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Abstract
Objectives: To forecast hydrological datasets using time-series forecasting model, namely, Group Method and Data Handling 
(GMDH). Methods/statistical analysis: The monthly streamflow datasets covering a period of 485 and 550 months 
have been collected from two well-known rivers of Pakistan, the Indus and the Chenab, respectively, for the endorsement 
of the GMDH model. Computed results are compared with two other forecasting models: Least Square Support Vector 
Machine (LSSVM) and Multivariate Adaptive Regression Splines (MARS). The accuracy of the model has been verified by 
the following three statistical estimations: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Correlation 
Coefficient (CE). Findings: The GMDH model has the potential to estimate with high precision the forecast real value of 
the hydrological datasets compared to the other models discussed in the present article. Findings show that the GMDH 
forecasting model is more robust than the other models discussed here. Applications/improvements: The novelty of this 
study is that it provides a trustable forecast of streamflow of the rivers.

1. Introduction
The Islamic Republic of Pakistan is bestowed with the 
largest irrigation system. The  river  system comprises 
61,000 km of canals and 105,000 watercourses and 
irrigates around 35 million acres of land.1 Pakistan’s 
economy is highly dependent on agriculture. The Indus 
River (locally called Sindhu) runs through the entire 
length of country, and Chenab River (originates from 
Bara Lacha Pass) plays a crucial role in the irrigation 
system. The country’s increasing agricultural growth 
and subsequent new stresses on limited water resources 
necessitate well-organised management of existing water 

resources rather than building new amenities to meet the 
challenges.2 In water management societies, Pakistan is 
well-acknowledged in term of efforts made to maximise 
the efficiency of water management based on streamflow 
forecasting, a methodology that plays a vital role in helping 
the government’s water management efforts to tackle 
water shortages. Therefore, forecasting river streamflow 
plays a significant role in the planning and operating of 
water management, whereas streamflow predicting is 
essential for improving water management efficiency and 
useful for irrigation, hydropower generation, recreation, 
and ecological and other purposes. The superiority 
of streamflow forecasting can be assessed in terms of 
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lead-time series data and accuracy. Lead-time refers to 
the time interval between the forecasting date and the 
rate of the forecasted flow that is happening. The accuracy 
of forecasts is an essential requirement to improve the 
operational, managerial, and strategic executive process.

GMDH was introduced by Ukrainian scientist A. 
G. Ivakhnenko and colleagues in the late 1960s; it used 
a multivariate analysis to study nonlinear relations 
between input and output unknowns and multilayered 
system of modeling. The GMDH model is ideal for use 
in multilayered, unstructured systems. Its predictions 
are useful in data mining, optimisation, and pattern 
acknowledgement in many areas. The concept of GMDH 
as a forecasting model for regression estimation was 
used to develop and determine an analytically based 
quadratic node transferal function (TF) in a feed-forward 
network.3,4

Several models for estimating and predicting time 
arrangement have been discussed in the literature. 
The LSSVM model and MARS are considered the 
foremost among dominant models in customary time-
arrangement, predicting, and are commonly used for 
divergence and comparison. The LSSVM and MARS 
show the classifications of the linear models and their 
potential to increase the linear component of information 
regarding time-series forecasting. Subsequently, many 
researchers have attempted to integrate the different time-
series models to enhance the precision of forecasting.5,6 
New methods have been developed and are being used 
in these models in relation to forecasting and the tasks 
accomplished by them are way more complex than what 
the previous models could accomplish.7,8

This study focuses on estimating the monthly river 
streamflow forecasting performance of GMDH model 
and compares the computed forecasting results generated 
from using the GMDH model with LSSVM and MARS 
models.

