Abstract

Objectives: The present study analyses the effects of nanoparticles over steady, incompressible boundary-layer flow of non-Newtonian Williamson fluid flowing over a rotating porous disk.

Methods/statistical analysis: The analysis used nonlinear partial differential equations associated with the non-Newtonian Williamson fluid flow and used an abridged, simplified version of ordinary differential equations under the Boussines q and boundary-layer approximations. The resulting system of nonlinear ordinary differential equations is then solved analytically using the homotopy analysis.

Findings: The behavior of three non-dimensional velocity profiles and the non-dimensional temperature profile for important physical parameters like Williamson number, Prandtl number and surface suction/injection parameters is tabulated and the results are graphed.

Application/improvements: Nanoparticles like Copper, Alumina and titania are commonly used with liquid coolants to increase the heat-dissipating capability.

Keywords: Boundary-Layer Flow; Heat Transfer; Porous Disk; non-Newtonian; Williamson Nanofluid

1. Introduction

The study of fluid flow, particularly fluid flow for non-Newtonian fluids, gained immense popularity in industrial and engineering applications due to their extensive utilization. Common non-Newtonian fluids are basically pseudoplastic fluids that have various industrial applications; they are used in production of emulsion sheets, polymer sheet extrusion, and are also used for aiding the flow of plasma and blood. In order to study the rheological behaviour non-Newtonian fluids, often the routine system of calculation used, namely, the Navier Stokes equation, alone cannot be used for an in-depth study of the said behaviour or properties; more options are needed for a range of reasons; therefore, various models like Carreau, Power Law, Ellis and Cross Models are commonly used to predict the rheological properties of such fluids.

In 1929, Williamson presented a theory to study the pseudoplastic materials and formulated a constitutive equation to explain the flow characteristics of the pseudoplastic fluids, and the experiments he conducted based on these equations validated the results on the flow characteristics. Recently, these equations have garnered the attention of researchers, as the researchers have come to know that these equations can be put to use to assess/study the blood flow problems. Many researchers have made valuable contributions in this regard.

Williamson’s fluids were investigated using the effects of chemical reaction over steady, viscoelastic...
boundary layer flow. Methods like killer box3 were used to obtain numerical solutions to be used in assessing the homogeneous/heterogeneous chemical reactions of boundary-layer flow of Williamson fluids flowing over a smooth stretching cylinder. Another study4 has numerically examined the behavior of variable thermal conductivity and heat generation/absorption on the steady, incompressible boundary-layer flow of Williamson fluids.

One study5 predicted that in the case of the steady-state solutions of the momentum equation for the fluid flow derived by an infinite disk in radial direction, the centrifugal forces balanced out so the fluid flowed outward in the absence of the pressure gradient. The rotating disk in such cases is expected to be working like a centrifugal fan, and the fluid flow originating from the rotating disk is replaced by an axial one that springs back on the surface of the rotating disk.

The reflection of the non-Newtonian fluid flowing over a rotating disk presented a great challenge to researchers in the field. The non-Newtonian flow of fluid over a rotating disk is a significant problem that needed immediate resolutions because of its extensive use in various fields, including engineering, chemical, and electro-medical processes. Recent research6,7 on the said problems pointed out a range of outcomes, including the non-Newtonian laminar flow, double diffusion effect on unsteady flow, head transfer over a rotating disk, as well as the boundary-layer stability of non-Newtonian fluid flow over a rotating disk.8 Rehman et al.3 investigated the non-Newtonian Casson fluid flow problem over a semi-infinite disk and analyzed the characters of both thermophores and Brownian motion parameters for nanosized particles inside the magnetized Casson liquid. The problem of two turbulent simulations with overlapping small and large Reynolds numbers was reported to be a result of direct numerical simulations performed for the turbulent rotating-disk boundary layer.10 The study by Khan et al.11 investigated the problem of stress fluid flow occurring as a result of rotation of a disk.

