
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(4), DOI: 10.17485/ijst/2019/v12i4/140768, January 2019
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

AAAS - Framework in Large Virtualized Environment
M. B. Bharath1 and D. V. Ashoka2

1Solution Architecture, Dell EMC Software and Service Bangalore - 560048, Karnataka, India;
Bharath.Basavarajappa@emc.com

2Department of Information Science and Engineering, JSS Academy of Technical Education, Bangalore - 560060,
Karnataka, India; dr.ashok_research@hotmail.com

Keywords: Automation, Integrated Automation Framework, Orchestration, Scalable Architecture, Virtualized Environment

Abstract
Objective: To define template architecture for large virtualized environment automation ecosystem. Methods/Statistical
Analysis: This study proposes self-sustaining, highly scalable automation architecture with multiple services components
supporting each other’s to deliver a reliable and scalable service in self-contained virtualized environment. This new
proposed template architecture has been evaluated by building Proof of concept built using few readily available tools and
few property application developed for this project. Finally we evaluated the architecture with varying load of storage,
SAN networking and Backup and recovery workflow tasks. Stability, sustainability and self-load balancing capabilities
are measure over time, by injecting dynamic work task to this framework. Findings: Large virtualized environment
gives unlimited access to compute and storage resource on demand. One of the key enabler for this functionality is the
robust automation framework. Due to limited technical expertise and lack any open source standard shinder migration of
any existing mid-size virtualized IT assets into fully automated eco-system. This study tries to address this challenge by
proposing new template open-ended architecture. This takes care of any organizational scalability, security, and compliance
and maintainability issues. Application/Improvements: The proposed architecture can be used for implementing highly
automated virtualized ecosystem in large virtualized environment.

1. Introduction
Virtualization was evolutionary change that altered the
landscape of how organizations visualize their IT assets.
Concepts like Infrastructure as-a-Service (IaaS) gives bet-
ter resource utilization and reduce the operational cost of
managing and maintaining IT infrastructures. There are
good amount of highly automated large commercial pub-
lic cloud providers like Amazon EC21, Microsoft Azure,
Google cloud platform, VmWarevCloudAir, Rackspace
are few such examples, which provides IaaSservice. These
solutions address the commercial public cloud space, but
there is a gap in terms of medium to large scale organi-
zation which cannot move to public cloud due to policy
constrains and security risk, like large financial institutes,

defense and defense manufactures, public health care
institutes etc. Most of them are using virtualization but
limited by their ability to move to the highly automated
IaaS space. Because of lack of technology and limited
resources, which hinder their efforts. We are trying to
address this unexplored space with template architecture.
The large scale virtualization orchestration involves the
creation, management and manipulation of resources, i.e.,
of the compute, storage and network, in order to realize
user requests in an environment and or to realize opera-
tional objectives of the service provider. User requests are
driven by the service abstraction and service logic that
any environment exposes to them. Any automation and
orchestration built should address issues like bulk con-
current user request, organizational policy enforcement

Indian Journal of Science and TechnologyVol 12 (4) | January 2019 | www.indjst.org 2

AAAS - Framework in Large Virtualized Environment

and security and compliance assessment, while servicing
this request.

