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Abstract

Objectives: To obtain a reliable approximation for the K-model in mixture experiments and design. Methods/Statistical 
Analysis: Here, the problem of mixture experiments, according to qualitative factors and finding A-optimal and D-optimal 
design for K-model is taking into account. Also, an improvement of Lee method is used to aim of this goal. In addition, a new 
procedure of Lee method for approximation of K-model is proposed. Moreover, illustrated examples are simulated in R soft-
ware. Findings: It is demonstrated that the qualitative factor has a directly relation with A-optimal and D-optimal design. 
Such that, firstly, if the qualitative factor, on the region of factors, be a uniform design, then for A-optimal design, the trace of the 
inverse of the information matrix should be minimized. Secondly, for D-optimal design, maximization of the determination 
of information matrix is necessary. Moreover, in a product function, the dispersion function can be detached into 3 sections 
corresponding to the 2 marginal design.  Application/Improvements: This research is using of an amount of convenient 
mixture design in engineering and manufacturing can be detached into 3 sections corresponding to the 2 marginal design.  

*Author for correspondence

1. Introduction
Recently, Mixture experiments have found a special 
importance in science and application. For instance, in 
food science, green manure, Agriculture and so on, one 
can see the role of mixture experiments1,7. For a better 
understanding, almost all of the cakes, are combined by 
alot of materials such as, flour, water, eggs, oil and etc. 
The amount of this material is very important to set the 
best product sometime due to increase or decrease of 
the materials. In most cases, The result is not desired the 
cakes taste, flavor and amount of puffing up depend on 
ingredients. 
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The reason of delicacy of this product can be divided 
to two main sectors. The first sector is using the best mate-
rial and the second one is this question that how long the 
material should be mix together5 have suggested a general 
model for the linear combination of variables. The model 
is presented as follows:

( ) ( ) χτγτβττ ∈+= ,)],([ 21
T

j
T ffjyE

 
      

(1)
Where, it shows the j-th level of a r-level qualitative 

factor and and ( )xf1  is the part of the regression func-

tion having disruption with the qualitative property, and 
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jBf1  can be considered as the sector of the level effect, 

but zf  is the part which is invariant at each qualitative 

level and ( )γxf z  can be considered at the part of the 

common effect. Also, ( )T
qqq BBBBBB ,12,121 ,...,,,, −=   and 

( )T
p2

,,, 21 γγγγ =  are vectors of unknown parameters 

vector, respectively.
Now, the q-components mixture system can be 

expressed for the experimental region of quantitative fac-
tors as:
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Where the sC '  is additional constrains condition as 

in6 defined. If the model without constraints sC ' , symbol 

the x  as 1−qS  the two part of regression function )(1 zf  

and )(2 zf  are −1p and −2p  dimension vectors con-

taining the quantitative effects, respectively. Clearly, 
model (1) has more effect to feed and represent the rela-
tionship during variables. Recently, some research studies 
have been reported in the literature. For example the the-
oretical verification of D-optimal designs has addressed 
in2. In8 have extended this model to multiresponse cases, 
as well as the construction model. But, almost all of the 
previous works in the literature have mixtsively focused 
on D-optimal which it couldn’t be applied for mixture 
experiments. In this study, based on the result of5 some 
concepts of A-optimal and D-optimal design is extended. 
The rest of the paper is as follows. In section 2 some pre-
liminaries and some essential concepts to drive the tree of 
the information matrix of model (1) is presented. The 
main and analytical results are mentioned in section 3 
such that according to the different condition of model 
(1), the A-optimal design for the mixture K-Model is 
finded. Finally conclusion and discussions are provided 
in section 4.

2.  Preliminaries
Here, the general linear model is introduced by:

( ) ,)()( θxfxyE T=     (3)

Where ( )xy  is the response variable, θ  is a vector of 

unknown parameters, ( )xf  is a given vector of the 

regression function of Ω∈x . An approximate design is 

probability distribution with finite support on the factor 
space Ω  and is represented by 

( )nn wwwzzz  ,,;,,, 2121=ζ , which assigns, 

respectively masses 1,0;,,, 21 => ∑ iin wwwww   

to the n distinct support point nxxx ,,, 21   of the design 

ζ  in the experimental area.