2. � Group Method of Data 
Handling (GMDH) Model

The GMDH model is a group of PC-based scientific 
calculations of multi-parametric datasets that highlight 
involuntary mechanical and parametric improvements. 
GMDH algorithm gives the opportunity to identify and 
obtain the inevitable interrelations in data and choose any 
optimal model to enhance the accuracy of intact present 
algorithms.9

The GMDH model has been recognised for its 
ability to display the complex nonlinear framework 
by utilising a transfer function (TF) to communicate 
the connection between datasets of input and output 
structures as expressed in the Volterra Functional Series, 
more commonly known as the KGP (Kolmogorov-Gabor 
polynomial), which is defined as

	 0
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This algebraic series is expressed by a system of TF 
comprising two unknowns (Neurons) defined as follows:
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Let us consider the coefficients   {a0, a1, a2, a3, a4, a5,} 
determined to expand the least square method. The input 
unknowns to the system (observed variable) set to x and 
output unknowns (predict variable) to h.

The following iterative structure was observed for 
GMDH model:

[Step 1]:	� Let  N1 = n neurons from of input vector X = (vi, 
vi, …, vn) in the first layer, where n is the inputs 
unknowns; k = 1 is the threshold value.

[Step 2]:	� For all independent unknowns, set  M = Nk (Nk 
–1)/2 as new unknowns h1, h2, …, hM in the 
dataset. Now construct the hypothesis for the 
partial quadratic polynomials (PQP) by
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[Step 3]:	� Coefficients of TF determined by SME are in 
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 . Here A = {a0, 

a1, …, a5} is the unknown coefficients vector, 
Y = {y1, y2, …, yM}T is the output value vector 
from observation, and
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[Step 4]: 	� Select the optimal factors and eradicate the 
weakest variable. The determination of the 
parameter of the optimal factors depends on 
the three performances indexes that express 
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how hm values follow the output y. Column 
approach of h1, h2, …, hn is replaced by the 
retained columns of h1, h2, …, hm, where m is 
the number of columns retained. In different 
models, the optimal neuron of these m neurons 
is added to columns v1, v2, …, vn  for forming a 
new set of input factors.

[Step 5]:	� To test the model, the set of equations may 
or may not need to be improved. The lowest 
MSE value in the current layer was compared 
to the minimum value in the previous layer. 
Repeat step 1 and 2 if model improvement is 
not achieved. Otherwise, we can conclude that 
the iteration has ended and the network has 
been realised. Figures 1 and 2 show the basic 
architecture of the GMDH structure.

3. � Least-Squares Support Vector 
Machine (LSSVM) Formulation

The least-squares version of the support vector machine 
(SVM) classifier determines the problem of minimisation 
by using re-manipulation, which is represented as follows:
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Subject to constraints on equality
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The above manipulation of the LSSVM classifier is 
implicitly consistent with the clarification of regression 
with binary objectives yi = ±1. Applying 2 1iy  , we get
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Thus, ei develops a sense for LS data-fitting. Therefore, 
LSSVM classifier development is equivalent to
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where µ and   are considered as hyper-parameters that 
can be used to adjust the amount of regularisation versus 

the sum square error. Therefore, the solution depends 
on the ratio    , and the original development 
provides γ as a tuning parameter. Apply both parameters 
µ and   to use a Bayesian definition to LSSVM. After 
developing the following Lagrangian function, we 
obtained the solution of LSSVM model:
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Here,  and i i   are Lagrange multipliers. The 
following formations are optimal for LSSVM model.
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After eliminating ω and e a linear system was arrived 
at in the place of a quadratic programming (QP) problem.
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  as a kernel function, 
where    is a scale parameter, and determine the 
scaling of inputs in the RBF kernel.10,11

4. � Multivariate Adaptive 
Regression Splines (MARS)

The MARS model is appropriate for forecasting 
continuous datasets outcomes and is implemented in 
two stages: forward and backward stepwise techniques. 
The forward stepwise technique uses a large set of input 
variables (basis function) with different knots; however, 
the use of this technique might result in a complex and 
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multilayered model.12 Nevertheless, such a model also 
cannot guarantee a strong forecast as it in fact has been 
found to have a weak forecasting ability. For increasing 
the accuracy of forecast, the backward stepwise technique 
was thus preferred, and it was found to have the capacity 
to eradicate pointless variables among the chosen datasets; 
this may have had a weaker effect on the approximation 
procedure that was pruned by the MARS. The projection 
of x, input variable, onto a novel, y, output variable, was 
carried out using the technique of appropriation, a basic 
function that defines the point of inflection along the 
input range13:

