
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(43), DOI: 10.17485/ijst/2019/v12i43/148336, November 2019

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Web Services Failures and Recovery Strategies:
A Review

Nimra Memon*, Muhammad Saleem Vighio and Zahid Hussain

Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan;
memonnimra03@gmail.com, saleem.vighio@quest.edu.pk, zhussain@quest.edu.pk

Abstract
Objectives: Due to heterogeneity, cross-boundary integration, and deployment over the Internet, Web services are highly
vulnerable to a wide variety of failures. This study provides an overview of different types of failures, and recovery strategies
for Web services. Method/findings: To conduct this study, we have reviewed several novel research studies to provide a
precise and all-in-one summary of different types of failures and possible recovery solutions for Web services. The study
reveals that, a clear understanding of different failures-types and possible recovery solutions will help to develop services
which are highly reliable and dependable. Applications: Highly reliable and dependable Web services are the key focus
of all sensitive and mission-critical applications like navigating systems in aircrafts, nuclear reactor systems, robotics, and
so on.

1.  Introduction
With the growing use of the Internet and mobile
technologies, Web services have gained much popularity
since last few years.1,2 In one or another way, we use Web
services in our daily lives, for example, paying our bills,
booking a taxi, or reserving a table in a restaurant.3–5 A
task performed by the Web service can be as simple as
converting one type of currency to another, or it can be
a complex task requiring multiple services to coordinate
and collaborate to perform that task jointly.6,7 Performing
a complex task jointly requires services to interact over
the unreliable Internet and beyond their organizational
boundaries under heterogeneous environments.8,9 This
makes Web services vulnerable to a wide variety of
failures that may range from simple inconvenience to
a significant financial or monetary loss. A service may
fail due to many reasons like service unavailability or
down-time, logic errors, inconsistent or incompatible
inputs and so on.10 However, because of their use in

important and critical applications, services are required
to be highly reliable.11 Efforts to produce reliable Web
services are under way,12–15 but, it is a very challenging
task due to the unreliability of Internet, heterogeneous
and cross-boundary interaction, incompatible business
logics and so on. This study presents a survey of different
types of failures which affect the normal execution of
Web services. Furthermore, different types of recovery
strategies to safeguard from such failures have also been
presented. It is believed that a thorough understanding
of different types of failures and corresponding recovery
strategies will help to design Web services which are
resilient to failures.

The rest of the study is structured as follows: Section 2
presents an overview of different types of failures which
often occur during the execution of Web services. Section
3 gives an overview of different types of strategies used
to recover from services failures. Section 4 presents
discussion, and finally, section 5 gives the conclusion of
the work.

Keywords: Web Services, Failures, Recovery Strategies, Fault-tolerance

mailto:zhussain@quest.edu.pk

Web Services Failures and Recovery Strategies: A Review

Indian Journal of Science and TechnologyVol 12 (43) | November 2019 | www.indjst.org 2

2.  Web Services Failures
Web services are actually software applications designed
to perform specific task(s) using the Internet. In addition
to the containment of all features of traditional software,
Web services also contain some additional features like
autonomy, heterogeneity, and interoperability. Like
traditional software, Web services also suffer from errors
and failures from development to execution.16 Moreover,
due to their heterogeneous and cross-boundary
interaction, and deployment over the Internet, which is
an unreliable media, Web services are more vulnerable to
failures than their traditional counterparts. Different types
of failures which affect the execution of Web services are
categorized into three general categories: development,
physical, and interaction faults.10,17 Occurrence of any
or all these failure-types can be transient or permanent,
and can lead to service degradation, unavailability, or
complete shutdown. All fault-types are described below:

2.1.  Development Faults
Development faults are introduced during the
development phase of Web services, but are exposed when
services are actually executed. These faults are introduced
by the environment, human developers, development
tools, and production facilities.10 Development faults are
classified into parameter incompatibility and interface
change faults as defined below:

•	 Parameter incompatibility faults arise when ser-
vices receive incompatible input values other than the
expected; for example, a service expects an integer value
but is provided a string constant. In that case, the ser-
vice will end-up in an error or invalid result message.