However, existing techniques for orchestration are
rudimentary to meet the new very large virtualized envi-
ronment. Its ability to scale and sustain is hamper by
the multiple functionality and features it support. This
paper proposes a new alternative model with capability of
self-monitoring, scalable, secure and compliance driven
engine which can scale horizontally along with orchestra-
tor engine. Before that we will go through some of the
related research work done in this area. Not all of them
related to virtual environment, but they try to address sim-
ilar issues in different domain. Virtualization automation
and Service-oriented paradigms in industrial automation.
In2 proposed talk about intelligent device networking
based on service-oriented high-level protocols in Service
Infrastructure for Real-Time Embedded Networked
Applications (SIRENA) project. In have worked on the
Learning Automata (LA)-based QoS (LAQ) framework3,
which address the challenges and demand of various
cloud applications, hence making efficient use the com-
puting resource. This proposed framework also make sure
that the on-demand request are serviced with minimum
service level as prescribed by the Service Level Agreement
(SLA). COOLAID4 proposes a data-centric network con-
figuration management. COOLAID manages router
configurations and adopts the relational data model and
Data log style query language. There are several related
frameworks proposed for management and orchestration
for large scale systems. Autopilot5 is a data center software
management infrastructure from Microsoft for automat-
ing software provisioning, monitoring and deployment.
It has repair actions to deal with faulty software and
hardware. Its periodic repair procedures maintain weak
consistency between the provisioning data repository
and the deployed software code. Similarly in open source
community Puppet6 is configuration management tool
which can orchestrate the datacenter administrative task
through easy declarative statements. On similar line Chef7
is the configuration management tools written in Ruby,
which uses the domain specific language (DSL) for the
writing recipes (aka system configuration details). This
is wildly used in DevOp process to integrate with cloud
service providers like Amazon EC21, Google Cloud
Platform, Oracle Cloud, OpenStack, SoftLayer, Microsoft
Azure and Rackspace.

2. Materials and Methods

2.1 Limitation of Existing System
Most of the current day automation solutions are around
orchestrator or running a group of job scripts. This
method helps things done in quick way and gets the job
done. But it’s not sustainable on a long run. After cou-
ple of quarters in production, maintenance and support
issues crop up. Along with this, as more devices are added
to automation system, scalability becomes a limitation of
the system. One of the most difficult part to handle with
this solution is the, issue related to security and compli-
ance (this is critical aspect in managed service business)
and not easy to plug-in this to any of the legacy system on
the brownfield solutions. Along with this any organiza-
tion level policy enforcement is a challenge, since system
is not build to accommodate these needs.

In summary following is the few critical limitation of
the existing system

•	 Automations are done in silos
•	 Not easy to monitor and scale
•	 Policy enforcement and compliance adherence.
•	 Availability and Predictability of automation sys-

tem
•	 No plug & play framework for automation as ser-

vice
•	 Most of the automation are specific to domain

and fails in long run
•	 Most of the current automation solution are

Orchestrator centric
•	 Not maintainable in long run

So there is a need for the radical new solution which take
into consideration of security, compliance, plug and play
etc, in to consideration at the conceptualization stage
rather than dealing with them as a afterthought process.
Next section describes one such solution.

2.2 Domain Model
This new proposed model has four base components ser-
vices as listed below.

•	 Infra as Service
•	 Management System

Indian Journal of Science and Technology 3Vol 12 (4) | January 2019 | www.indjst.org

M. B. Bharath and D. V. Ashoka

•	 Backbone System
•	 End point Adapters

Each of these base components is a service
group,which logically group the related components.
Where Management System includes components like
self-service portal, Health check dashboard and Policy
engine portal. All users facing Graphical User Interface
(GUI) is grouped under this component. In other words
these are interface component with automation eco sys-
tem from end user perspective. Whereas the Infra as
Service include core of the automation eco system, that is
orchestrator and load balancer. These two forms the foun-
dation of the framework on top of which rest of the eco
system is build. Most of the other services coordinate and
support this base component to achieve sustainable eco
system. Figure 1 shows these details in abstract represen-
tation. Backbone and End point adapters provide support
functionaries like policy enforcement, Monitoring inter-
nal resource utilization and health, also provide API
connectivity to external world through adapters. All these
components are represented in Figure 1.

Figure 1. Four main services of Data Model and their logical
relationship.