	  
 

max 0, x

max 0,

c
y

c x
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In these y functions, x is the input, and c is the 
threshold value, which is said to be the knot. The function 
is useful in forward-backward stepwise techniques used 
for each input unknown in order to classify the position 
of knots, where the value of the function changes.14 These 
y functions are called Spline functions, which is indicated 
by a c-knot reflected pair. The following is the common 
formation of the MARS model.15
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where, output variable y is estimated by MARS model, 
c0 is constant, ci is the ith basic function coefficient 
determined by minimising the Root Mean Squared 
Errors (RMSE), and  Bi (x) is the ith basic function. The 
optimal MARS model scheme is designated based on the 
Generalised Cross-Validation (GCV) principle’s smallest 
value. The GCV is defined as follows:
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where yi is the objective of output,  f(xi) is the projected 
output, n is the number of inputs, and C(M) is a penalty 
which is further expressed as:

	   1C M d M M    	 (13)

where d is the penalty for each basic function assessed 
by the model, and M denotes the number of basic 
functions.

5.  Results and Discussion
The chief aim of the GMDH model used for the present 
study was to analyse the input time-series hydrological 
data collected from Indus and Chenab rivers and arrive at 
accurate real values as has been discussed in the opening 
paragraphs of this article. Specimens of six distinct input 
data combinations prepared for this scheme are shown in 
Table 1.

The combination of M1–M6 input models was used 
in the training and testing phases for forecasting models. 
Among the combinations of input models, M1-M6 
represents the number of unknowns selected on the basis 
of previous analyses of monthly river streamflows.

The computed results for GMDH, LSSVM, and MARS 
models are illustrated in Tables 2, 3, and 4, respectively. 
Table 2 presents the details of analysis carried out using 
the GMDH model, where it can be seen that M5 and 
M6 models perform better for Chenab and Indus Rivers, 
respectively. Similarly, Table 3 presents the details of the 
analysis carried out using the LSSVM model, and the 
findings of the analysis revealed that M6 model works 
better for both Indus and Chenab Rivers. Moreover, from 
the details presented in Table 4 for the analysis carried 
using the MARS model, it can be seen that both M3 and 
M6 models perform better for Indus and Chenab Rivers, 
respectively, which is a crucial finding. The computed 
values have been assessed using statistical estimations. 
Accuracy of the said models is shown in Table 5.

In Table 5, it can be seen that in terms of the results 
of statistical tools used for measuring the accuracy of 
estimation, such as MAE and RMSE, the small error has 
been achieved in the case for GMDH model compared 
to LSSVM and MARS models. It is the evidence that 
GMDH model is better than the other two models. 
Furthermore, in regards to the robustness of the model, 
that large value of CE observed in the GMDH model is 

Table 1.  Model structure with different combinations

Model Input combination
M1 yt = f(zt-1, zt-2)
M2 yt = f(zt-1, zt-2, zt-3, zt-4)
M3 yt = f(zt-1, zt-2, zt-3, zt-4, zt-5, zt-6)
M4 yt = f(zt-1, zt-2, zt-3, zt-4, zt-5, zt-6, zt-7, zt-8)
M5 yt = f(zt-1, zt-2, zt-3, zt-4, zt-5, zt-6, zt-7, zt-8, zt-9, zt-10)

M6 yt = f(zt-1, zt-2, zt-3, zt-4, zt-5, zt-6, zt-7, zt-8, zt-9, zt-10, 
zt-11, zt-12)
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indeed an authentic evidence for its robustness; hence, 
GMDH is appropriate for estimating the forecasting the 
real value.

