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Abstract
Background/Objectives: Quantum-dot Cellular Automata (QCA) is a new nanoscale technology that is expected to be a 
persuasive replacement of CMOS technology. QCA technology competing for features concerning low power consumption, 
small physical size, and ultra-high speed. These features are beneficial for memory design. This study presents a new 
structure of the CAM cell in QCA technology. The presented cell is carried out in an optimal form by using a proposed 
unique block. Method: In this study, the QCADesigner tool was used for circuit design and the QCAPro tool was used for 
power analysis. Both of these tools were used in default parameters. Findings: It was found that the proposed CAM cell 
is less complexity and efficient in power consumption with improvements by 6%, 29% and 15% in terms of leakage, 
switching and total energy consumption. Improvement: The CAM cell is the main building block for the whole memory. 
So, the reduction in complexity and power consumption in the CAM cells is important to reach an optimal memory circuit.

1. Introduction 
Quantum-dot Cellular Automata (QCA) is a new tech-
nology that researchers have presented as a solution to 
overcome and minimize some CMOS limitations con-
cerning the consumption of power, leakage current, and 
physical size1,2. QCA is a recent nanoscale technology 
with design techniques that can be considered as a good 
replacement for those used in classical circuit design. It 
can achieve good performance with very little consumed 
power compared to CMOS technology3. The main build-
ing block in QCA design is a square cell that has four 
holes (dots) with two electrons. When Coulomb repulsion 
occurs, the two electrons occupy holes diagonally inside 
the cell4,5. QCA memory cell design has been attracted by 
many researchers. Research efforts6–11 have focused on the 
design and performance of the Random Access Memory 
cell (RAM cell) in QCA. In this work, a new Content 

Addressable Memory cell (CAM cell) has been proposed. 
The CAM, which differs from RAM, is a kind of memory 
that is likely used in applications that require searching 
with very high speed12. In CAM, the access time to stored 
data in memory is reduced4. A new efficient CAM cell 
with lower complexity (cell counts) and minimum power 
required has been presented. The gates used to design this 
structure are XOR gate with two inputs and a majority 
gate of three inputs. A QCA Designer simulation tool 
was used for modeling and performance evaluation of the 
proposed CAM cell structure. 

The contents of this study will be as follows: Section 
2 will present a review of QCA technology and CAM 
cell. The proposed model of CAM cell will introduce in 
Section 3. Section 4 will provide the results and compres-
sion with discussion. The conclusion will summarize the 
work in Section 5.
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2. Preliminaries

2.1 QCA Technology
QCA is a new nanoscale technology that was introduced 
for the first time by13. The basic building unit in QCA cir-
cuits is a square cell. Each cell contains four holes with 
two electrons. The Coulombic force controls the elec-
tron’s movement inside the cell14. Logic states whether 
0 or 1 in the cell depends on the electrons configuration 
inside the cell. Cell polarization can be calculated using 
Equation (1). Where pi represents the probability of the 
electron existing inside dot i.The cell represents logic 1 
if it is polarized equal to +1 and if it is polarized equal to 
-1 it represents logic 010. Figure 1 explain the QCA cell 
structure with its polarization.

1- 2 3- 4
1 2 3 4
p p p pp

p p p p
 +=   + + +   

       (1)

Figure 1. Polarized QCA Cell forms.

Figure 2. QCA Basic gates. (a) 3-inputs Majority structure. 
(b) Inverter structures.

2.1.1 QCA Basic Gates
The basic gates in QCA technology are the majority gate 
and the inverter as shown in Figure 215. The majority 
gate function for 3 inputs (A, B, C) is AB+AC+BC. OR 
or AND gates with 2-inputs can be constructed utilizing 
3-inputs majority gate. This can be done by connecting 
any of the three bits of majority gate to logic 1 or logic 0. 
Many papers were published in literature focused on the 
majority gate for both three and five bits16–23.

2.1.2 Clock Signal
In QCA circuits, a clocking signal is necessary for con-
trolling the information flow24. The circuit can be divided 
into four different regions (zones). Each zone has four 
phases. The clock signal controls the barrier between the 
holes to allow or prevent electron tunneling25. Figure 3 
shows the four-zone clocking scheme.

 

Figure 3. The common clock zones in QCA.

