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Abstract
Background/Objectives: This study presents an external and internal prior guided patch based filter for minimizing 
Gaussian noise in complementary deoxyribonucleic acid (cDNA) microarray images. Methods/Statistical analysis: The 
proposed denoising filter is capable of taking into consideration both external and internal prior. It employs combined 
prior guided patch based denoising considering various distance based patch-matching methods. Findings: Experimental 
results demonstrate that the combined prior guided patch based filter outperforms the existing well-known filters in 
minimizing noise of cDNA microarray images. The outcome of the proposed scheme found to offer better peak signal-
to-noise ratio and structural similarity index in contrast to existing filtering techniques. Effectiveness of the proposed 
denoising method is also assessed by estimating the spot intensities of cDNA microarray image that reflects the effect of 
noise reduction in the image. Application/Improvements: Minimization of noise is a crucial step of cDNA microarray 
image processing and it aids in microarray analysis by extracting valid and good quality gene expression measurements.

Keywords: Denoising, External Prior, Internal Prior, K- nearest Neighbor, Microarray Image, Singular Value Decomposition 

1. Introduction 
Microarray imaging technology has shown major prog-
ress in genomic research by allowing molecular biologists 
to monitor thousands of expression levels of genes at a 
time. Nowadays, the technology is a powerful tool, which 
is employed in the research of toxicological problems, dis-
covering drugs, new types of diseases, diagnosis of disease 
and succeeds in providing promising results. In addition, 
the cDNA microarray technology has found applica-
tion in various fields of bioinformatics. Microarrays are 
thousands of discrete DNA sequences printed onto 
glass slides by a robotic arrayer, forming spots or probes 
on the glass slide. Discrete DNA sequences form a two 
dimensional array of spots on the glass slide. Each spot 
on the slide represents hybridization level of cDNA from 
fluorescent-labelled target sample and cDNA from fluo-
rescent-labelled reference sample. The slides are scanned 
to obtain two images of red channel and green channel 
that reflects differentially expressed genes. With the aid 

of various computational techniques, the gene spots are 
analysed for understanding the fundamental biological 
phenomena. Log-intensity ratio is widely used statistic1 for 
downstream processing of microarray data. Microarray 
experimentation and image digitization process has error 
prone steps and introduces pollutants to the images. The 
extraction of log-intensity ratios from microarray images 
with accuracy is a major challenge because of presence of 
noise in the image. Thus, need for robust algorithms to 
minimize noise is essential and subsequently, the down-
stream processing of microarray image analysis can be 
effectively performed.

Noise minimization is the crucial step in biomedi-
cal image processing and the step aids in downstream 
processing of biomedical images. Noise minimization 
technique on biomedical images by means of an adaptive 
methodology of multi-resolution2 was introduced and 
substantiates the need for biomedical image denoising 
among researchers. The method of minimizing noise for 
cDNA microarray images at present becomes the signifi-
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cant research issue. This segment lengthens the discussion 
of comprehensive study3 by briefing several new tech-
niques for minimizing noise in cDNA microarray images. 
The method of Chang4 proposes decision based filter for 
the elimination of impulse noises in cDNA microarray 
images. It works on the thought of fuzzy logic-based noise 
detector using particle swarm optimization algorithm to 
assess a corrupted pixel vector, and then utilizes the cen-
ter weighted vector median filter to enhance the image 
quality of microarray images. An interesting attempt for 
removing outliers in illumine beadchip microarray image5 
was investigated using least weighted squares estimation, 
and claims that estimated statistical measure is sensitive 
against outliers in the data. 

In latest years, some researchers have utilized diverse 
noise minimization techniques aimed at cDNA microar-
ray images in their methodology. The research papers6–10 

witnessed the importance of denosing procedure as 
pre-processing step. The attempts for noise removal 
techniques such as histogram equalization, logarithmic 
transformation, arctangent hyperbolic transformation, 
wavelet denosing, median integrated with anisotropic dif-
fusion filters was performed as initial step of microarray 
image processing. 

