
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(41), DOI: 10.17485/ijst/2019/v12i41/145568, November 2019

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Towards the Prevention of Car Hacking:
A Threat to Automation Industry

Pooja Sharma1, Vaibhav Jha1, Vasudha Arora1 and Prateek Jain2,*
1Department of Computer Science & Engineering,

Manav Rachna International Institute of Research & Studies, Faridabad 121003, India,
pooja02998@gmail.com, vaibhavkumar2012@gmail.com

2Accendere CL Educate Ltd, New Delhi 110044, India; prateek.jain@accendere.co.in

Abstract
Background/objectives: Connectivity provides a safer environment, but it also acts as a backbone to provide attack surface
to hackers. There are millions of cars on the road today, and so many are expected to be in future; there might be a risk to
the passengers, vehicle drivers, etc. Methods/statistical analysis: This study discusses the issue of car hacking which is
one of the real threats to automobile as well as automation, and how we can prevent it by studying the details about the
controller area network (CAN) bus architecture so that the auto manufacturer gives more emphasis to developing a secure
vehicular information system. Findings: Hackers gain access to the car system via the internet, Bluetooth, etc. As much as
a car is automated, it is much more vulnerable to cyber-attack. When a car is connected to the internet, it provides access
to the vehicle’s delicate CAN bus. Hackers can hijack non-safety and safety-critical functions such as steering, accelerator,
brake and clutches by sending commands. Improvements/applications: This study gives a general overview of how we
can validate the security features of the vehicle so that we can secure our vehicle from black hat hackers, resulting in saving
millions of people who could be a victim of such menacing cyber-attacks.

1.  Introduction
In 2010 researchers at the Center for Automotive
Embedded Systems Security (CAESS), California, detected
that gaining a connection with ODB-II port of the car can
easily disable the breaks and switch on/off the engine. They
embeded a malicious code in the car’s telematics unit and
were able to break its network security.1

In 2013 cyber security researchers Charlie Miller and
Chris Valasek have shown to The Forbes how they could
access vehicle controls through a laptop computer via the
ODB port.2 In 2014 Mathew Solnik, an information security
researcher, misguided the car’s engine, brakes and security
systems from his laptop by wirelessly connecting to the ODB
port in the controller area network (CAN) bus system.

In 2015 host Lesley Stahl, in a demonstration by the
U.S. military’s Defense Advanced Research Projects
Agency (DARPA), drove a car remotely using his laptop.

In 2017, William Hatzer and Arjun Kumar at Rapid7
claimed that Hyundai Blue Link app can be a reason of
the “MAN IN THE MIDDLE ATTACK”. Hackers can
easily have access to the personal information of the
user. In today’s world, much of the objects that we use in
day-to-day life and at homes are increasingly becoming
controllable by the remote. Due to technology there
is a need to automate everything and to influence and
automate the object’s behavior that once required local
and manual input. Thus, automation has become the
necessity and an important issue to tackle with.3

Vehicle is one of the most typical productions of
industries. A vital and necessary consideration of a car
is safety. In the past, car designers did not need to think
about a problem that a car could be possibly attacked and
controlled by hackers. But with a significant development
in recent years, IT crimes have become a serious problem
that cannot be ignored. The deficiency of safety on

Keywords: Car Hacking, CAN Bus, Cyber-attacks, OBD Hacking

Towards the Prevention of Car Hacking: A Threat to Automation Industry

Indian Journal of Science and TechnologyVol 12 (41) | November 2019 | www.indjst.org 2

electronic and information system of cars should get
more attention.

Considering the modern vehicles, it is quite easy to
immediately picture a scenario where a car is controlled
using a smartphone. Moreover, this leads to a rise in
autonomous vehicles as well as self-driving cars, and this
represents the next logical step and is a reality for current
scenario. Due to a rise in the complexity of the electronic
circuit of the vehicles, there is a need to understand
these electronic control units (ECUs) as well as their
importance in monitoring the various subsystems of a
car. In addition, modern vehicles are able to communicate
with other devices using wireless interfaces, potentially
exposing the internal network of the car to vulnerabilities.
It is our belief that the current state-of-the-art internal
communication systems used in modern cars are not
ready to handle threats from external attackers.3

Currently, ECUs are widely used in cars for controlling
and achieving most functions of cars. A vehicle may
have dozens to hundreds of ECUs to work with. In this
case, CAN plays a role that connects ECUs together. The
hardware of CAN is called the CAN bus.4

