
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(39), DOI: 10.17485/ijst/2019/v12i39/145570, October 2019

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Towards the Proposal of Mobile Security Encryption
Algorithm: “RHINO256”

Kaustav Mani Pathak*, Priyanka Jain, Swati Yadav and Veena Tayal

Department of Computer Science & Engineering, MRIIRS, Faridabad, India

Abstract
Background/objectives: Encryption is one of the most important factors of any security structure. Data cannot be
protected without an efficient encryption technique. Different encryption algorithms are available nowadays that apply
techniques such as encrypting using symmetric or asymmetric keys, using stream or block ciphers, and others such as Feistel
networks, substitution, and permutation, etc. Methods/statistical analysis: We have analysed the existing algorithms so
as to get the problem. Findings: The proposed algorithm will solve the problem of maintaining the authenticity of the
sender as another third party cannot send a message in the former’s name, as was the problem with earlier algorithms
such as DES. Improvements/applications: The main idea of performing this research was to propose an algorithm that
can encrypt a message with the sender’s private key and the receiver’s public key together and the same can be decrypted
using the receiver’s private key and sender’s public key.

1.  Introduction
Mobiles are one of the most used devices of the 21st
century and are expected to reach 5 billion by 2019. Every
year, millions and millions of mobile devices are sold in
the market. The cheaper rates of cell phones and easier
programming tools make mobile phones as one of the
easiest and most common targets for attackers. Hence
with the rise of mobile devices comes the concern for its
security. Mobile security can be defined as the protection
of electronic devices such as smart phones, tablets, and
other handheld portable devices. Mobile security is one
of the most important concerns of the hour as almost all
of the digital works can be performed through mobiles be
it as simple as receiving and making calls to complex and
sensitive works such as banking and corporate tasks.

One of the earliest methods of securing and hiding
of data is encryption. Encryption hides the data by
making it unreadable by using special techniques. It

helps to keep the real data secret even if an unauthorized
person has access to the data. Encryption is one of
the most important parts of any security system.
Nowadays, almost all of the modern system encrypts
the data whether it is in rest, in motion, or in use. A
good encryption system should provide Authenticity,
Integrity, and Non repudiation.

In this study, considering the wide popularity of
android Smartphones, we have proposed an encryption
algorithm that can be used in messaging app to encrypt
the data in such a way that a middle man can neither
access, nor manipulate nor can he/she sent a fraudulent
message in the name of an authentication user. The
app shall encrypt messages based on the algorithm
designed by us. We will be using a combination of
Feistel networks along with a certain number of
S-boxes and P-boxes to increase confusion. There will
be two keys used in this system to encrypt or decrypt
messages.

Keywords: S-box, P-box, Feistel Networks, DES

Towards the Proposal of Mobile Security Encryption Algorithm: “RHINO256”

Indian Journal of Science and TechnologyVol 12 (39) | October 2019 | www.indjst.org 2

S-boxes or substitution boxes are components of a
security program that performs substitution and are
generally used to hide the relation between the key and
the cipher text. Here we will be using S-boxes (with inputs
and outputs ranging from 128,64,32,16 and 8 bits).1

P-boxes or permutation boxes are components of a
security system that permute or transpose the bits given
as input in order to increase confusion. Here we will be
using a Compression P-box that when fed with a certain
length of bits always gives the output as 128 bits.

A Feistel Network also known as a Feistel Cipher is
a symmetric structure that is used to construct block
ciphers. It is named after the German-born cryptographer
Horst Feistel and has been used in many popular
algorithms such as DES. The most important part of any
Feistel network is the round function F. The main security
depends on how strong the F function is made.2

The main base for this research came from the study
of the DES algorithm. Although our algorithm is very
different than that of DES but the Feistel function is
quite similar and we have taken the idea of using S-boxes
and P-boxes to increase confusion. Again DES uses only
one key and can encrypt only 64 bits of data while our
algorithm encrypts 256 bits of data using two keys of
128 bits each. The Feistel network of DES had only two
parts left and right of 32 bit each where the right side
was fed into a round function with the key and the
result was than xor with the left side and then the two
parts were swapped. The rounds were repeated 16 times
with the last round not having the swapping function
so as to use the same layout for both encryption and
decryption. Whereas our algorithm encryptions data by
dividing each part into two child parts after each round
and applying feistel on these and after a certain number
of splitting and encrypting the parts are then merged
and encrypted after each round to get the output as
256 bits. This allows us to use the same layout as many
times we want both for encrypting and decrypting just
by choosing3,4 the correct Feistel for encryption or
decryption.