In many industrial, chemical and power generation processes, massive amount heat is generated. In order to protect the machines operating in such high temperatures, appropriate cooling systems are to be in place to keep the machinery cool and control the heat and keep it at a level within which the machinery can perform unhindered and do not break down. Thus, different coolants like water, ethylene glycol and engine oils of different grades are used. However, it is a proven fact that the thermal conductivity of liquids is way below that of metallic solids; due to this, all these coolants can never achieve cooling on a level that metallic solids can. In order to achieve the desired goal of reducing and maintaining temperature at an ideal level to keep the machinery functioning, a small amount of metallic nanoparticles are added to these coolants, which greatly increases the heat-dissipating capability of these coolants. The nanoparticles added to these coolants are made of Copper (Cu), Alumina (Al\textsubscript{2}O\textsubscript{3}) and titania (TiO\textsubscript{2}), or nano tubes, as described by Tiwari and Das and Lotfi et al.12–14

The aim of the present study was to analyze the features of the boundary-layer flow and heat transfer over a rotating porous disk placed in a Williamson nanofluid. The study aimed analyse the effects of three kinds of nanoparticles: Copper (Cu), Alumina (Al\textsubscript{2}O\textsubscript{3}) and titania (TiO\textsubscript{2}). Authors have proposed different models for nano fluids, like those proposed by Buongiorno and others.15–18 Oztop and Abu-Nada19 have analyzed the behaviour of viscous nanofluid flow of the boundary layer's laminar flow and heat transfer over a rotating porous disk. The present study was conducted using the model devised by Tiwari and Das.12 A set of nonlinear differential equations were incorporated in the homotopy analysis method (HAM) used by the study. The conduct of nanoparticles and suction/injection parameters over the fluid flow and heat transfer are presented and discussed.

2. Mathematical Formulation

The study analysed the effects of steady, incompressible and axially symmetric flow of Williamson fluid over a rotating porous disk immersed in a nanofluid. Figure 1 shows the schematic diagram of the problem discussed.

![Figure 1. Physical model of the problem.16](image-url)
Let the cylindrical coordinates \((r, \phi, z)\) be chosen such that the radial component \(r\) is along the length of the disk. The porous disk is assumed to be rotating with a constant angular velocity \(\Omega\) and extends with initial position \(z = 0\), in the space \(z > 0\) of the disk to infinity. The fluid velocity components in the increasing direction of coordinates are taken as \(u, v, w\). The surface constant temperature is assumed to be \(T_s\). The Williamson fluid has a constant pressure \(P_s\) and a uniform ambient temperature \(T_a\). \(P_s\) is taken as the constant mass flux applied at the disk surface.

Under the stated assumptions, the governing system of partial differential equations for the case of steady, incompressible laminar boundary-layer flow of Williamson nanofluid are

\[
\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0, \tag{1}
\]

\[
u = \frac{\partial u}{\partial r} + \frac{w}{r} + \frac{1}{\rho_{nf}} \frac{\partial p}{\partial r} - \frac{1}{r} \left[\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial z} \right) \right], \tag{2}
\]

\[
\frac{\partial v}{\partial r} + \frac{w}{r} + \frac{uv}{r} + \frac{1}{\rho_{nf}} \frac{\partial p}{\partial r} + \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(\frac{\partial v}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial z} \right) \right) + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(\frac{\partial v}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial z} \right) \right], \tag{3}
\]

\[
\frac{\partial w}{\partial r} + \frac{w}{r} + \frac{1}{\rho_{nf}} \frac{\partial p}{\partial r} - \frac{1}{r} \left[\frac{\partial}{\partial r} \left(\frac{\partial w}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial z} \right) \right] + \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(\frac{\partial w}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\partial w}{\partial z} \right) \right), \tag{4}
\]

\[
\frac{\partial \tilde{T}}{\partial r} + \frac{w}{r} \frac{\partial \tilde{T}}{\partial z} = \frac{\partial}{\partial r} \left(\frac{\alpha_{nf}}{r} \frac{\partial \tilde{T}}{\partial r} + \frac{1}{r} \frac{\partial}{\partial z} \left(\frac{\partial \tilde{T}}{\partial z} \right) \right). \tag{5}
\]

The related boundary conditions of the problem are

\[
u = 0, \quad v = \Omega r, \quad w = w_0, \quad \tilde{T} = \tilde{T}_a, \text{ at } z = 0, \tag{6}
\]

\[
u \to 0, \quad v \to 0, \quad \tilde{T} \to \tilde{T}_a, \quad \bar{P} \to \bar{P}_a, \text{ as } z \to \infty, \tag{7}
\]

where \(\tilde{T}\) and \(\tilde{T}_a\) denote the temperature of fluid and ambient fluid, respectively. \(\bar{P}\) and \(\bar{P}_a\) denote the pressure of fluid and ambient fluid, respectively. \(w_0\) shows velocity of suction or injection, \(\mu_{nf}\) represents the dynamics viscosity, \(\alpha_{nf}\) is the thermal diffusivity and \(\rho_{nf}\) is the density of the fluid. The following assumptions are made following those reported in Patel et al. and others,