•	 Interface change failures (or inconsistency failures)
occur when the interface or ontology of the service
is changed (or updated), whereas, service invoca-
tion requests are forwarded to the old interface. This
happens due to the unawareness of users from corre-
sponding updates. In some cases, the interface of ser-
vices is changed, but, the process (logic) is not updated
accordingly. For example, in a hotel reservation ser-
vice, a user requests for the booking of four rooms, but
only two rooms are available at that time.

2.2.  Physical Faults
Physical faults (also known as system faults) occur due
to the failure of a server on which requested service is

deployed, or the failure of a network connection. Physical
faults result in service unavailability. Services become
unavailable due to server shutdown or downtime, for
maintenance and update purposes or in cases when the
power supply to the server machines is discontinued due
to the power breakdowns or natural faults.

2.3.  Interaction Faults
Interaction faults are all operational or external faults,
which popup during the execution, or the use phase of
services. These fault-types are broadly classified into
content and timing faults. Content faults also referred to
as corrupt service faults are further classified into Service
Level Agreement (SLA), Quality of Service (QoS), and
incorrect service invocation faults, whereas, timing faults
are classified into semantic, and timeout faults. All these
faults-types are described below:

•	 SLA faults are actually the violation of non-functional
properties of a service, that is, the service completes
successfully but does not conform to predefined ser-
vice level agreement. For example, the expected exe-
cution time of an operation-completion is 12 seconds;
but, the service took 20 seconds to complete the task.

•	 QoS faults including also SLA faults occur due to the
degradation of service in terms of quality: slow speed
or delays in response time.

•	 Incorrect service invocation faults occur when a
service is called with an incorrect name instead of the
actual name.

•	 Semantic faults occur due to the incompatibility of
composed services requested to perform a joint task,
for example, in a joint booking of a hotel and a taxi,
operation does not complete successfully due to the
different time formats of these services.

•	 Timeout faults arise when a component service fails
to complete execution within allocated time frame.
This happens when the service is overloaded to pro-
cess many requests at the same time. For example, too
many requests for grabbing a cheap ticket may over-
load the booking service; this may result in excessive
delays (timeouts) at the requester’s end or even in the
unavailability of the service.

All above fault-types can further be classified with
respect to different viewpoints during the life time of
services. These fault classes can be viewed as development,
operational, internal, external, hardware, software,
functional, and non-function faults.10,17 A complete

Indian Journal of Science and Technology 3Vol 12 (43) | November 2019 | www.indjst.org

Nimra Memon, Muhammad Saleem Vighio and Zahid Hussain

taxonomy of all fault-types with respect to different
viewpoints is summarized in Table 1.

As it can be seen in Table 1, different fault-types may
belong to different fault-classes and may occur in an
overlapping fashion. For example, timeout faults of the
interaction faults category can be viewed as operational,
external and hardware faults. Occurrence of all or any
of the fault-type can leave the service in a failure mode
incapable of providing the required functionality.

3.  Recovery Strategies
Fault-tolerance refers to the ability of system to detect and
recover from failures.18 Because of their increasing use in
sensitive and mission-critical applications, Web services
are required to provide desired functionality even in cases
of failures. To provide reliable services, various failure-
recovery strategies have been proposed in the literature
(see Refs.10,11,19,20). However, the most commonly used
recovery strategies for Web services are described below:

•	 Ignore: As its name suggests, this strategy ignores
those faults which do not affect the primary goal of
the service. For example, in a sight-seeing booking
service, failure of (optional) getSalesInfo service may
be ignored as important tasks like booking of flight
and hotel have completed successfully.