Figure 4. Optimal QCA XOR gate33.
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2.1.3 The XOR Gate
The 2-input XOR gate is widely used in logic circuits. 
In QCA, researchers introduced many forms of 2-input 
XOR gates26–33. Some of them follow Boolean function 
while others use the inherent capability of QCA to get the 
output. The optimal design XOR layout was presented 
by33 as shown in Figure 4. This layout will be utilized in 
this study to obtain the XNOR gate by exchanging the 
fixed cells.

2.2 CAM
CAM structure is built for very fast memory searching 
purposes. The CAM has the ability to search all of its con-
tents within just one clock cycle. To access stored data on 
CAM, it makes a searching process, produces a match sig-
nal and then, restores addresses of the content.

3. The Proposed Structure
This section will explaina new CAM cell structure forma-
tive by a proposed unique block.

3.1 The Proposed Unique Block
As mentioned before, the most significant challenge for 
researchers is to minimize cell count and to increase speed. 
This research introducesa new QCA blockas attempting 
to improve the performance of CAM memory. Equation 
(2) describes the function of this block. An XNOR and 
majority gates were utilized to design the unique block as 
shown in Figure 5.

Output =  (A ʘ F) + K       (2)

Figure 5. The proposed unique block.

3.2 The Proposed CAM Cell
Figure 6 shows the proposed QCA structure of the CAM 
cell. The structure of this cell consists of a single unique 
block and three of 3-input majority gates. The CAM cell 
comprised of two main parts which are the proposed 
block and memory unit. The memory unit receives two 
signals which are Read/Write (R/W\) control signal, and 
input data (I). Additionally, it has one output signal (F). 
The proposed block has three inputs which are input (F) 
which comes from the memory unit, input (A) and input 
(K). It also has an output (M) which determines its state 
according to (A) and (K) inputs. The operation of the 
memory unit depends on the value of the (R/W\) con-
trol signal. Connecting (R/W) line to logic ‘0’ makes the 
output (F) tends to logic ‘0’, which represents the (Write) 
operation whereas setting (R/W\) to logic ‘1’, the memory 
cell will perform the (Read) operation accordingly. The 
memory unit functionality table is illustrated in Table 
1. In the proposed unique block, the setting input (K) 
to logic (1) will tend output (M) to (1), regardless of the 
logic state of (A) and (F). While connecting input (K) to 
logic (0), the output (M) will be dependent on (A) and 
(F) values.

Figure 6. QCA layout of proposed CAM cell.

4. Simulation Waveforms and 
Discussion
The circuits simulation using QCA Designer software34 

are provided in this section. The software parameters 
have been set to default. Figure 7(a) shows the simula-
tion result of the proposed block while Figure 7(b) shows 
the simulation result of the proposed CAM cell as well. 
The CAM cell comparison table is given in Table (2).In 
addition, QCAPro software hyperlink35 has been used 
for power consumption analyses of the presented QCA 
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circuits. The energy dissipation thermal map in the pro-
posed CAM cell is shown in Figure 8. The analysis of 
power consumption is illustrated in Figure 9.

Table 1. Memory operation  truth table 

Operation type R/W Previous F I F
Write 0 x 1 1
Write 0 x 0 0
Read 1 1 x 1
Read 1 0 x 0

(a)

(b)

Figuire 7. Simulation output for. (a) Proposed block. (b) 
Proposed CAM cell.

Figure 8. The energy dissipation thermal map for proposed 
CAM cell.

Figure 9. Power dissipation comparison of CAM Cell. 

Table 2. CAM cell compression table
CAM cell Cell counts Delay Area (µm2)

In4,12,3 100 2 0.14

In12 94 2 0.11

In3 46 1.25 0.04

proposed 40 1.25 0.04

As previously seen, the power analysis indicates that 
the proposed CAM cell is efficient in power consumption 
and makes improvements by 6%, 29% and 15% in terms 
of leakage, switching and total energy consumption. The 
results have been analyzed at three stages (0.5 Ek, 1 Ek, 
and 1.5 Ek).

5. Conclusion
In this research, a unique block with minimum cell counts 
was proposed for utilizing in CAM cell design. Next, a 
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new power-efficient structure of CAM cell has been pro-
posed. QCADesigner tool was used to design the circuits 
while the QCAPro tool was used for power analysis. 
Simulation results clearly showed through comparison 
that the proposed design performance is better than the 
same counterparts.
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