2.3 Proposed Solution
The new proposal for scalable automation and orches-
tration platform for data center operations, which is a
self-sustaining, highly scalable architecture with multiple
services supporting each other’s to deliver a reliable and
scalable service. This is an open ended architecture with

eight supporting components (as listed). This is a template
framework for which, one can easily identify the products
readily available in the market to build this setup. Here
are the eight independent service components in this eco
system. Figure 2 represents this template architecture
with their logical interconnection between eight services.
Following section briefly describes these eight compo-
nents in detail:

•	 Orchestrator Engine.
•	 Integration Gateway.
•	 Controller Engine.
•	 Policy Engine and Inventory database.
•	 Health checks Engine.
•	 Security and complacence Engine.
•	 Common End point Adapters.
•	 Load Balancer.

Figure 2. AAAS Automation architecture.

2.3.1 Orchestrator Engine
Orchestrator is the core component of the automation
platform, which will host the business workflows and
other logic to execute any datacenter admin or operational
tasks. Basic recommendation is to have two Orchestrator
Virtual Machines (VMs), one as a primary and other as
a secondary - to provide basic High Availability (HA)
service. Based on the demand, one can horizontally scale
this by adding additional orchestrator engine(s) as need
arises. Its primary task is to execute and orchestrate the
automation jobs submitted by end users.

2.3.2 Integration Gateway
This component provides north bound interface access to
architecture. Any IT Service Management (ITMS) tools

Indian Journal of Science and TechnologyVol 12 (4) | January 2019 | www.indjst.org 4

AAAS - Framework in Large Virtualized Environment

or ticketing tools can be coupled with the automation
framework through REST API service provided by the
integration gateway (or using Self-service portal embed-
ded within Controller Engine service).
This service will also host load balancer to pass on
the incoming jobs/tasks to available Orchestrator
engine(s). These also update the results (success
or failure details) back to its original requestor. All
the service entry point to Integration gateway is
defined in terms of REST API endpoint to allow
easy and flexible integration with any external
third party tools.

2.3.3 Controller Engine
Controller Engine provide following two primary service.

1. Self-service portal- gives direct invocation access to
automaton workflows

2. Health check reports- gives the utilization and health
status of the automation assets and eco system ele-
ments.

2.3.4 Policy Engine and Inventory Database
This service provides an ability to add any customer spe-
cific polies like Max size of a file system on NAS array
or Default backup policy for any filesystem etc. Most of
these policies will be owned by the individual account or
customer and they can change them over a period of time.
Most of these policies are global in nature. But next level
of granularity can be provided by creating group/tagged
elements and applying policy on that group. Most of these
policies will be store in database which also hosts the
customer Inventory data along with device admin creden-
tials. Array level utilization metrics will also be stored in
this database, which will be used to find the least utilized
array for next provisioning request. Utilization data is
feed by the Health check Engine collector, which collects
hourly capacity utilization data for most of the inven-
tory device entry in the database. Orchestration Engine
queries the Inventory database to find array/device for
allocation request. This request will be honored by the
inventory database service using policy engine as selec-
tion logic. All the communication between the services
like orchestration engine, inventory database and policy
engine happens through REST API.

2.3.5 Health Check Engine
This is one of the critical components in existing archi-
tecture, which check the availability of inventory devices
with their current utilization numbers. Health check
engine has a collector which can talk to each device/array
through API layer and collects its availability and utiliza-
tion details. It also shows the basic discovery of each of
those devices/arrays. Along with this it looks at the other
service engine in this architecture to give quick health
check of the eco system. It has built in event correlation &
self-recovery of some of predefines failures. Like restart-
ing service or API endpoint tomcat etc. Event’s data and
availability details will be shared with controller engine
health check reports. These reports show the current run-
ning state of the automation framework and its utilization
details.

2.3.6 Security and compliance Engine
This component keeps track of all the security logs and
auditing details for the other entire service engine in
this architecture. It provides both syslog integration
and SNMP trap receiver service of any security or audit
events. This also hosts some of the reporting capability for
security compliance service.

2.3.7 Common End-Point-Adapter
These are interface service which will communicate with
any device in its native API layer. These are primary inter-
face to talk to device/external components, which enable
automation capabilities in this framework.

2.3.8 Load Balancer
This will distribute the incoming task to multiple orches-
trator engine(s) based on its availability. This will also
take care of the “High Availability” aspect of automation
eco system.