And the design is measured by its information matrix 
worthy, which is demonstrated by:

( ) ( ) ( ) ( ).dzzgzgM T ζζ ∫
Ω

=    (4)

2.1  A-optimal
A design is stated to be A -optimal if it minimizes the 
trance of the inverse of the information matrix. 
Works4Jack</author></authors></contributors><titles>
<title>General equivalence theory for optimum designs 
(approximate theory and3 gave us an effective way to 
check the A − optimality of arbitrary design ζ , and for a 

design ζ  which is A − optimal if and only if:

( ) ( ) ( ) ( )[ ] 012 ≤− −− ζζ MtrxfMxf T
  (5)

Let the general model (1) be written as:

( )[ ] ( )[ ] ( ) ( )θτγβββτ ,,,,,,, 2121 jgfxfejyE TTT
s

TTTTT
j =⊗= 

where s
j Re ∈  is the unit vector whose j − th com-

ponent is equal to 1 and all others are 0 and ⊗  is used to 
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define the Kronecker result of two matrices. Let 
{ }sxs ,,2,1 =  be the index set of the qualitative levels 

and xxs ×=Ω  be the experimental region.

Supposes that, the information matrix of the design 
ξ  is:

( ) ( ) ( )
( ) ( )






=

ξξ
ξξ

ξ
2221

1211

MM
MM

M f

      (6)

where associated with the model

( )[ ] ( ) ( )[ ]( )TTTTT ffyE γβτττ ,, 21= and arbitrary 

design ζ  on Ω  can be stated as:

( ) ( ) ( )τξητζ jjj =,

where η  and jξ  are the marginal and the conditional 

designs on sχ  and χ , respectively.

If ζ  is considered as a product design and defined by 

ξηζ ×= , which shows that =jξ ξ  for all j .

Due to the result of5, the information matrix of ζ  is 

presented as: 

( ) ( ) ( )
( ) ( ) 








⊗

⊗⊗
=

ξξη
ξηξ

ζ
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M Tg

where 

( ) ( ) ( ) ( ) { }2,1,, ∈= ∫ vudffM T
vx uuv τξττξ

and

( ) ( ) ( )( ) ( ) ( ) ( )( )TssdiagD ηηηηηηη ,...,2,1,,...,2,1 == .

Calculating the inverse matrix of ( )ζgM  then we 
can get the Lemma 1. 

Lemma 1. Let we have an arbitrary design 
( ) ( ) ( )τξητζ ×= jj,  which η  and ξ  are the margin-

ally and the conditionally designed on sX  and X , 

respectively. Then the model (1) implies following equa-
tion of trace :

( )[ ] ( )( ) ( ) ( )( ) ( )( )ξ
η

ξζ 221
1

1
11

1 .1 DtrKtrs
j

MtrMtr
s

j
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=
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In which: 

( ) ( ) ( ) ( ) ( )[ ] 1
12

1
11212222

−−−= ξξξξξ MMMMD

( ) ( ) ( ) ( ) ( ) ( )ξξξξξ 1
11212212

1
111

−−= MMDMMK

Proof. 
According to computation of the inverse matrices of 
( )ξfM  and ( )ζgM , we get: 
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In which S1  is 1×s  vector of all ones.

( ) ( ) ( ),111
1

11 KJMDD s ⊗+⊗= − ξζ

( ) ( ) ( ) ( )[ ] ( ),1 212212
1

1112 ζξξξζ T
s DDMMD =⊗−= −

( ) ( ) ( ) ( ) ( )[ ] ( ) ,22
1

12
1

11212222 ξξξξξζ DMMMMD =−= −−

and 

( ) ( ) ( ) ( ) ( ).1
11212212

1
111 ξξξξ −−= MMDMMK

 So one has 
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( )[ ] ( )[ ] ( )[ ] ( )[ ]ξξζ 221
1

11
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( )( ) ( ) ( )( ) ( )( )ξ
η

ξ 221
1

1
11 .1 DtrKtrs
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j
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 Therefore, the proof is completed.

In practice, while the design ( )jη  is a uniform design 

on sx , i.e. ( ) ,,...,2,1,1 sj
s

j ==η  thus one gets 

( )[ ] ( )( ) ( )( ) ( )( )ξξζ 221
1

11
21 .. DtrKtrsMtrsMtr g ++= −−

( )( ) ( ) ( )( ) ( ) ( )( )ξξξ 22
1

11
21

11
2 .1.. DtrsMtrssMs −+−+= −−

 

Moreover, it also follows that, for ζ  to be A − optimal, 
all the elements of η  must be equal, i.e. 