In recent research11,12 histogram equalization for con-
trast enhancement and noise removal procedure based 
on Wiener filter was implemented as a pre-processing 
step. The study13 introduces application of Wiener filter 
for denoising of natural images. Patch based filtering in 
two stages frequency domain and in spatial domain was 
performed. Patch level-based filtering offers good meth-
odology to minimize the presence of noise. It shows an 
increase in performance when noise level is less and 
results in a smoother denoised image for higher noise 
level. Popular patch based denoising methods exclu-
sively count on input noisy image to mine features. Non 
Local Means - NLM14 reconstructs the noisy patch by 
taking the weighted average of similar reference patches 
from the same input image. Block-Matching 3D filtering 
- BM3D15 is considered as the state of art technique. It 
constructs upon concept of transform domain technique 
by extending NLM. BM3D arranges similar reference 
patches into a 3D structure and then processes it through 
the steps of 3D linear transform, thresholding, inverse 
3D transform to achieve clean estimate of noisy patch. 
Block-Matching 3D filtering with Principal Component 
Analysis - BM3DPCA16 is modification of original BM3D 
and is intended for increase in efficiency of BM3D.  

PCA on similar reference patches followed by Haar trans-
form is employed to produce denoised image. Local Pixel 
Grouping LPG-PCA17 builds similar patches based on 
similarity in spatial structures and employs PCA on the 
matrix of similar patches. In Targeted Image Denoising 
- TID18 the similar reference patches are mined from 
external databases. The method exploits PCA to learn 
the prior and denoising quality was improved by esti-
mating optimal spectral matrix. Following up, mining 
features from input noisy image and from external data-
base has evolved in patch based approaches. Various 
procedures developed most recently in this category are 
affine regression19, internal and external correlations13, 
anchored regressors20, integrating local and non-local 
priors21, external prior guided internal prior learning22 
considering images corrupted with additive Gaussian 
noise. Although greater research interest in patch level 
filtering on natural images is observed, these frameworks 
has never been investigated with microarray images 
considering the complexities in the microarray image. 
Previous Studies indicate that several types of noise may 
corrupt the microarray images. Poisson23, Gaussian24,25 
and exponential distributions23 have been used as additive 
or multiplicative noise model to characterize the noise 
features of cDNA microarray images. Non-additive and 
non-Gaussian noise can be mathematically expressed as 
additive Gaussian noise26, so minimizing Gaussian noise 
is important considering the cDNA microarray images.

Matti Nykter27 proposed a simulation model for 
microarray image with biological and statistical charac-
teristics. The model simulates a realistic microarray image 
by modelling measurement and biological errors. Several 
error models based on Gaussian distribution, Laplacian 
distribution, lognormal distribution were introduced for 
implementation of simulation of microarray image. By 
adding various types and amounts of noise that charac-
terize biological and measurement errors to the simulated 
images, performance of the proposed algorithm can be 
effectively tested. This can give a significant understand-
ing of the efficiency of the algorithms.

2. Proposed Methodology
cDNA microarray image denoising is defined as prob-
lem of restoring a clean image from its noisy observation. 
Given a noise free image IG, its noisy observation is given 
as I = I + NN G , where N R∈ 2 is the additive Gaussian noise 
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with σ 2 variance and zero mean. Aim is to obtain a noise 
free estimate I RG ∈ 2 from I RN ∈ 2 . An image denoising 
framework that integrates internal prior learned from 
noisy image as well as prior learned from the dataset is 
proposed in this article. Microarray dataset with clean 
images have to be created to learn the prior. However, 
microarray images with high quality is not achievable 
practically. Therefore, high quality Microarray Image 
Dataset (MAID) are formed by selecting visually good 
quality images from Stanford Microarray database. 
Another dataset stacked with simulated images are also 
constructed and the priors of these images are used to 
validate the proposed framework. These synthetic images 
are formed considering the characteristics of realistic 
microarray images using mamodel software27. Simulated 
images are used to corroborate the proposed framework. 
Clinical investigation of two-colour microarray data is 
validated using the true signals, Red(R) and Green (G) or 
their blend of various levels of their intensity.

The article proposes an integrated method that 
achieves best result by adaptively selecting internal prior 
and external prior for denoising of noisy image. In first 
stage, the noisy image IN is split into overlapping patches 
of size 8 x 8. For every noisy patch, aim is to restore its 
estimate patch by the statistics obtained from inter-
nal or external reference patches. For each noisy patch, 
the signal to noise ratio28 is calculated. Patch with low 
signal to noise ratio is denoised with internal reference 
patches information. Patch with high signal to noise ratio 
is denoised with external reference patches information. 
The reference patches for a given noisy patch is obtained 
by using a search algorithm, K-Nearest Neighbor (KNN) 
with various distance measures. The technique consid-
ers M nearest neighbors as prior data learned from noisy 
image or from microarray image dataset. An intuitive 
method of Singular Value Decomposition (SVD) is exer-
cised to obtain the denoised patch.