\[
\bar{\mu}_{nf} = \frac{\mu_{nf}}{(1 - \varphi)^{\frac{1}{2}}}, \quad \bar{\alpha}_{nf} = \frac{\alpha_{nf}}{(1 - \varphi)^{\frac{3}{2}}}, \quad \bar{\rho}_{nf} = (1 - \varphi) \rho_f + \varphi \rho_s, \tag{8}
\]

\[
(\rho_{nf}C_{f})_f = (1 - \varphi)(\rho_{nf}C_{f})_s + \varphi(\rho_{nf}C_{f})_s, \tag{9}
\]

\[
\bar{\kappa}_f = \frac{\bar{k}_f + 2\bar{k}_s}{\bar{k}_f} - 2\varphi(\bar{k}_f - \bar{k}_s), \tag{10}
\]

Where, \((\rho_{nf}C_{f})_f\) and \(\bar{\kappa}_f\) are heat capacitance and effective thermal conductivity of the nanofluid. The subscripts \(f\) and \(s\) are used for the fluid and the solid, \(c\) represents the experimental constant, while the Péclet number is \(Pe = \frac{u_d}{\alpha_f}\), also \(\frac{\bar{A}_f}{\bar{A}_s} = \varphi \frac{d_f}{1 - \varphi d_s}\) where \(d_f\) and \(d_s\), are respectively, molecular sizes of the fluid and the diameter of spherical solid nanoparticles (taken as \(d_s = 38\) nm and \(d_f = 2\bar{A}\)). \(u_s = \frac{2\bar{k}_f T}{\pi \mu_{nf} d_s^2}\) is the Brownian motion velocity of solid particles, represented as \(\bar{k}_s = 1.3807 \times 10^{-5}\) J/K, which is Boltzmann constant.

The next equation that was applied was the Von Karman transformation.

\[
u = r\Omega \bar{F}(\eta), \quad \bar{v} = r\Omega G(\eta), \quad \bar{w} = \sqrt{\nu} \bar{H}(\eta), \tag{11}
\]

\[
u = \frac{\Omega}{\sqrt{\nu_j}} \tilde{T} - \bar{P}_s, \quad \bar{P}_a = -\rho_f \nu_j \Omega \bar{P}(\eta), \quad \tilde{T}_a = \frac{\bar{T}_s - \bar{T}_a}{\bar{T}_s - \bar{T}_s} \tag{12}
\]

Substituting the above transformation in Eqs. (1)–(7) to convert these partial differential equations into a system of ordinary differential equations, we have

\[
\frac{\partial H}{\partial \eta} + 2\bar{F} = 0, \tag{13}
\]

\[
\sqrt{Re_{nf}} \left(1 - \varphi \right)^{\frac{1}{2}} \frac{1}{\left(1 - \varphi + \frac{\rho_f}{\rho_s}\right)^{\frac{1}{2}}} \bar{F} \frac{\partial F}{\partial \eta} + \frac{\partial H}{\partial \eta} - \frac{\bar{F}}{\partial \eta} = 0, \tag{14}
\]

\[
\sqrt{Re_{nf}} \left(1 - \varphi \right)^{\frac{1}{2}} \frac{1}{\left(1 - \varphi + \frac{\rho_f}{\rho_s}\right)^{\frac{1}{2}}} \bar{G} \frac{\partial G}{\partial \eta} + \frac{\partial H}{\partial \eta} - \frac{\bar{G}}{\partial \eta} = 0, \tag{15}
\]
1. Introduction

Boundary-Layer Flow and Heat Transfer over a Rotating Porous Disk in a Non-Newtonian Williamson Nanofluid

The system of nonlinear ordinary differential Eqs. (13)–(16) subjected to boundary conditions in equations has been solved by using the method of homotopy analysis taking into account the different values of fraction parameter \(\varphi \) and velocity (suction/injection) parameter \(h_0 \). Three types of solid nanoparticles of spherical shape, namely copper (Cu), alumina (Al\(_2\)O\(_3\)) and titania (TiO\(_2\)), are considered. To achieve the boundary conditions at infinity, \(\eta_\infty \) the boundary-layer thickness, has been studied for different values of parameters \(\varphi \) and \(h_0 \) for the functions \(H(\eta) \), \(F(\eta) \), \(G(\eta) \) and \(\theta(\eta) \). To solve the system using the homotopy analysis we made initial estimates for \(H_0(\eta), F_0(\eta), G_0(\eta) \) and \(\theta_0(\eta) \) as

