupiter 9.5333*10-4 211.71783905*10-12 0 0.001 0.01 1.00039722
1.00006390
0.99705404

0.86602570
0.86602570
0.86602570

Sun-Saturn 2.85639*10-4 65.276555555*10-12 0 0.001 0.01 1.00011901
0.99978561
0.99677490

0.86602543
0.86602543
0.86602543

Sun-Uranus 4.36431*10-5 6713.99789137*10-16 0 0.001 0.01 1.00001818
0.99968474
0.99667373

0.86602540
0.86602540
0.86602540

Sun-
Neptune

5.14805*10-5 2037.88920652*10-16 0 0.001 0.01 1.00002144
0.99968801
0.99667701

0.86602540
0.86602540
0.86602540
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Fig 1. Periodic orbit around the Sun in Sun-Jupiter system for (L1) where, semi-major axis = 0.0011881893731 and semi-major axis = 1x10-4

Fig 2. Periodic orbit around the Sun in Sun-Jupiter system for (L1)where, semi-major axis = 0.0011881893731 and semi-major axis = 1x10-4

4.2 Stability of the triangular points
At the triangular points L4 and L5,we have

Ωxx = f ,
Ωxy =±y[ f (x−µ)+g(x+1−µ)],
Ωyy = y2( f +g)> 0,
where
f = 3q(1−µ)

r5
1

= 3(1−µ)n2

r2
1

> 0, g = 3µ(1+ 5
2 A2)> 0

The characteristics Equation (10) becomes

Λ2 +(4n2 − f r2
1 −gr2

2)Λ+ y2 f g = 0 (12)

with Λ = λ 2,

Λ1,2 =
1
2

((
3µA2 −n2

)
±
((

n2 −3µA2
)2 −36µ (1−µ)n2

(
1+ 5

2 A2
)
×
(
1− 1

4

)) 1
2
)

We observe that the roots
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Fig 3. Periodic orbit around the Sun in Sun-Jupiter system for (L2) where, semi-major axis = 3.3600985537x10-4 and semi-major axis = 1x10-4

Fig 4. Periodic orbit around the Sun in Sun-Jupiter system for (L2) where, semi-major axis = 3.3019851583x10-4 and semi-major axis = 1x10-4

λ1 = Λ
1
2
1 , λ2 =−Λ

1
2
1 , λ3 = Λ

1
2
2 , λ4 =−Λ

1
2
2 (13)

are functions of µ,q and A2and their nature depends upon the nature of the discriminant (D).
D = (n2 −3µA2)

2 −36µ(1−µ)n2
(
1+ 5

2 A2
)(

1− r2
1
4

)
,

And three cases can be discussed as,
When D is positive, we note that Λ1,2 are negative and roots (13), written as
λ1,2 =±i(−Λ1)

1
2 =±is4 , λ3,4 =±i(−Λ2)

1
2 =±is5 ,

Shows the triangular points to be linearly stable.
The solution of Equation (9) in this case can be easily seen to consist of short - and long - period terms with angular frequen-

cies s5and s4respectively. As in (5,8,9)the short-or-long-period terms can be eliminated from the solution with proper selection
of initial conditions. In both cases, the motion is along a retrograde ellipse whose eccentricity and the orientation of the major
axis are independent of the initial conditions.

When D is negative, the real parts of two of the four roots equation (13) are positive and equal and, hence the equilibria
are unstable. However, with suitable selection of initial conditions, periodic motion can be achieved in the linear sense which
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Fig 5. Periodic orbit around the Sun in Sun-Jupiter system for (L3) where, semi-major axis = 2.00000208265x10-4 and semi-major axis =
1x10-4

Fig 6. Periodic orbit around the Sun in Sun-Jupiter system for (L3) where, semi-major axis = 2.00000209358x10-4 and semi-major axis =
1x10-4

approaches the equilibrium point asymptotically.

5 Critical Mass
The discriminant of the quadratic Equation (12) is zero when(
−279A2ε2

2
+ ε2 +27A2ε +6ε +

531A2

2
+27

)
µ2 +

(
−279A2ε2

2
+ ε2 +27A2ε +6ε +

489A2

2
+27

)
µ +12A2 +1 = 0 (14)

When A2 = 0, Equation (14) exactly coincides with that of (14).
Solution of the Equation (14) for 0 ≤ µ ≤ 1

2 is

µcrit =
−α−β

1
2

γ , (15)
Where
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α = (−27−6ε − ε2)+
(
−489

2 −27ε + 279ε2

2

)
A2,

β =
(√

621+ 50
√

621ε
207 + 1717

√
621ε2

42849

)
+
(

1205
√

621
138 + 15829

√
621ε

14283 + 546905
√

621ε2

85698

)
A2

γ = (54+12ε +2ε2)+(531+54ε −279ε2)A2
And µcrit expression in (15) becomes
µcrit =

(
1
2 −

√
621
54

)
− 2

√
621ε

5589 +
√

621ε2

42849 +A2

((
38

√
621

1863 − 7
18

)
+
(

7
81 −

388
√

621
128547

)
ε +
(

1055
1458 −

10255
√

621
2313846

)
ε2
]

(16)
or,

µcrit = 0.0385209−0.0089174ε +0.0005816ε2 +A2(0.119406935+0.011202827ε +0.6131487216ε2) (17)

6 Result
The value of the Critical mass that we got from the Mean motion (n2) = 1+6A2 is

µcrit = 0.0385209−0.0089174ε +0.0005816ε2 +A2(0.119406935+0.011202827ε +0.6131487216ε2)
And the value of the Critical mass that we got from the mean motion expression given by (n2) = 1+3/2A2

(3) is
µcrit = 0.0385209−0.0089174ε +0.0005816ε2 −A2(0.0627795−0.0292011ε +0.003436104ε2)
First value of oblateness in (µcrit) or Critical mass is been found out for different values of mean motions (n2).

Table 7. (µcrit )or Critical mass parameter is been found out for different values of meanmotions (n2).
n2 µcrit (only first term of A)
1+ 3

2 A2 -0.06277956
1+3A2 -0.0020507319
1+4A2 0.038435157
1+5A2 0.07892104618
1+6A2 0.119406935

Graph explaining the mean motion and first value of oblateness in critical mass.

Fig 7. Graph showing the mean motion vs. first value of Oblateness in Critical mass parameter.

7 Conclusion

In earlier case of mean motion ‘n’ given by (n2) = 1+3/2A2 from (3), only secular effect of oblateness on the mean motion was
considered (3). However, when the secular effect of the oblateness on the mean motion is considered, argument of perigee and
right ascension of the ascending node (1,2), the resulting mean motion ‘n’ of the primaries is given by n2=1+6A2 is included in
the present studies.

In this study, meanmotion is increasing since the effect of oblateness onmeanmotion, argument of perigee and right ascen-
sion of ascending node have been considered. All these three parameters are included to get the mean motion of primaries
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n2=1+6A2. The value obtained of the critical mass µcrit higher than the unperturbed value of µc = 0.0385209 in (3) with oblate-
ness of the smaller primary. It is a very interesting result, because the zone of mass parameter µ providing stable solutions at the
triangular points increases with oblateness. It can be observed from [ Figure 7 ] and [ Table 7 ] that the increase in oblateness
increases the mean motion n and increases the value of critical mass parameter µcrit.
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