•	 Skip: Under this strategy, if a service deviates from
QoS and SLA logic, then its successive services are

skipped to execute conditional to the fact that skipped
services do not affect the primary goal of the service
composition. For example, if computeDistance ser-
vice of sight-seeing scenario deviates from its actual
execution time, say from 5 sec to 8 sec then getSales
Info service is skipped to execute in order to meet the
promised execution time of the whole process.

•	 Retry: This strategy re-executes the faulty service to
a particular number of times or till the service com-
pletes successfully. Retry is used to recover from tem-
porary failures caused by the hardware, software, or
the network.

•	 RetryUntil: With an addition of time-based re-invo-
cation of faulty service, this strategy is an extension
of the “retry” strategy. That is, each re-invocation is
constrained to a particular time-stamp. For example,
RetryUntil (bookFlight,5,10) re-invoke bookFlight
service to a maximum 5 retries with each retry occur-
ring after 10 time-stamps.

•	 Wait: This strategy delays the execution of a service
to a specified time instant. For example, Wait (book
Flight, 8:00) is used to invoke bookFlight service not
before 8:00. This strategy is used to handle service
unavailable faults.

•	 Alternate: This strategy selects another functionally
equivalent service to perform some task when the
first service encounters a failure. Alternative action
invokes different service instead of the same service.

Table 1.  Web services failure types

Fault-classes Development faults Physical faults Interaction faults

Pa
ra

m
et

er

in
co

m
pa

tib
ili

ty

In
te

rf
ac

e
fa

ul
ts

Se
rv

ic
e

un
av

ai
la

bi
lit

y

Content Timing

SL
A

Q
oS

In
co

rr
ec

t
se

rv
ic

e

Se
m

an
tic

Ti
m

e-
ou

t

Development 10,17,26 10,17,26,27 27 27

Operational 17,28–30 10,17,27 10,17 10,17 10,17 10,17,27,28,24

Hardware 17,26,24,30-31 27 27 17,27 17,27

Software 12,13,31,32 12,13,31,18 12,32–35 12,32,18 12,32,18 12,32,18 32,18 32,18

Internal 32,18 32 12 12,32 32 32

External 33,36–39 33,36-38 33,36–38 18,33,37–39 32,36,37 18,36,37,39 18,36,39 33,36–40

Non functional 32 32,35,39,40 13,32

Functional 33,34 33,34 33,34 33,34

Web Services Failures and Recovery Strategies: A Review

Indian Journal of Science and TechnologyVol 12 (43) | November 2019 | www.indjst.org 4

All above recovery strategies can be used individually
or in combination with others to handle different types of
failures. Table 2 gives a review-summary of different types
of failures and their possible recovery strategies.

Table 2.  Failure-types and possible recovery solutions

Fault type Recovery action
Unavailable/unresponsive Retry,7,26,30,33,36,38–40,41

RetryUntil,29,33 Ignore,26,31,33
Alternate,31,41 Wait33

Syntactic
faults

Parameter
incompatibility

Ignore,26,33,41 Alternate,32,41
Retry32,41

Interface
change

Ignore,26,32,41 Alternate,31,41
Retry33,41

Content
faults

QoS Ignore,26,31,33,41 Skip,31,42
Retry,33,41 Alternate31,33,41

SLA Ignore,31,33 Skip,31,33,41,40
Retry,31 Alternate31

Incorrect
service

Ignore,33 Retry,41 Alternate31

Timing
faults

Timeout Ignore,26,33,41 Skip,31,33
Retry,33,36,42,21
Alternate31,33,41,42

Semantic Ignore,26,33,41 Retry,33,41
Alternate33,41

4.  Discussion
Though, much research has been conducted in the area
of fault-tolerance of Web services, however, not all faults
are avoidable.21–23 Due to the dynamic, heterogeneous,
and cross-boundary integration of Web services deployed
over the unreliable Internet, faults become hard to predict
and resolve.4,9 It is possible that a number of faults occur
at the same time during the execution of services; this may
require more than one recovery strategy to be applied to
recover from those failures. However, which combination
of recovery strategies can provide best optimal solution,
and in which order these strategies should be applied is a
very cumbersome problem. The field of fault-tolerance is
still maturing, and the introduction of advanced heuristic,
AI, and other state-of-the-art techniques may further
improve the reliability of Web services.24,25

5.  Conclusion
A Web service offers its users a coarse-grained and value-
added functionality using the Internet. In addition to the

containment of all feature of traditional software, Web
services contain some additional features like autonomy,
heterogeneity, and interoperability. Furthermore, like
their traditional counterparts, Web services may also
suffer from errors and failures during their entire life
(development to execution).