( ) .,...,2,1,1 sj
s

j ==η . In next section, we want to 

find the A − optimal designs for the K-model when the 

condition ( ) .,...,2,1,1 sj
s

j ==η

3.  K-model Approximation based 
on A-optimal Designs

Theorem 1. Let the same assumptions of Lemma 1 is true 

and suppose that ( ) .,...,2,1,1 sj
s

j ==η , Then: 

( ) ),;()();()1();(.;,
1

22
ξτψξτξτψζτψ ffg sszssj −+−+=

      (7)
 where
 

( ) ( ) )()()(;),()()(; 2
1

2
1111

τξτξτψτξτξτψ fMffMf f
T

f
T

f
−− ==  

and 
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1

112122 ττττξξξξξτ TTT ffffDMMDz =−= −

Proof. It is better that for simplification,  Equation (6) 
can be rewritten as ( ) { } 2

1, =
=

jiijf MM ξ , thus the follow-

ing relations can be released.
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In which:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),;,; 22221
1

111121
2
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( ) ( ) ( ) ( ),; 11
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( ) ( ) ( ).; 22212
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2
2212

1
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( ) ( ) ( ),; 1
1
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2
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( ) ( ) ( ).; 2
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and ( )
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Clearly, the theorem is satisfied when

 ( ) .,...,2,1,1 sjsj ==η  So the proof is finished.
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We suppose that the q  components mixture K-model 
symbol is demonstrated as: 

( ) 1

1
,)]([ −

=

⊆∈= ∑ q
q

k
k

T
l sfyE
k

χτβττ

      
(8) 

Where: 
T

qL xxxf )..,.,,()( 211
=τ

T
qqL xxxxxxf ),...,,()( 131212 −=τ

qL
T

qqqL xxxxfxxxxxxxxxf
q

...)(...,,)..,.,,()( 321124323211
== −− ττ

 

To fix ideas, we concentrate on the model which is given 
on 1qS −  by: 

( ) ( ) .)]([ 21 21
βτβττ T

L
T

L ffyE +=

 
We mostly consider three kinds of model which form as 
(1) given.

For the general multi-response model:

( ) ( )( ) sjffjyE j
T

L
T

L ...,,2,1,,)],([
21

== βτττ  

      (9)
which have different function on the different levels 

and it is without qualitative factors.

If we consider the ( )τT
Lf

2
 as qualitative factors and 

suppose ( )τT
Lf

1
 having interaction with the qualitative 

factor, the model can be shown as: 

( ) ( ) )()( 2

2

1

1
)],([ LT

Lj
LT

L ffjyE γτβττ +=    

      (10) 

Likewise, we can change the two part of regression func-
tion as quantitative and qualitative factor, the model set 
as: 

( ) ( ) )()( 1

1

2

2
)],([ LT

L
LT

L ffjyE γτβττ +=    
      (11)

 However, there is no difference between fitting model (9) 
to model (11). In this work, qualitative and quantitative 
factors considered simultaneously, the design problems 
for estimation of the unknown parameters will be consid-
ered where it is assumed to have one qualitative factor 
with s  levels.

The K-model stated that for model (9), (10) and (11), 
);,( ξτψ jg  attains its maximum only at the barycentres 

of `1−qS . Hence only the barycentres are viable support 

points for A − optimal designs. At first, we define iM  is 

a qiqC ×),(  matrix, such that the first i  elements in the 

first row of iM  are 1 and the remaining elements in the 

first row are 0, and the remaining 1),( −iqC  rows of iM  

are the different permutations of the first row due to lexi-
cographical order. 

(For example, when i = 2 and q = 4, iM  is a 46×  

matrix, and its 1st, 2nd, , 6th rows are 

)1,1,0,0(),1,0,1,0(),0,1,1,0(),1,0,0,1(),0,1,0,1(),0,0,1,1( , 

respectively.)

Let iT  is the points set which elements are each rows 

of qiMi i ...,,2,1,1 =− . The iT  is the set of all vertexes 

of  1−qS , 2T  is the set of barycenter on the q-2 dimension 

boundary. So we can state the design ξ  according to the 

model (9), (10) and (11) as follows: 

( ),,;, 2121 wwTT=ξ     (12) 

where the weight 1w  and 2w  satisfy 

1 2( , 2) = 1qw C q w+ .

Hence, the information matrix ( )fM ξ  associate 
with model (9) can be expressed as: 
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where 2/)1( −= qqQ , and qI  is the qq ×  identity 

matrix. We can express following lemma based on previ-
ous symbols.