3. Results and Discussion

3.1 Prototype Implementation
This template architecture has been implemented using
some of the off the self-products readily available (open
source) in market and few components are proprietary

Indian Journal of Science and Technology 5Vol 12 (4) | January 2019 | www.indjst.org

M. B. Bharath and D. V. Ashoka

code developed for this project. Our primary orches-
tration engine is from VMware vRealize Orchestrator8
(vRO). Integration gateway which allows API layer access
to the framework is written in Python using Flask library
module. Similarly Load Balancer service is java based
code which distribute the task to multiple orchestrator
engine(s). The choice of java is primarily because vRO
has few native java API for communication and task
assignment, which simplify the interface coding. Health
check and security compliance part of this framework is
done by EMC Storage Resource Monitor9 product. Policy
engine and inventory db is built using PostgreSQL server
with static HTML page, which can be accessed through
REST API. Figure 3 shows the high level implementation
diagram of this prototype.

Figure 3. AAAS Prototype implementation details (abstract
level).

3.2 Preliminary Evaluation
This section will explain two sample workflow and its
basic flow and life cycle (of automation task or job) in
this new framework. This shows two use-cases as exam-
ple to explain the complete flow. It starts with explaining
the generic flow of job entry to the eco system through
REST API request with required input parameters to run
the automaton. Any automation task go through follow-
ing seven stage or process in this ecosystem as shown in
Figure 4. Each of this stage is explained briefly in the fol-
lowing section.

•	 Load Balancer will automatically assign it to one
of the free orchestrator engine, based on the cur-
rent load.

•	 Task/Job input parameters are validated against
the policies and threshold to enforce any organi-
zation level policy.

•	 Communication end point adapter select the
appropriate device/Configuration Item (CI) to
complete this task/job. This selection will be
assisted by the utilization collector and inventory
db.

•	 Health check collector will ensure required
device/CI is available and accessible through API
interface.

•	 Finally required changes are executed on the tar-
get device/CI.

•	 Job status is actively monitored if it fails to exe-
cute any one of the required change(s), complete
task will be rolled back, by invoking recovery
steps.

•	 If task/Job complete with success it will be
reported back to Integration gateway service,
which intern update to its caller (ITSM tool or
Self Service Portal).

Figure 4. Automation task life cycle within eco system.

Let’s consider the use-case of configuring the backup
on Avamar server. This automation use-case has 6 com-
mon stages and 3 specific additional stages, if that machine
is a virtual server. Each of this stage/process is executed
within the orchestrator as workflow step and passing on
the result to next subsequent stage finally complete the
task in case of success, or role backing the tasks done in

Indian Journal of Science and TechnologyVol 12 (4) | January 2019 | www.indjst.org 6

AAAS - Framework in Large Virtualized Environment

case of failure. It’s important to make sure that any auto-
mation as atomic state, either it complete in its totality or
nothing will be done. This is critical to keep the produc-
tion setup in the consistent state.

Finally it updates the results back to its requestor.
Figure 5 explains the different stages in the use-case work-
flow. Similarly, Figure 6 shows the workflow stage for any
Configuration Management DataBase (CMDB) update.
First it checks if that device/CI is available in CMDB, if so
it updates the details if not it will try to create that entry
and then update the details. Figure 7 shows the sample
JSON input object sent to this CMDB update request.

Figure 5. Configuring backup for server automation use-
case flow chart.

Figure 6. Updating the CMDB after automation task
completion use-case.

Figure 7. Sample JSON input for the updating CMDB use
case.

Figure 8. Top 30 workflows and their execution frequency
count.

Figure 9. Events grouped by severity.