The initial step in the algorithm is to perform par-
titioning of the noisy image to generate overlapping 
patches. For each noisy patch PN , aim is to recover its 
particulars with the support of similar external and 
internal patches. Searching reference patches for a heav-
ily polluted noisy patch from the noisy image and from 
external image dataset are both hard-hitting problems. 
Therefore, KNN based patch matching is suggested with 
Chebyshev, Cityblock, Euclidean, and Minkowski dis-
tance approaches to improve patch matching accuracy.

In this approach, the results prove that, by incorpo-
rating two categories of image priors, better restoration 
resultsare obtained taking the benefits from both exter-
nal and internal priors. The idea behind the algorithm is 
to group together similar patches and a model is framed 
for those patches. This model is used to reduce significant 
noises of microarray images. The basic steps of proposed 
denoising algorithm is as follows.

Algo1 for Denoising Microarray image:

 1. For the size of the noisy Image IN

 2. Extract overlapped noisy patch PN  of size N1 × N1
 3. Find signal to noise ratio (SNR) of noisy Patch
 4. If SNR of noisy Patch > C
 5. Extract similar reference patches from MAID
 6. Res_pat → Denoise (sim_patchExt, PN )
 7. Else if SNR of noisy Patch < C
 8.  Extract similar reference patches from noisy image 

IN

 9. Res_pat → Denoise (sim_patchInt, PN )
10. END

The algorithm considers the clean microarray image 
as ground truth image. Gaussian noise of certain noise 
level is added to the ground truth image to obtain the 
noisy image IN . Noisy image is split into overlapping 
patches. Noisy patch PN of size N1 × N1 is extracted from 
noisy image. The equation (1) is used to estimate the sig-
nal to noise ratio of noisy patch PN .

 SNR of noisy patch    = P
n

Nvar( )
var( )

 (1)

where, var( )PN is the empirical variance of the noisy 
patch, var( )n is unknown and is approximated using one 
of the known denoisers. If P

~
 is the estimate of PN then

var(n)  var(P  P).N
~

≅ −

The Line 4 and 7 of algorithm then makes a choice 
of denosing the noisy patch with internal prior data or 
external prior data based on threshold C. The patch with 
low content and high noise has lower signal to noise ratio 
and the patch with more signal content and low noise has 
high signal to noise proportion. The threshold C is calcu-
lated as average of signal to noise ratio of smooth patches 
of noisy image corrupted with various noise levels. This 
step (Line 4 and 7) ensures that patches with smooth or 
low content prefer minimizing noise using internal prior 
information, whereas patches with details prefer denois-
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ing using external prior information. For each noisy 
patch PN  the algorithm searches for M similar refer-
ence patches { , ........... }rp rp rpM1 2  from microarray image 
dataset (MAID) or from the noisy image IN . In Line 5, 
Searching window SW of size Ns × Ns for each image in 
MAID is considered for obtaining the reference patches 
if external prior data is required. Line 5 follows Algo2 
steps for learning external reference patches. Internal 
prior data is generated by searching for M similar refer-
ence patches { , ........... }rp rp rpM1 2  from entire noisy image 
IN . Line 8 follows Algo3 steps for learning internal ref-
erence patches. The algorithm specified in Line 6 & 9 
performs denoising using singular value decomposition. 
The restored patches are averaged together to generate 
the estimate image for IG  as denoising result.

Algo2: Steps for Learning External Reference Patches:
Input: Input Noisy Image IN

1. For size of input noisy image
2. Extract overlapped noisy patch PN of size N1 × N1 

from IN

3. For each image in dataset MAID
4. Initialize the dimension of search window SW for an 

image in MAID of size Ns × Ns

5. Find similar patches for noisy patch PN , arrayD_1 → 
KNNSearch( PN , SW, distopt)

6. Accumulate similar patches in arrayD for all images of 
MAID

7. END
8. Select M most similar reference patches from arrayD
 sim_patchExt → KNNSearch (arrayD, PN , distopt)
9. END

Output: External reference patches sim_patchExt
Algo 2 starts with considering a searching window 