The issue of failures increases when Web services are
deployed over the unreliable media and communicate
under heterogeneous environments. Due to their use
in important and critical applications, Web services
are required to be highly available and reliable. Based
on the importance of services dependability, this study
presented an overview of different failures-types which
affect the execution of Web services. Furthermore, an
overview of different recovery strategies with respect to
different failure types has also been present. Based on
the discussion with references to the novel research, it is
concluded that detecting and avoiding services failures
is a cumbersome problem, specially, when many faults
occur at the same time. Furthermore, in order to recover
from complex failures, a combination of different recovery
strategies may be applied at the same time; however, what
is the best combination and best order in which these
strategies need to be executed is a very difficult problem
to resolve. The field of fault-tolerance is still maturing and
the introduction of more sophisticated and state-of-the-
art recovery techniques enriched with AI and heuristics is
highly needed to make more reliable services.

References
	 1.	 Web services: concepts, architectures and applications. [cited

2004]. https://www.springer.com/gp/book/9783540440086.
	 2.	 Sheng QZ, Qiao X, Vasilakos AV, Szabo C, Bourne S, Xu

X. Web services composition: A decade’s overview. Int J Inf
Sci. 2014;280(2):218-38.

	 3.	 Service-oriented architecture: a field guide to integrating
XML and web services. [cited 2004]. https://www.arcitura.
com/wp-content/uploads/2017/08/Erl_SOABook1_
Ch01-2.pdf.

	 4.	 Papazoglou MP, Traverso P, Dustdar S, Leymann F. Service-
oriented computing: state of the art and research challenges.
Computer. 2007;40(11):38-45.

	 5.	 Service-oriented architectures, and cloud computing.
[cited 2013]. https://www.w3schools.in/service-oriented-
architecture/.

	 6.	 Lemos AL, Daniel F, Benatallah B. Web service composition:
a survey of techniques and tools. ACM Comput Surv.
2015;48(3):1–41.

https://www.springer.com/gp/book/9783540440086
https://www.arcitura.com/wp-content/uploads/2017/08/Erl_SOABook1_Ch01-2.pdf
https://www.arcitura.com/wp-content/uploads/2017/08/Erl_SOABook1_Ch01-2.pdf
https://www.arcitura.com/wp-content/uploads/2017/08/Erl_SOABook1_Ch01-2.pdf
https://www.w3schools.in/service-oriented-architecture/
https://www.w3schools.in/service-oriented-architecture/

Indian Journal of Science and Technology 5Vol 12 (43) | November 2019 | www.indjst.org

Nimra Memon, Muhammad Saleem Vighio and Zahid Hussain

	 7.	 Dustdar S, Schreiner W. A survey on web services
composition. Int J Web Grid Serv. 2005;1(1):1–30.

	 8.	 Schäfer M, Dolog P, Nejdl W. An environment for flexible
advanced compensations of web service transactions. ACM
Trans Web. 2008;2(2):1–14.

	 9.	 Yu Q, Liu X, Ouguettaya AB, Medjahed B. Deploying and
managing web services: issues, solutions, and directions.
VLDB J. 2008;17(3):537–72.

10.	 Avizienis A, Laprie JC, Randell B, Landwehr C. Basic
concepts and taxonomy of dependable and secure
computing. IEEE Trans Depend Secure Comput. 2004;1(1):
11–33.