6.  Conclusion
Three different time-series forecasting models have been 
compared with computed statistical estimations. The 
findings showed that the GMDH model was indeed more 

Table 2.  Forecast results by GMDH

Indus River GMDH Chenab River GMDH
Training Data Set Testing Data Set Training Data Set Testing Data Set

CE MAE MSE CE MAE MSE CE MAE MSE CE MAE MSE
M1 0.6775 0.1071 0.0198 0.5355 0.0969 0.0151 0.9450 0.0357 0.0027 0.9193 0.0419 0.0029
M2 0.9688 0.0251 0.0013 0.9518 0.0304 0.0016 0.9578 0.0290 0.0019 0.9385 0.0360 0.0025
M3 0.9761 0.0185 0.0008 0.9630 0.0251 0.0011 0.9662 0.0263 0.0016 0.9455 0.0335 0.0020
M4 0.9725 0.0204 0.0011 0.9578 0.0279 0.0014 0.9796 0.0223 0.0012 0.9498 0.0317 0.0019
M5 0.9704 0.0227 0.0012 0.9553 0.0276 0.0014 0.9891 0.0182 0.0007 0.9547 0.0290 0.0015
M6 0.9780 0.0172 0.0007 0.9635 0.0247 0.0011 0.9743 0.0253 0.0015 0.9545 0.0324 0.0017

Table 3.  Forecast results by LSSVM

Indus River LSSVM Chenab River LSSVM
Training Data Set Testing Data Set Training Data Set Testing Data Set

CE MAE MSE CE MAE MSE CE MAE MSE CE MAE MSE
M1 0.9026 0.0086 0.00025 0.8680 0.0318 0.0109 0.9172 0.0421 0.0027 0.9041 0.0437 0.0042
M2 0.9032 0.0086 0.00026 0.7357 0.0279 0.0097 0.9266 0.0401 0.0040 0.9126 0.0445 0.0040
M3 0.9049 0.0086 0.00025 0.9161 0.0313 0.0109 0.9323 0.0393 0.0039 0.9196 0.0430 0.0036
M4 0.9070 0.0084 0.00027 0.8930 0.0323 0.0115 0.9342 0.0360 0.0036 0.9296 0.0414 0.0034
M5 0.9057 0.0085 0.00024 0.9217 0.0336 0.0102 0.9432 0.0345 0.0031 0.9408 0.0382 0.0027
M6 0.9145 0.0078 0.00019 0.9335 0.0246 0.0019 0.9418 0.0360 0.0032 0.9467 0.0327 0.0021

Table 4.  Forecast results by MARS

Indus River MARS Chenab River MARS
Training Data Set Testing Data Set Training Data Set Testing Data Set

CE MAE MSE CE MAE MSE CE MAE MSE CE MAE MSE
M1 0.8715 0.0112 0.0006 0.7991 0.0250 0.0080 0.8840 0.0863 0.0129 0.7869 0.1180 0.0271
M2 0.9061 0.0094 0.0003 0.8561 0.0266 0.0087 0.8976 0.0354 0.0029 0.8174 0.1152 0.0297
M3 0.9034 0.0097 0.0003 0.8968 0.0267 0.0085 0.9069 0.0313 0.0025 0.7869 0.1213 0.0352
M4 0.9054 0.0096 0.0003 0.8958 0.0265 0.0083 0.8895 0.0300 0.0023 0.7684 0.1243 0.0396
M5 0.9042 0.0098 0.0003 0.8825 0.0275 0.0089 0.9004 0.0281 0.0021 0.7336 0.1352 0.0458
M6 0.9056 0.0096 0.0003 0.8774 0.0274 0.0089 0.9397 0.0344 0.0031 0.8471 0.1112 0.0278

Table 5.  Comparison of forecast results

Dataset Model CE MAE RMSE

Indus 
River

GMDH 0.9635 0.0247 0.0011
LSSVM 0.9335 0.0246 0.0019
MARS 0.8968 0.0267 0.0085

Chenab 
River

GMDH 0.9547 0.0290 0.0015
LSSVM 0.9467 0.0327 0.0021
MARS 0.8471 0.1112 0.0278
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useful and more accurate compared to the other two 
models, LSSVM and MARS, in estimating the optimal 
forecasting real value on the monthly river streamflow 
datasets for both Indus and Chenab Rivers of Pakistan. 
Based on the numerical investigations, it is concluded 
that the GMDH model’s forecasting performance is more 
stable and robust than LSSVM and MARS models.
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Figure 1.  Architecture of GMDH model.
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Figure 2.  Architecture of LSSVM model.