SW of size Ns × Ns for each image in MAID for obtain-
ing the reference patches. The dimension Nsis chosen as 
51 making searching window size to be 51 × 51. For each 
noisy patch PN  in IN , the technique tries to search its 
most similar patches { , ........... }rp rp rpk1 2  from correlated 
microarray image dataset as the denoised version of PN. 
K-nearest neighbour (KNN) with distopt as Euclidean 
distance patch matching method is chosen as the base-
line-matching criterion. The data matrix arrayD_1 
contains the reference patches { , ........... }rp rp rpk1 2  that 
has lesser  2  distance from input noisy patch PN . The 
sum of squared differences between the database { }rpj j

k
=1

and noisy patch PN , is carried out as measurement of 
similarity as

 d rp j krpj j( , ) , .....P P for N N= =−
2

0 1  (2)

Therefore, final lattice of reference patches arrayDis 
generated considering the information lattice arrayD_1 
of every image from the database. The algorithm consid-
ers only the M-closest reference patches i.e. sim_patchExt 
({ } )rpj j

M
=1  leading to reduction of dimension of prior 

information. K-nearest neighbor algorithm with distance 
measures such as Chebychev, Cityblock, Euclidean, and 
Minkowski is exploited as a patch matching function to 
search for most similar M-reference patches for the noisy 
patch.

Algo3: Steps for Learning Internal Reference Patches:
Input: Input Noisy Image IN

1. For size of input noisy image
2. Dz = median( IN )
3. Extract overlapped noisy patch PN  of size N1xN1 

from IN

4. Select search window SW from the median filtered 
image Dz.

5. Find M most similar reference patches from Dz
 sim_patchInt → KNNSearch( PN , SW, distopt)
6. END

Output: Internal reference patches sim_patchInt
Algo3 computes median of the noisy image to increase 

the effectiveness of search of reference patches from 
noisy image. Entire median filtered image Dz is consid-
ered as search window to select M most similar reference 
patches. The sum of squared differences, equation (2), 
between the patches of noisy image { }rpj j

k
=1  and noisy 

patch PN is carried out to arrive at M-nearest reference 
patches. The K-nearest neighbor algorithm with distance 
measures distopt such as Chebychev, Cityblock, Euclidean, 
and Minkowski is used to build M-closest reference 
patches. The methodology recognizes only the nearest M 
reference patches i.e. sim_patchInt ( { }rpj j

M
=1 ) resulting in 

internal prior information.

Algo4: Algorithm for denoising using Singular Value 
Decomposition
Input: sim_patchExt/sim_patchInt
Start

1. Assign Rp  with sim_patchExt/sim_patchInt { }rpj j
M
=1

www.indjst.org


S. Elavaar Kuzhali and D. S. Suresh

Indian Journal of Science and Technology 5Vol 12(37) | October 2019 | www.indjst.org

2. Formulate weight vector W
3. Compute basis vectors and diagonal matrix 

A  S  SVD W[ ] = ( )Rp RpT

4. Compute =((S + I)) (S)2 1σ −

5. The patch is denoised by evaluating Res_Pat→
G T NP̂ = A A P

End

Output: Res_Pat
Given noisy patch PN , aim is to recover the latent 

clean patch PG . The observation model for the noisy 
patch is P P nN G= +  where n is additive Gaussian noise 
with variance σ 2 . 

The objective is to recover an estimate of PG from PN  

through a linear filter that minimizesΕ R PPN G−



2

2
. 

R is linear operator to be estimated such that there 
is minimum mean squared error between ground truth 
and estimated denoised image. R is assumed symmetric, 
has linearly independent basis vectors and can be factor-
ized. These independent basis vectors will be helpful in 
reducing the noise if the basis vectors are sparse having 
high-energy concentration. Sparsity in basis matrix is 
achievable by finding similar reference patches for the 
given noisy patch using K-nearest neighbor with vari-
ous distance measures. Singular value decomposition is 
utilized for matrix decomposition to achieve sparse basis 
vectors. This matrix decomposition helps in eliminat-
ing trivial noise present in the image and preserves the 
principal image features. Left singular matrix of R are the 
Eigen matrix of RRT and represents the principal image 
features. The architecture of denoising using SVD pri-
marily computes the projection matrix A  and diagonal 
matrix S  as follows:

Given { }rpj j
M
=1 , the SVD computes the projection 

matrix A  using

 A  S  SVD[ ] = ( . )Rp RpT  (3)

where, { }rpj j
M
=1  is represented with notation Rp , A  is 

the basis matrix and S  is the spectral coefficients diago-
nal matrix. The reference patches obtained have different 
distances to the noisy patch in consideration. The infor-
mation matrix sim_patchExt ( { }rpj j