Lemma 2. Let we have a design ξ  as defined in (12), 

then the function );,( ξτψ jg  with 

( ) ( ) ( )[ ]τττ TTT fff 21 +=  in one of the (10) and (11) 

models can be presented as: 
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Proof.

With calculating of the inverse matrix of ( )ξfM , one 

gets:
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In the model (10), the organization of information matrix 
is same as (13), then we obtain:
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In the model (11), note { }2

1,
1 )()(
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− =
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the organization of information matrix is: 
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 So we can obtain the result of );(),;(
1

ξτψξτψ ff  

and );( ξτz  by calculating 

)()()(),()()( 1
2
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f
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and [ ] )(, 22
1

112122 xfDMMD − , respectively. Therefore the 

proof is done.

In the model (10),
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In the model (11), 

),();(,256);(
1

2222
2
2

1
τδξτξτψ ∑∑

=<

==
q

i
i

q

ji
jif zxx

w  

where ( ) ....,,2,1,22)( 2

1

qixx
w iii =−−=τδ .

We can explain the function (7) due to Theorem 1, 
Lemma 2 here, the condition is: 2/)1(/1 21 −−= qwqw  

and we have ,2,1, =∈ iTiiτ  the function (7) can be 

expressed as

).()1()()()();,()( 2322
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In the model (11), )( 211 wh  and )( 221 wh  are same as 

model (10), then we have:

.0)(,/16)(;/1)(,0)( 223
2
2222

2
1213212 ==== whwwhwwhwh

Now, we should solve following equation to find the A −

Figure 1. The portrait for A−optimality design in model (10) and model (11).
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optimal design *ζ  for the models (10) and (11),

.);,();,( *
2

*
1 ζτψζτψ jj gg =    (14) 

Beside, the solution of equation 2,1),,( == isquw ii  is 

too complex, so one can gets the approximate optimal 
design by calculating the result of Lemma 2. For instance, 
let = 30, = 20q s , we can find the A − optimal design 

*** ξηζ ×=  on the region 1−× q
s SX , where *η  is a 

uniform design on sX , and we can find the optimal 

design *ξ  on 1−qS   by calculate ),(log),(log 2221 whwh  

and ))((log 1 ζ−
gMtr  in )./1,0(2 Qw ∈ .

For the model (10), we find that 
{ } 37664.21))((logmin 1

)/1,0(2

=−

∈
ζg

Qw
Mtr  when

 2911.0*
2 =w , so the design 

.)2911.0,0411.0;,( 21
* TT=ξ

For the model (11), we have

 { } 12341.26))((logmin 1

)/1,0(2

=−

∈
ζg

Qw
Mtr  

when 0768.0*
2 =w , so the design: 

.)2577.0,0077.0;,( 21
* TT=ξ  

As we expressed above satisfy equivalence condition (14), 
we can confirm the design *ζ , because the three curves 

),(log),(log 2221 whwh and ))((log 1 ζ−
gMtr  intersect 

at the same point as Figures 1 and 2 shown.

We also lists the optimal weights for model (9), (10) 

and (11) with }6,,...4,3{∈q  and }6,,...3,2{∈s  as the 

Table 1 shown.

The performance of designs comparing to the A − opti-

mal design for model ( )g τ  defined as below, which are 

measured by the A − efficiency.

[ ]
[ ])(

)(
)( 1

*1

ζ
ζ

ζ −

−

=
g

g
eff Mtr

Mtr
A

Figure 2. The portrait for A−optimality design in model (10) and model (11).
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Note 3,2,1,*** =×= jjj ξηζ  are A − optimal design for 

model (9), (10) and (11), respectively. For }6,,...4,3{∈q  

and }6,,...3,2{∈s , these designs should be compared 

mutually with each other and the A − efficiencies are pre-

sented in Table 2.

 Model (10) Model (11)

q s *
1w *

2w *
1w *

2w

3 2 0.21540 0.54870

4 2 0.13643 0.25760 0.1246 0.2531

5 2 0.09364 0.14680

6 2 0.06869 0.09410

3 3 0.24390 0.57720

4 3 0.15854 0.27240 0.1366 0.2577

5 3 0.11321 0.15660

6 3 0.08388 0.10020

3 4 0.26103 0.59440

4 4 0.17462 0.28310 0.1426 0.2617

5 4 0.12675 0.16340

6 4 0.09673 0.10540

3 5 0.27240 0.60570

4 5 0.18668 0.29110 0.1473 0.2649

5 5 0.13729 0.16860

6 5 0.10491 0.10860

3 6 0.28100 0.61430

4 6 0.19472 0.29650 0.1500 0.2667

5 6 0.14481 0.17240

6 6 0.11192 0.11140

Table 1. The weights of D -optimal design for 3 6q≤ ≤  and 2 6s≤ ≤
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*
1ζ *