DES has the following disadvantages which are solved
in our algorithm:

1.	 DES has smaller block size (64 bit). While our algo-
rithm can encrypt 256 bits.

2.	 S-box of DES creates same output with two cho-
sen input while the S-box in our algorithm is more
specific.

3.	 In DES, the purpose of initial and final permutation
is not clear while RHINO256 has no initial or final
permutation.

4.	 The key length of DES is 56 bits while our algorithm
has 128 bits.

5.	 DES is less secure compared to RHINO256 as DES
uses only one key to encrypt and decrypt while our
algorithm uses two different keys to encrypt and to
decrypt.

2. � Proposed Algorithm –
(RHINO256)

The main idea of performing this research was to develop
an algorithm that can encrypt a message with the sender’s
private key and the receiver’s public key together and
the same can be decrypted using the receiver’s private
key and sender’s public key. This will solve the problem
of maintaining the authenticity of the sender as another
third party cannot send a message in the former’s name,
as was the problem with earlier algorithms such as DES.

Here we will be using a balanced Feistel network. The
round function F is given as: F(R0, K) => Ro (n bits) is
shown in Figure 1.

As in Figure 2 on the left, the network layout consists
of two inputs parts; L0 and R0, of equal length (say n bits).
R0 will be fed to the function F along with the key K (n
bits). Here, n can be 128, 64, 32, 16, or 8 bits. The output of
the F function is then XOR ed with L0 and the values are
then swapped to form L1 and R1. Inside the F function,
the input R0 is first fed into an S-box and then XOR ed
with the key K. The value is then fed into another S-box

 K (n bits)
S-BOX S-BOX n bits output of F

Figure 1.  Round function F procedure.

Indian Journal of Science and Technology 3Vol 12 (39) | October 2019 | www.indjst.org

Kaustav Mani Pathak, Priyanka Jain, Swati Yadav and Veena Tayal

to finally have the output. The S-boxes help to increase
the confusion and the overall strength of the F function.

The main encryption process consists of 10 rounds
each with varying no. of Feistel networks. The inputs bits
and the key length will also be different in each individual
network.

Rounds 1 & 10 will have only one Feistel network each
with L0 = R0 = K = 128 bits. The outputs L1 = R1 = 128
bits.

Rounds 2 & 9 will have two Feistel networks each with
L0 = R0 = K = 64 bits. The outputs L1 = R1 = 128 bits.

Rounds 3 & 8 will have four Feistel networks each with
L0 = R0 = K = 32 bits. The outputs L1 = R1 = 32 bits.

Rounds 4 & 7 will have eight Feistel networks each
with L0 = R0 = K = 16 bits. The outputs L1 = R1 = 16 bits.

Rounds 5 & 6 will have sixteen Feistel networks each
with L0 = R0 = K = 8 bits. The outputs L1 = R1 = 8 bits.

The keys used in the Feistel networks will always be
different from each other. The Round Key Generator will
be used to input a different key of the required length to
each feistel network. Hence in this algorithm, the plain
text is basically divided into two parts then encrypted
with a key then the two parts are again divided into two
parts each and so on.

Here, the plain text will be converted into 256 bit
blocks. The block will then be split into two 128 bit blocks
forming one feistel structure and encrypted using a key
of 128 bits. The two blocks will then be split into four
blocks and the process will be repeated till the block size
becomes 8 bits forming sixteen Feistel networks. The 8 bit
blocks will be encrypted twice and then joined to form 16

bit blocks which are then encrypted and joined to form
32 bit blocks. The whole process will continue till we have
an output block of 256 bits. The whole structure of the
algorithm is made symmetric so that the same can be
used in reverse for decryption of the cipher text and the
same is shown in Figure 3.

3. � Encryption and Decryption
Mechanism

In our app, we will be encrypting the sender’s message in
plain text using two keys – the first key will be the private
key of the sender and the second key will be the public
key of the receiver. So the whole encryption process as
described above will be repeated twice. Decryption
process will be similar to encryption as the receiver
will use their private key first and then the public key of
the sender in order to get the plain text. This method
helps in preventing fraudulent5 messages sent by an
attacker to the receiver in the name of the authorized
sender. The encryption/decryption mechanism is shown
in Figure 4.