M
=1 ) or sim_patchInt  

( { }rpj j
M
=1 ) is elevated with higher weight for the most 

similar patches. Weight matrix is formulated using 
Gaussian kernel function. The more similar, the higher 

the weight it contributes to calculating matrix A  and S .  
The distance between rpi  and the noisy patch PN  is con-
sidered to measure the similarity. The weight matrix is 
defined using a common Gaussian Kernel Function as 
follows:

 W = 1
Z

 diag 
PN   PN   

e e
rp rpM

h h

− − − −1 2

2

2

2........,














 (4)

Z is a normalization constant and h  is the tuning 
parameter.

Then the best estimate of orthogonal basis A  and 
spectral value matrix S is obtained by SVD using equation 
(3) with weight matrix. Therefore, equation (3) becomes

 A  S  SVD W[ ] = ( )Rp RpT  (5)

An estimation ˆGP of original patch PG is provided by 

 Res_Pat→ G T NP̂ = A A P  (6)

such that the estimate has minimum mean squared 
error with respect to the ground truth PG  and is rep-
resented with the notation Res_Pat. The best spectral 
matrix   that minimizes the error between ground truth 
patch and the estimate patch is obtained18 from the equa-
tion given:

 =((S+ I)) (S)2 1σ −  (7)

Thus solution to the optimization problem equation 
(8) leads to the denoising filter

 (A A A
A

T  ) = arg min  PP
 

GN 


Ε −



2

2
 (8)

Therefore, focus is to combine internal and external 
prior data and target in minimizing noise of microarray 
image patches using SVD, which is stated as collab-
orative prior with SVD for denoising. In patch based 
denoising methodologies, noisy images are decomposed 
into overlapping patches. A pixel in a patch is encoun-
tered for denoising procedure for several instances, 
so averaging of pixel estimates is considered for the 
final denoised pixel. The entire process of algorithmic 
operation ensures minimization of noise with simpler 
block-based approach. The proposed methodology con-
sistently results in remarkable image quality in terms of 
quantitative as well as subjective assessment to prove 
the effectiveness of the methodology. The next section 
discusses results in both subjective and objective mea-
surements for the proposed scheme. 
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3. Results and Discussion
The proposed method is implemented by using matlab 
code. Algorithm implementation depends on parameters 
signal to noise ratio of noisy patch, median of the noisy 
image to increase the effectiveness in search of reference 
patches from noisy image. Noise estimation is done with 
the high frequency component of discrete wavelet trans-
form. Three experiments are carried out to validate the 
performance of the proposed methodology. In the first 
experimentation, performance of filters is examined on 
simulated microarray images degraded with different 
noise levels of Gaussian noise. Validation of the proposed 
denoising filter is testified by assessing the quality of 
image by adopting the performance criterions Structural 
Similarity Index (SSIM) and Peak Signal to Noise Ratio 
(PSNR). The performance of proposed technique is evalu-
ated by comparing it with paralleled patch based filtering 
techniques and common filtering methods.This collabor-
ative approach has been implemented for the patch based 
denoising methods.Targeted Image Denoising - TID, Non 
Local Means - NLM, Block-Matching 3D Filtering with 

Principal Component Analysis - BM3DPCA, Local Pixel 
Grouping - LPGPCA, Block-Matching 3D Filtering - 
BM3D, median filter, Discrete Wavelet Transform (DWT) 
are the methods considered for comparison. The pro-
posed approach with Chebychev, Cityblock, Euclidean, 
Minkowski distance achieves the best denoising results 
amongst the paralleled methods for various noise lev-
els. The result for a noise level of σ = 30  is represented 
in Figure 1. In Figure 1(e, j, k, l, n, and o) represents the 
results for paralleled patch based filtering techniques. The 
red circles clearly show that more noise exist in the image. 
Figure 1(f, g, h, and i) represents results for the suggested 
method with various distance metrics. The red circles 
represent noise to a lesser extent. The integrated approach 
of utilizing priors from both internal and external has 
ensured minimization of noises. Table 1 and 2 presents the 
objective image qualities of the eleven denoising schemes 
in terms of PSNR and SSIM values for various noise level. 
It should be noted that in tables and figures ‘Prop+’ nota-
tion denotes proposed approach. Note that collaborating 
the priors delivered better results than the well-known 
common methods in cDNA microarray image denoising.