One feature of CAN is that it follows a massage-based
protocol to transfer information. In a real car, the contents
of CAN messages depend on the car’s designer, but
the form of these messages certainly obeys a particular
standard (ISO 11898). Because of this, it is not difficult to
analyze these messages merely by reading them. Besides,
the message form of CAN data frame which is used for
sending status information or instructions does not
include any field for identifying the sender of messages.4

2.  Different Ways to Unlock a Car

2.1  Using an Arduino-based RF Transceiver
The first attack we performed was done by a radio device
which costed just 2000 INR with a radio receiver, a small
control board, but is capable of spying and extracting
continues code values used by keyless entry systems
(Figure 1).5.6

We included code values in the signal which is sent
every time when a driver presses the key buttons, which
is then used together to emulate a key that is unique for
every vehicle. Then we performed reverse engineering
into one component inside a car’s network and were able
to extract a cryptographic key. Then we combined the two
secret keys, which enabled us to clone the key fob and
access the car.

2.2  Hijack with HiTag2 and a Radio Device
in 60 Seconds
In the second method, we used a cryptographic scheme
called HiTag2 which is old but still used in millions of
vehicles, including Lancia, Opel, Renault, Ford, Alfa
Romeo, Chevrolet and Peugeot.

To perform this attack, a hacker needs a tiny radio
setup which is similar to the one used in the previous
hack. Using a radio device, we were able to read and
intercept the strings of the coded signals from the car’s
key fob.

We discovered that flaws in the HiTag2 scheme
with the help of rolling codes would allow cracking the
cryptographic key in a second. So these two methods
were just for unlocking the car, making it accessible for
hackers or thieves to steal it. But if we use a digital system
instead of rolling codes, it would be more secure. To hack
a car, unlocking it is the first step of every hacker, so that
they can tamper the CAN bus system and the OBD port.

3.  Tampering the CAN Bus
Two security researchers Javier Vazquez-Vidal and
Alberto Garcia Illera have developed CAN Hack, a tiny
device, which is even smaller than our mobiles, to hack
cars. The device costs 1500 INR, but is able to give away
the entire control of any car to an attacker from headlights
and windows to its steering angles7 and brakes (Figure 2).8

By injecting a malicious code into the CAN ports makes
it possible for an attacker to send wireless commands
remotely from a computer. It can take just 5 minutes or less
for coming into the action and then walk away. Whether
it takes 1 minute or 1 year, a hacker could wait and then
trigger it to do whatever one has programmed it to do.
Once hackers have the control of this network, they can
control locks, lights, steering and even breaks (Figure 3).9

Figure 1.  Arduino-based RF transceiver.6

Indian Journal of Science and Technology 3Vol 12 (41) | November 2019 | www.indjst.org

Pooja Sharma, Vaibhav Jha, Vasudha Arora and Prateek Jain

Figure 2.  CAN bus system.8

Figure 3.  CAN bus architecture.9

3.1.  CAN Bus Architecture
CAN bus is called the heart of any modern vehicle’s
interconnected systems. The CAN bus is a single, centralised
network bus on which all of a vehicle’s data traffic is broadcast.
Every command from the operator is being carried by the
CAN bus system such as “apply the brakes” or “roll down
the windows” to readouts from sensors reporting engine
temperature or tire pressure. The emergence of the CAN10
bus brought improvements in efficiency and a reduction in
complications, thus reducing wiring costs too (Figure 4).

But with the car hacking toolkit (CHT), hackers have
already tested on different vehicles and successfully did
tricks, which include setting off alarms, affecting the steering,
applying brakes, and switching off headlights. We performed
this with the help of Bluetooth, but we could also do the same
with the help of Raspberry Pi or a WiFi router, enabling the
CHT to control the car from a far distance.

4.  Understanding the OBD Port
All the vehicles come equipped with an OBD (On Board
Diagnostic) port, which allows the external devices to
interface with a car’s computer system. We generally find

Figure 4.  Car hacking toolkit.

this connector under11 the steering column just above the
break and accelerator panel or hidden elsewhere on the
dashboard (Figure 5).

5.  Layman Procedure
First of all, as soon as we gain access to an OBD board, we
are able to extract every information of the car. We can
use that information to understand the architecture and
behaviour of that car.

But changes could only be done when a hacker or attacker
has access to the CAN bus architecture. For communicating
with the CAN bus, we require various drivers and software.
The best technique would be to amalgamate the CAN tools
along with their various interfaces to form a customary
interface so that we could easily share and communicate
between different tools (Figure 6).12

Sockets CAN, an open source driver of CAN and
official API of Linux kernel, makes it possible to make
tools to support CAN. Socket CAN applications use the
standard C socket which comes along with a custom

Figure 5.  OBD layout.