The two keys Public, P1 and Private, P2 will be
generated for each user according to a Password, P entered
by the user. This password will be different from the app
password and will be stored in the app itself.

P (128 bits)
S1 (128 bits) = Salt 1 which is a random value of 128

bits used to increase security against brute force attacks.
S2 (128 bits) = Salt 2
C = Count is the no. of times to which salts are to be

added to the password in order to get the public or the
private key.

for (i = 0; i < C ; i ++)
{ P1 = P | | S1 }
At the end of the loop, P1 will fed into a compression

P-box to get the required public key P1 of 128 bits.
Now, we run the loop again
for (i = 0; i < C ; i ++)
{ P2 = P1 | | S2 }
At the end of this loop, P2 will fed into a compression

P-box to get the required private key P2 of 128 bits.
Hence one can generate the private key from the public

key or both the keys from the password, if they have access

Figure 2.  RHINO256 encryption algorithm process.

Towards the Proposal of Mobile Security Encryption Algorithm: “RHINO256”

Indian Journal of Science and TechnologyVol 12 (39) | October 2019 | www.indjst.org 4

to any one of them, provided they know the values of S1,
S2, and C which will be kept secret.

4.  Round Key Generator
The main usage of this component in our algorithm is to
provide the different round keys of variable lengths for
the different Feistel structures used in the rounds. The
generator will be fed with a main key say the private key
P2 of 128 bits which will split into 16 parts of 8 bits each.
In the whole encryption structure we will be dealing with
62 Feistel structures hence we will need 62 different keys.
The two keys required for the rounds 1 and 10 will be the
same as the main key. All the other keys required in the

remaining rounds will be provided by combining the 16
parts in different ways according to a secret pattern. The
pattern will be chosen in such a way that each bit of the
text is encrypted with each bit of the key at least once.

5.  Conclusion
RHINO256 is not just a thought but rather an algorithm
that can be implemented in bigger projects for safer and
more secured digital communications. Our algorithm can
be used to replace existing symmetric and asymmetric
algorithms for a hybrid system of encryption. Data
leakage, sniffing, non-repudiation, hacking, etc. can be

Plain Text
ENCRYPTION with

private key of sender
ENCRYPTION with

public key of receiver

DECRYPTION with
public key of sender

DECRYPTION with
private key of receiver

Cipher Text

Figure 4.  Encryption/decryption mechanism.

Round 3
 32 bits 32bits 32 bits 32 bits 32 bits 32bits 32 bits 32 bits

Round 4
 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Round 5
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Round 6
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Round 7
 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Round 8
 32 bits 32bits 32 bits 32 bits 32 bits 32bits 32 bits 32 bits

Figure 3.  Proposed algorithm.

Indian Journal of Science and Technology 5Vol 12 (39) | October 2019 | www.indjst.org

Kaustav Mani Pathak, Priyanka Jain, Swati Yadav and Veena Tayal

prevented with the use of our algorithm. In the future,
we will be increasing the block size and encoding shall be
done in Unicode so as to make it encrypt texts written in
different languages. Testing for the algorithm will be done
in the future scopes of this research.

Acknowledgement
We would like to express our sincere gratitude to Research
Co-Ordinators, Accendere CL Educate Ltd. for guiding
and helping us complete the paper.

References
	1.	 Zahid AH, Arshad MJ. An innovative design of substitution-

boxes using cubic polynomial mapping. Symmetry.
2019;11(3):437.

	2.	 Schneier B, Kelsey J. Unbalanced feistel networks and block
cipher design. In: International workshop on fast software
encryption. Springer, Berlin, Heidelberg; 1996. P. 121–44.

	3.	 Preneel B, Rijmen V, Bosselaers A. Recent developments in
the design of conventional cryptographic algorithms. In:
State of the art in applied cryptography. Springer, Berlin,
Heidelberg; 1998. P. 105–30.

	4.	 Biryukov A, Leurent G, Perrin L. Cryptanalysis of feistel
networks with secret round functions. In: International
conference on selected areas in cryptography.Cham:
Springer; 2015. P. 102–21.

	5.	 Daemen J, Govaerts R, Vandewalle J. A new approach to
block cipher design. In: International workshop on fast
software encryption. Springer, Berlin, Heidelberg; 1993. P.
18–32.