2ζ

q s (9) (10) (11) (9) (11)

3 2 0.2154 0.5487 0.0450 0.2230 0.5563

4 2 0.1364 0.2576 0.0223 0.1250 0.2500

5 2 0.0936 0.1468 0.0128 0.0799 0.1399

6 2 0.0686 0.0941 0.0082 0.0555 0.0889

3 3 0.2439 0.5772 0.0425 0.2496 0.5829

4 3 0.1585 0.2723 0.0226 0.1364 0.2576

5 3 0.1132 0.1566 0.0136 0.0858 0.1429

6 3 0.0838 0.1002 0.0089 0.0589 0.0902

3 4 0.2610 0.5943 0.0390 0.2673 0.6006

4 4 0.1746 0.2831 0.0219 0.1428 0.2619

5 4 0.1267 0.1634 0.0136 0.0888 0.1444

6 4 0.0967 0.1053 0.0091 0.0604 0.0908

3 5 0.2724 0.6057 0.0356 0.2791 0.6124

4 5 0.1866 0.2911 0.0207 0.1466 0.2644

5 5 0.1372 0.1686 0.0133 0.0906 0.1453

6 5 0.1049 0.1086 0.0091 0.0617 0.0913

3 6 0.2810 0.6143 0.0325 0.2850 0.6183

4 6 0.1947 0.2965 0.0195 0.1504 0.2669

5 6 0.1448 0.1724 0.0128 0.0924 0.1462

6 6 0.1119 0.1114 0.0082 0.0625 0.0917

Table 2. Comparisons of A − Optimal for 3 6q≤ ≤  and 2 6s≤ ≤
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4.  D-optimal Designs for the 
K-model

Atkinson and Donev (1989) stated the BLKL-exchange 
algorithm due to the D-criterion for searching exact opti-
mal designs with special block sizes. 

We can get lemma 3 easily because we have the infor-
mation matrix in preliminaries.

Lemma 3.: Suppose that τ  be a product design with the 

marginal designs η  and ξ  on sX  and X , respectively. 

Then, the following equation of determinants is expressed 
for models (3) and (10):

[ ] ))(det())(det()())(det( 1
11

1

1

ξξηζ f
S

PS

s
g MMsM −

=




= ∏

 

      
(15)

 
where 1ρ  shows the dimension of 11M .

The above lemma indicates the marginal design ρ  is 

defined as an unique design on jχ , according to 

D-criterion as defined 
j

j 1)( =η  for all j , where the 

maximization of ( ))(det τgM  can be divided in two 

parts due to the marginal designs.
Since the D-optimality should be prove by the 

equivalence theorem in next section. This function is pro-
portional to the variance of the predicted response and 
defined by:

QzforzhMzhzd h
T

h ∈= − )()()(:);( 1 ττ   

      (16)
 
In the following, a connection of dispersion functions 
between the model (11) and (10) is derived for product 
designs. The determinant and inverse of a partitioned 
matrix can be obtained according to the formulas in 
Khuri (2003, pp. 35–6).

Lemma 4: Let we have the same assumptions of 
Lemma 1, then:

( ) ,*),(),;(11);();,(
1

XXxjforx
s

xdxjd jff
T

g ∈∆




 −+= ξ
η

ξτ
 

(17) which );,( τT
g xjd  and );( ξxd f  demonstrate the 

associated dispersion functions with the models (11) and 
(10), respectively and,

)()()();( 1
1

1111
xfMxfx T

f ξξ −=∆
  

(18)

5.  Conclusions
The problem of mixture design and approximation of the 
A-optimal and D-optimal design for the K-model with 
qualitatives factors are investigated. Based on a modifica-
tion of Lee method in designing of mixture, the results are 
reached. Also, it is demonstrated that the qualitative fac-
tor has a directly relation with A-optimal and D-optimal 
design. Such that, at the first step, on the region of factors, 
if the qualitative factors have a uniform design then the 
trace of the inverse of information matrix is minimize for 
A-optimal design. Also, in the second step, maximization 
of the determination of information matrix is essential 
for D-optimal design. In addition, for a product function, 
based on three sections corresponding to the two mar-
ginal design, the dispersion function can be detected.
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