Towards the Prevention of Car Hacking: A Threat to Automation Industry

Indian Journal of Science and TechnologyVol 12 (41) | November 2019 | www.indjst.org 4

network protocol family, PF_CAN. With the help of
this functionality, kernel handles CAN device drivers to
communicate with existing networking hardware, thus
providing user-space utilities and a common interface.13

We used this git command to install CAN utils in our
package manager.

$ sudo apt-get install can-utils
$ git clone https://github.com/linux-can/can-utils

6.  Data Recorder Logging
All vehicles that came after 2015 are equipped with a kind
of black box called event data recorder (EDR), but it can
record only a finite portion of information that a black
box on an aircraft could do. Information stored on an
EDR is as follows14:

6.1.  Airbag Deployment
Generally airbags open when a car gets hit on its bonnet, but
here with the amalgamation of codes we can open it anytime.

6.2.  Steering Angles
Turning the steering into wrong angles might lead to an
accident.

6.3.  Vehicle Speed
Engine speed could be tampered using a reverse CAN;
thus, acceleration could be suddenly boosted, leading to
a major accident.

6.4.  Brake Status
Brakes could be applied anytime by the attacker, which
might result in a tragedy.

6.5.  Ignition Cycles
Ignition could get disrupted while driving, causing a
sudden stoppage of the car.

7. � Communicating with the
Wireshark for Reversing CAN
Bus

To keep a watch on the activity of CAN, we need a device
called OBD-II that could monitor and generate CAN
packets. This device will cost around 2000 INR. Open
source hardware and software are ideal to use as it is
compatible with the majority of software tools. We used
Wireshark to capture and alter the packets, and candump
from the can-utils suite (Figure 7).15,16

Every vehicle has a unique CAN system; therefore,
common packet investigation won’t work for CAN. As
there’s so much disturbance on CAN, it’s very difficult to
sort in an order of every packet.

7.1.  Wireshark
For networking, we used Wireshark with SocketCAN
to capture CAN packets. Both canX and vcanX devices
could be listened with Wireshark. If you need to use a
slcanX device with Wireshark, one should change the
name from slcanX to canX.

If interface renaming doesn’t work, then one has to
transfer CAN packets from an interface that Wireshark
can’t read; a single CAN could bridge the two interfaces.
To do so, we used the mentioned commands (Figure 8):

$ candump -b vcan0 slcan0
Raw hex bytes are shown because the data section isn’t

decoded. This happens because Wireshark’s decoder is

Figure 6.  Tampering with the CAN system.12

Figure 7.  Packets received from the vehicle.

Indian Journal of Science and Technology 5Vol 12 (41) | November 2019 | www.indjst.org

Pooja Sharma, Vaibhav Jha, Vasudha Arora and Prateek Jain

not able to deal with ISO-TP or UDS packets but can only
handle the basic CAN header.

7.2.  Writing to the CAN Bus
Then we write back to the CAN bus the below-mentioned
code, which handles the steering wheel angle.

$ openxc-control write –name steering_wheel_angle_
value 41.0
$ openxc-control write –bus 2–id 41 –data 0x1234

It is basically called raw CAN hacking. However, one
can write an app or embedded graphical interface so
that the vehicle could read and react, thus making it the
quickest route to own a car for free.

7.3.  Hacking OpenXC
After our work of reversing CAN signals, one can frame
their own OpenXC firmware. As OpenXC is an API for
the car, its work is to read as well as translate information
from a car’s internal network so that the data could become
approachable from most Android apps using the OpenXC
library. Compiling17 our own firmware becomes easy
which indicates now we could read or write whatever we
want and even write code for the “unsupported” signals.
To start an engine, we can create a signal for that and then
add it to our own firmware in order to provide a layman
interface to give ignition to the car. So, this is the power of
open source. Consider a signal that renders speed of the
engine. Giving 8-8 will set a basic configuration to return
the speed signal of engine. Then we sent RPM data with
a 4-byte-long instruction ID 0x1110 starting at the fourth
byte.

{ “name” : “Intersquad”,
 “buses”: {
 “hs”: {
 “controller”: 1,
 “speed”: 600000
 }				
 },
 “instruction”: {				
 “0x110”: {
 “name”: “Acceleration”,
 “bus”, “hs”,
 “signal”: {
			
 “signal_of_engine_speed “: {
 “name”: “engine_speed”,
 “bit_position”: 4,
 “bit_size”: 18
				
} }					
} }					
}					

With the help of OpenXC, our modifications of CAN
system are stored in JSON. JSON is used for storing and
exchanging data. First of all, we increased acceleration of
the car using the above code, thus modifying the bus by
framing a JSON with a text editor. In the code, we framed
a signal of JSON for a high-speed bus running at 600
kilobytes per second.