11.	 Towards fault tolerance in web services compositions. [cited
2007 Sep 14]. https://dl.acm.org/citation.cfm?id=1316552.

12.	 Zeng L, Le H, Jeng JJ, Chung JY, Benatallah B. Policy-
driven exception-management for composite web services.
In: Proceeding of the 7th IEEE international conference on
e-commerce technology (CEC 2005); 2005. P. 355–63.

13.	 Angarita R, Cardinale Y, Rukoz M. Reliable composite web
services execution: towards a dynamic recovery decision.
In: Proceedings of the XXXIX Latin American computing
conference (CLEI’3); 2014. vol. 302. P. 5–28.

14.	 Gupta S, Bhanodia P. A fault tolerant mechanism for
composition of web services using subset replacement. Int J
Adv Res Comput Commun Eng. 2013;2(8):3080–85.

15.	 Issarny V, Tartanoglu F, Romanovsky A, Levy N.
Coordinated forward error recovery for composite
Web services. In: Proceedings of the 22nd international
symposium on reliable distributed systems; 2003. P. 167–76.

16.	 Mariani L. Fault taxonomy for component-based software.
Electron Notes Theor Comput Sci. 2003;82(6):55–65.

17.	 Chan KSM, Bishop J, Steyn J, Baresi L, Guinea S. Fault
taxonomy for web service composition. In: Di Nitto E,
Ripeanu M, editors. Service-oriented computing – ICSOC
2007 workshops. ICSOC 2007; 2009. vol. 4907. P. 363–75.

18.	 Dependability: basic concepts and terminology. [cited
1992]. https://www.springer.com/gp/book/9783709191729.

19.	 Tartanoglu F, Issarny V, Romanovsky A, Levy N.
Dependability in the web services architecture. In: de
Lemos R, Gacek C, Romanovsky A, editors. Architecting
dependable systems. Lecture notes in computer science;
2003. P. 2677.

20.	 Zhang J, Zhou A, Wang S, Yang F. Overview on fault
tolerance strategies of composite service in service
computing. J Wirel Commun Mob Comput. 2018;1:1–8.

21.	 Kopp O, Leymann F, Wutke D. Fault handling in the web
service stack. In: Maglio PP, Weske M, Yang J, Fantinato M,
editors. Service-oriented computing. ICSOC 2010. Lecture
notes in computer science; 2010. P. 6470.

22.	 Chan PPW, Lyu MR, Malek M. Making services fault
tolerant. In: Proceedings of the third international
conference on service availability (ISAS’06); 2006. P. 43–61.

23.	 Architecting dependable systems. [cited 2003]. https://
www.springer.com/gp/book/9783540407270.

24.	 Muthusami A. Fault prediction in web services. Int J Sci
Eng Technol Res (IJSETR). 2014;3(4):1015–9.

25.	 Immonen A, Pakkala D. A survey of methods and
approaches for reliable dynamic service compositions. Serv
Orient Comput Appl. 2014;8(2):129–58.

26.	 A recovery mechanism based on a rewriting process for
web service compositions. [cited 2008 Jul]. https://pdfs.
semanticscholar.org/cca9/7c42e9fff0f706de45fe52112596cf
4fb5d8.pdf.

27.	 Bhandari GP, Gupta R. Extended fault taxonomy of SOA-
based systems. J Comput Inf Technol. 2017;25(4):237–57.

28.	 Maheshwari EP, Tosic T. Recovery policies for enhancing
web services reliability. In: IEEE international conference
on web services (ICWS’06); 2006. P. 189–96.

29.	 Diwase D, Vidap P. A testing framework for fault tolerant
of transactional web services, Indian J Comput Sci Eng
(IJCSE). 2013;3(6):839–43.

30.	 He W, Recovery in web services applications. In: IEEE
international conference on e-technology, e-commerce and
e-service (EEE’04); 2004. P. 25–28.