\[
H_0(\eta) = 0, \quad F_0(\eta) = \eta e^{(-\eta)}, \quad G_0(\eta) = e^{(-\eta)}, \quad \theta_0(\eta) = e^{(-\eta)}. \quad (23)
\]

and the auxiliary operators \(L_1(H), L_2(F), L_3(G) \) and \(L_4(\theta) \) are

\[
L_1(H) = H' = \frac{dH}{d\eta}, \quad L_2(F) = F'' + F' = \frac{d^2F}{d\eta^2} + \frac{dF}{d\eta}, \quad (24)
\]

\[
L_3(G) = G'' + G' = \frac{d^2G}{d\eta^2} + \frac{dG}{d\eta}, \quad L_4(\theta) = \theta'' + \theta' = \frac{d^2\theta}{d\eta^2} + \frac{d\theta}{d\eta}, \quad (25)
\]

This follows

\[
L_1(c_1) = 0, \quad L_2(c_1 e^{-\eta} + c_2) = 0, \quad (26)
\]

\[
L_3(c_1 e^{-\eta} + c_2) = 0, \quad L_4(c_1 e^{-\eta} + c_2) = 0. \quad (27)
\]

The first-order homotopy approximations are as follows:

\[
H_1(\eta) = 2h - 2e^{(-\eta)}h + h_0 - 2\eta e^{-\eta}h, \quad (28)
\]

\[
F_1(\eta) = -\frac{5}{4} e^{-2\eta}h + \frac{3}{4} e^{-\eta}h + e^{-\eta}h - \frac{3}{2} e^{-2\eta}h \eta + \frac{1}{2} e^{-2\eta}h^2 \eta^2 - \frac{1}{2} e^{-\eta}h^2 h_0 - \frac{1}{2} e^{-2\eta}h \sqrt{ReWe} \phi_i + \frac{1}{2} e^{-\eta}h \sqrt{ReWe} \phi_i - \frac{1}{2} e^{-2\eta}h \sqrt{ReWe} \eta^2 \phi_i, \quad (29)
\]

\[
G_1(\eta) = -\frac{3}{2} e^{-2\eta}h + \frac{3}{2} e^{-\eta}h - e^{-\eta}h \eta - e^{-\eta}h h_\eta + e^{-\eta} - \frac{1}{2} e^{-2\eta}h \sqrt{ReWe} \phi_i + \frac{1}{2} e^{-\eta}h \sqrt{ReWe} \phi_i \eta - \frac{3}{2} e^{-2\eta}h \eta - \frac{3}{2} e^{-\eta}h \eta h_\eta, \quad (30)
\]

\[
\theta_1(\eta) = e^{-\eta} - e^{-\eta}h h_\eta - \frac{K_f}{Pr} e^{-\eta} \eta h, \quad (31)
\]

3. HAM Solution
where \(\phi = \frac{1}{(1-\varphi)^2} \left(1 - \varphi \frac{D_{\varphi}}{n_{\varphi}} \right) \) and \(Kr = \frac{k_n}{\rho CP} \).

The higher-order iterations are obtained through the use of symbolic software MATHEMATICA.

4. Results and Discussion

Table 1 contains some important thermophysical properties of Copper (Cu), Alumina (Al₂O₃) and Titania (TiO₂) nanoparticles used in the analysis whose findings have been reported here. Tables 2–3 correspond to the radial skin friction coefficient \(C_f \) and tangential skin friction coefficient \(C_{\varphi} \) computed against different values of \(\varphi \) and \(h_0 \). Table 4 presents values for the rate of heat transfer \(\theta \left(0 \right) \) that corresponds to the Nusselt numbers \(Nu \) presented for different values of \(\varphi \), \(Pr \) and \(h_0 \).

The behavior of non-dimensional velocity profiles \(F(\eta) \), \(H(\eta) \), and \(G(\eta) \) and the non-dimensional temperature profile \(\theta(\eta) \) are plotted in Figures 2–7 for different combinations of the physical parameters used in the study. Figure 1 shows the patterns in the differences identified for the three velocity profiles \(F(\eta) \), \(H(\eta) \) and \(G(\eta) \). Figures 3–5 illustrate the behavior of non-dimensional velocity profiles \(F(\eta) \), \(H(\eta) \) and \(G(\eta) \) plotted for different values of the surface suction/injection velocity \(h_0 \). The velocity profiles increased with an increase in the values of suction/injection velocity \(h_0 \). Figure 6 shows the behavior of non-dimensional temperature profile \(\theta(\eta) \) for different values of the surface suction/injection velocity \(h_0 \). From the graph, it can be noted that the non-dimensional velocity \(\theta(\eta) \) increases corresponding to an increase in surface suction/injection velocity \(h_0 \). Figure 7 shows the behavior of non-dimensional temperature profile \(\theta(\eta) \) for different values of \(\varphi \). From the figure, it can be observed that an increase in \(\varphi \) produces a minute increase in the non-dimensional temperature profile \(\theta(\eta) \).