JSON can read human-readable text for transmitting
data consisting of array data types and attribute value
pairs. As soon as we have the JSON, we compiled the
above code into a CPP format which again could be
compiled into the firmware:

$openxc-generate-firmware-code –message-set/run-
bench.json > signal.cpp

With the help of these commands, we recompiled the
firmware. If somehow things go wrong and we can’t gain
access to the CAN bus system, then ECU hacking comes
into the picture.17,18

8.  Conclusion
Cyber security is now the need of hour. Smart cars are the
most vulnerable and open to any sort of exploits. One can
imagine the situation of being hacked while driving. Even
the airbags, brakes and accelerators may not be in one’s
control on wheel. So, manufacturers need to lay much

Figure 8.  CAN packets in Wireshark.

Towards the Prevention of Car Hacking: A Threat to Automation Industry

Indian Journal of Science and TechnologyVol 12 (41) | November 2019 | www.indjst.org 6

importance on the CAN bus system by making it more
hardware-secured and using secret codes. By finding all
possible ways of attack a hacker can perform on the car,
we can patch that vulnerability and could save people.

References
	 1.	 Currie R. Developments in car hacking. SANS Institute;

2015.
	 2.	 Smith C. The car hacker’s handbook: a guide for the

penetration tester. No Starch Press; 2016.
	 3.	 Jafarnejad S. A car hacking experiment: when connectivity

meets vulnerability. In: IEEE globecom workshop; 2015. P.
1–6.

	 4.	 Zhang Y. Controlling a car through obd injection. In: IEEE
3rd international CONFERENCE on cyber security and
cloud computing; 2016. P. 26–9.

	 5.	 Martinelli F. Car hacking identification through fuzzy logic
algorithms. In: IEEE international conference on fuzzy
systems; 2017. P. 1–7.

	 6.	 Samara G, Al-Salihy AHW, Sures R. Security analysis of
vehicular ad hoc networks. In: Second international conference
on network applications, protocols and services; 2010.

	 7.	 Van Osch, Michiel, Smolka SA. Finite-state analysis of the
CAN bus protocol. In: Proceedings sixth IEEE international
symposium on high assurance systems engineering. Special
topic: impact of networking; 2001. P. 42–52.

	 8.	 Rouf I, Miller R, Mustafa H, Taylor T, Oh S, Xu W, et al.
Security and privacy vulnerabilities of in-car wireless

networks: a tire pressure monitoring system case study.
USENIX Security; 2010. P. 323–38.

	 9.	 Kaspersky lab daily. [cited 2019 May 22]. https://
en.wikipedia.org/wiki/Kaspersky_Lab.

	10.	 Brief history of car hacking. [cited 2017 Aug 30].
https://smart.gi-de.com/2017/08/brief-history-car-
hacking-2010-present/.

11.	 Studnia I, Nicomette V, Alata E, Deswarte Y, Kaâniche M,
Laarouchi Y. Survey on security threats and protection
mechanisms in embedded automotive networks. In: 43rd
annual IEEE/IFIP conference on dependable systems and
networks workshop; 2013. P. 1–12.

12.	 Ring M. Survey on vehicular attacks-building a vulnerability
database. In: IEEE international conference on vehicular
electronics and safety; 2015. P. 208–12.

13.	 Hacking news. [cited 2017 Feb 03]. https://latesthackingnews.
com/2017/02/03/metasploit-now-supports-hacking-cars/.

14.	 Cui X, Li J. Tools and practices. Secure and trustworthy
transportation cyber-physical systems. Singapore: Springer;
2017. P. 143–59.

15.	 Kroker A, Kroker M. Hacking the future: stories for the
flesh-eating 90s. New World Perspectives; 1996. P. 1–146.

16.	 Miller C, Valasek C. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA; 2015. P. 1–91.

17. 	Cui W. Automatic reverse engineering of input formats. In:
Proceedings of the 15th ACM conference on computer and
communications security; 2008. P. 391–402.

18.	 Malekian R. Design and implementation of a wireless
OBD II fleet management system. IEEE Sens J. 2016,
17(94):1154–64.

https://en.wikipedia.org/wiki/Kaspersky_Lab
https://en.wikipedia.org/wiki/Kaspersky_Lab
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://latesthackingnews.com/2017/02/03/metasploit-now-supports-hacking-cars/
https://latesthackingnews.com/2017/02/03/metasploit-now-supports-hacking-cars/