31.	 Wang Q, Lv G, Ying S, Wen J. A policy-driven exception
handling approach for service-oriented processes. In: IEEE
16th international conference on computer supported
cooperative work in design (CSCWD’12); 2012. P. 49–455.

32.	 Saboohi H, Kareem SA. Requirements of a recovery
solution for failure of composite web services. Int J Web
Semant Technol (IJWesT). 2012;3(4):13–19.

33.	 Liu A, Li Q, Huang L, Xiao M. FACTS: a framework for
fault-tolerant composition of transactional web services.
IEEE Trans Serv Comput. 2010;3(1):46–59.

34.	 Gulcu JK, SozerH, Aktemur B. FAS: introducing a service
for avoiding faults in composite services. In: Proceedings
of the 4th international conference on software engineering
for resilient systems (SERENE’12); 2012. P. 106–20.

35.	 Tamak J. A review of fault detection techniques to detect
faults and improve the reliability in web applications. Int J
Adv Res Comput Sci Softw Eng. 2013;3(6):14–21.

36.	 Lau KK, Tran CM. Server-side exception handling by
composite web services. In: Binder W, Dustdar S, editors.
Emerging web services technology volume III. Whitestein
series in software agent technologies and autonomic
computing. Birkhäuser Basel; 2010. P. 37–54.

37.	 WS-FTM: a fault tolerance mechanism for web services. [cited
2005]. https://www.semanticscholar.org/paper/WS-FTM-
%3A-A-Fault-Tolerance-Mechanism-for-Web-Looker/08d
e8f4c3498d0efa058af2617d98e71a21c410f.

38.	 Fault management of web services. [cited 2009]. https://
harvest.usask.ca/handle/10388/etd-08182009-231403.

39.	 Arul U, Prakash S. Towards fault handling In B2b
collaboration using orchestration based web services

AQ1

https://dl.acm.org/citation.cfm?id=1316552
https://www.springer.com/gp/book/9783709191729
https://www.springer.com/gp/book/9783540407270
https://www.springer.com/gp/book/9783540407270
https://pdfs.semanticscholar.org/cca9/7c42e9fff0f706de45fe52112596cf4fb5d8.pdf
https://pdfs.semanticscholar.org/cca9/7c42e9fff0f706de45fe52112596cf4fb5d8.pdf
https://pdfs.semanticscholar.org/cca9/7c42e9fff0f706de45fe52112596cf4fb5d8.pdf
https://www.semanticscholar.org/paper/WS-FTM-%3A-A-Fault-Tolerance-Mechanism-for-Web-Looker/08de8f4c3498d0efa058af2617d98e71a21c410f
https://www.semanticscholar.org/paper/WS-FTM-%3A-A-Fault-Tolerance-Mechanism-for-Web-Looker/08de8f4c3498d0efa058af2617d98e71a21c410f
https://www.semanticscholar.org/paper/WS-FTM-%3A-A-Fault-Tolerance-Mechanism-for-Web-Looker/08de8f4c3498d0efa058af2617d98e71a21c410f
https://harvest.usask.ca/handle/10388/etd-08182009-231403
https://harvest.usask.ca/handle/10388/etd-08182009-231403

Web Services Failures and Recovery Strategies: A Review

Indian Journal of Science and TechnologyVol 12 (43) | November 2019 | www.indjst.org 6

composition. Int J Emerg Technol Adv Eng Int Conf Inf
Syst Comput Eng (IJCSE). 2013;3(6):839–43.

40.	 Weidong W, Liqiang W,Wei L. A resilient framework for
fault handling in web service oriented systems. In: IEEE
international conference on web services; 2015. P. 663–70.

41.	 Liu A, Li Q, Huang L, Xiao M. A declarative approach
to enhancing the reliability of BPEL processes. In: IEEE

international conference on web services (ICWS 2007);
2007. P. 272–79.

42.	 Zeng L, Lei H, Benatallah B. Policy-driven exception-
management for composite web services. In: IEEE
international conference on e-commerce technology; 2005.
P. 355–63.