Table 2. Numerical values of radial skin friction coefficient \(F \left(0 \right) \) for different values of \(\varphi \) and \(h_0 \)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(h_0)</th>
<th>Cu</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>1.04348</td>
<td>1.04348</td>
<td>1.04348</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>1.00834</td>
<td>1.00834</td>
<td>1.00834</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.991665</td>
<td>0.991665</td>
<td>0.991665</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.976298</td>
<td>0.976298</td>
<td>0.976298</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.863348</td>
<td>0.863348</td>
<td>0.863348</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.01803</td>
<td>1.01803</td>
<td>1.01803</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.927579</td>
<td>0.927579</td>
<td>0.927579</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.979547</td>
<td>0.979547</td>
<td>0.979547</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Numerical values of tangential skin friction coefficient \(G \left(0 \right) \) for different values of \(\varphi \) and \(h_0 \)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(h_0)</th>
<th>Cu</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>3.56816</td>
<td>3.56816</td>
<td>3.56816</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>3.40462</td>
<td>3.40462</td>
<td>3.40462</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.4771</td>
<td>1.4771</td>
<td>1.4771</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.835435</td>
<td>0.835435</td>
<td>0.835435</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.677855</td>
<td>0.677855</td>
<td>0.677855</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>3.50746</td>
<td>3.50746</td>
<td>3.50746</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.7581</td>
<td>1.7581</td>
<td>1.7581</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.851297</td>
<td>0.851297</td>
<td>0.851297</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Numerical values of the rate of heat transfer \(\theta \left(0 \right) \) for different values of \(\varphi \), \(Pr \) and \(h_0 \)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(Pr)</th>
<th>(h_0)</th>
<th>Cu</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>0.64</td>
<td>0.869333</td>
<td>0.869333</td>
<td>0.869333</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.532922</td>
<td>0.532922</td>
<td>0.532922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2</td>
<td>−0.407414</td>
<td>−0.407414</td>
<td>−0.407414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.485699</td>
<td>0.485699</td>
<td>0.485699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.965542</td>
<td>0.965542</td>
<td>0.965542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.532922</td>
<td>0.532922</td>
<td>0.532922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2</td>
<td>0.677855</td>
<td>0.677855</td>
<td>0.677855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.677855</td>
<td>0.677855</td>
<td>0.677855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.851297</td>
<td>0.851297</td>
<td>0.851297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.512261</td>
<td>0.512261</td>
<td>0.512261</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Profiles for $-H$, F and G for nanofluid at $\phi = 0.1$ and $h_0 = 1$.

Figure 3. Profiles for radial velocity of $F(\eta)$ for different values of h_0 when $\phi = 0.1$.

Figure 4. Profiles for axial velocity of $-H(\eta)$ for different values of h_0 when $\phi = 0.1$.

Figure 5. Profiles for tangential velocity of $G(\eta)$ for different values of h_0 when $\phi = 0.1$.

Figure 6. Profiles for temperature of $\theta(\eta)$ for different values of h_0 when $Pr = 6.2$ and $\phi = 0.1$.

Figure 7. Profiles for temperature of $\theta(\eta)$ for different values of ϕ_1 of base fluid when $Pr = 6.2$ and $h_0 = 1$.
5. Conclusion
The problem of a non-Newtonian boundary-layer flow and heat transfer of Williamson fluid containing nanoparticles and in motion over a rotating porous disk was analyzed analytically using the method of homotopy analysis. The findings made and our conclusions support the use of Copper(Cu), Alumina (Al₂O₃) and Titania (TiO₂) nanoparticles to enhance the heat dissipation capability of coolants are presented as follows.
1. By increasing the suction/injection parameter, the non-dimension velocity profile $H(\eta)$ increases.
2. By increasing the suction/injection parameter, the non-dimension velocity profile $F(\eta)$ increases.
3. By increasing the suction/injection parameter, the non-dimension velocity profile $G(\eta)$ increases.
4. By increasing the suction/injection parameter, the non-dimension temperature function $\theta(\eta)$ increases.

References
5. On laminar and turbulent friction. [cited 1946], https://authors.library.caltech.edu/47896/.