3.3 Validation and Results
The prototype of the proposed framework is imple-
mented using 54 workflows, which include both storage
and backup product related use-cases along with SAN
Networking admin tasks. Most of these workflows are
related to operational task like provisioning, adding or
deleting backup configuration, creating filesystem, giv-
ing access, mapping to server etc. These vRO workflows

Indian Journal of Science and Technology 7Vol 12 (4) | January 2019 | www.indjst.org

M. B. Bharath and D. V. Ashoka

are trigged by ServiceNow tickets configured using
integration gateway service. Once the system is up and
running health monitoring and success ratio is captured
in VmWare Log Insight, which is system health monitor-
ing tool. Here are the few sample report dashboard related
to vRO workflows and their relative state as the system
runs for couple of weeks to monitor the behavior of this
new architecture. Figure 8 shows that top 30 workflows
with their execution frequency. Similarly Figure 9 shows
the different logging event over a time group by their
priority (or severity) level. Figure 10 show the relative
quantity of different events grouped by their type.

This section shows the self-stabilization of the sys-
tem over period of type. Figure 11 and Figure 12 shows,
how the number of event (also unique events) and their
relative quantity decrease over time period. This provides
positive result that system self-correction feature work as
expected, making it more suitable for log running self-
contained automation workload.

Figure 10. Event group by their type.

Figure 11. Event group by their type.

Figure 12. Event group by their type.

4. Conclusion
Virtualization is an omni present technology in most of
the commercial organizations. It allows the IT assets to
be managed as a commodity. Even then migrating to next
level of hyper automated eco system is a challenge. This
is primarily because of limited expertise and technology
in small and medium scale organization. Our proposal
will help them to migrate to highly automated eco sys-
tem, which can be easily scaled up on demand. AAAS is
a first attempt in adopting a scalable and self-sustaining
approach that combines the different aspect of produc-
tion ready automation eco system. This template allows
easy adaptation in wider range of scenarios as this is a
generic open ended architecture. We were able to success-
fully implement this architecture using combination of
readily available products and few self-developed service.
Hence this is a relatively a viable option to consider,for
anyone looking for large scale virtualization automation
system, with varying dynamic load characteristic.

5. Reference
1. Amazon Elastic Compute Cloud (Amazon EC2). Available

from: http://aws.amazon.com/ec2/
2. Jammes F, Smit H. Service-oriented architectures for

devices- the SIRENA view. International Conference
on Industrial Informatics; 2005. p. 140–7. https://doi.
org/10.1109/INDIN.2005.1560366

3. Misra S. Learning automata-based QoS framework for
cloud IaaS. IEEE Transactions on Network and Service
Management. 2014; 11(1):15–24. https://doi.org/10.1109/
TNSM.2014.011614.130429

https://doi.org/10.1109/INDIN.2005.1560366
https://doi.org/10.1109/INDIN.2005.1560366
https://doi.org/10.1109/TNSM.2014.011614.130429
https://doi.org/10.1109/TNSM.2014.011614.130429

Indian Journal of Science and TechnologyVol 12 (4) | January 2019 | www.indjst.org 8

AAAS - Framework in Large Virtualized Environment

4. Chen X, Mao Y, Mao ZM, Van der Merwe J. Declarative con-
figuration management for complex and dynamic networks.
Proceedings of 6th International Conference on Emerging
Network Experiments and Technologies (CoNEXT); 2010.
p. 1–12. https://doi.org/10.1145/1921168.1921176

5. Isard M. Autopilot: Automatic data center management.
ACM SIGOPS Operating Systems Review. 2007; 41(2):60–
7. https://doi.org/10.1145/1243418.1243426

6. Puppet: A data center automation solution. Available from:
http://www.puppetlabs.com/

7. Chef: Automation for web-scale IT. Available from: http://
chef.io

8. vRealize Orchestrator. Available from: https://www.
vmware.com/in/products/vrealize-orchestrator.html

9. Dell EMC Storage Resource Manager. Available from:
https://www.emc.com/collateral/data-sheet/h12350-stor-
age-resource-management-suite-ds.pdf

https://doi.org/10.1145/1921168.1921176
https://doi.org/10.1145/1243418.1243426