Figure 1. Denoising results - visual outcomes of simulated microarray images. Red circles highlight the noise patterns existing 
in the image.
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Table 1. PSNR(dB) results for various noise levels on simulated microarray images

Noise Levels
10 20 30 40 50 60 70 80 90 100

Methods
Collaborative TID 46.73 40.63 37.31 35.05 33.21 31.58 30.23 27.82 26.32 24.99
Prop+chebychev 46.97 41.20 37.92 35.47 33.00 30.71 27.26 25.28 23.85 22.91
Prop+cityblock 46.83 40.85 37.46 35.02 32.98 31.33 28.92 27.41 25.53 24.14
Prop+euclidean 46.89 41.06 37.86 35.62 33.63 32.06 30.37 27.97 26.12 24.44
Prop+minkowski 46.94 41.21 37.96 35.77 33.70 31.68 28.63 26.47 25.14 23.76
Collaborative NLM 44.72 37.62 34.35 32.56 31.21 30.06 29.02 27.10 25.70 24.27
Collaborative 
BM3DPCA

45.80 39.29 35.84 33.82 32.17 30.88 29.41 27.36 25.96 24.21

Collaborative LPG-
PCA

42.12 36.20 32.83 30.40 28.62 27.31 25.66 24.48 23.14 21.97

Collaborative 
BM3D

38.10 32.10 28.29 25.81 24.11 22.91 21.81 20.72 19.79 19.07

Median 32.36 26.42 23.11 20.87 19.22 17.93 16.91 16.03 15.26 14.56
DWT 22.85 19.23 17.67 16.88 16.31 15.78 15.41 15.13 14.89 14.64

Table 2. SSIM results for various noise levels on simulated microarray images

Noise Levels
10 20 30 40 50 60 70 80 90 100

Methods
Collaborative TID 0.999 0.997 0.994 0.989 0.982 0.975 0.967 0.954 0.936 0.916
Prop+chebychev 0.999 0.997 0.995 0.990 0.983 0.970 0.949 0.925 0.899 0.878
Prop+cityblock 0.999 0.997 0.995 0.989 0.982 0.975 0.964 0.952 0.930 0.912
Prop+euclidean 0.999 0.997 0.995 0.989 0.983 0.977 0.969 0.953 0.933 0.909
Prop+minkowski 0.999 0.998 0.995 0.991 0.985 0.977 0.956 0.930 0.910 0.889
Collaborative NLM 0.999 0.993 0.988 0.983 0.976 0.968 0.962 0.950 0.932 0.909
Collaborative 
BM3DPCA

0.999 0.997 0.993 0.987 0.982 0.974 0.966 0.952 0.934 0.906

Collaborative LPG-
PCA

0.997 0.990 0.979 0.965 0.949 0.937 0.918 0.897 0.868 0.835

Collaborative 
BM3D

0.987 0.969 0.946 0.918 0.890 0.861 0.826 0.787 0.749 0.712

Median 0.961 0.889 0.814 0.742 0.673 0.613 0.560 0.513 0.471 0.432
DWT 0.849 0.720 0.636 0.575 0.523 0.477 0.451 0.428 0.408 0.391

It can be perceived from Figure 2(a) and 2(b) 
that, the suggested scheme evidently outperforms all 
other techniques for the simulated microarray image. 
The major reason for this trend is that patches with 
smooth region prefers to use internal prior and patches 
with edges and texture prefer to use external prior. 
Hence the combination of these priors provides better 
results compared to available existing mechanisms of  
denoising. 

Microarray simulation model27 is used for gen-
erating simulated microarray image that includes 
biological and hybridization errors. Errors include back-
ground noise, spot bleeding, scratches, and air bubbles 
etc. Hybridization and biological errors are modelled with 
various error models such as simple additive Gaussian 
noise, Dror, Hartemink, Hierarchical, Hein, Rocke etc., 
in the mamodel software. Simulated Microarray Image 
test Dataset is created with various degrees of biological 
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and hybridization errors included in the images using the 
software created by Nykter et al. To validate the efficiency 
of the methodology, further testing of suggested methods 
on simulated images included with hybridization noises is 
conducted and the results are tabulated in Tables 3 and 4. 

The noise level in this simulated images are unknown 
and the simulated images that are affected with relatively 
very high noise level are utilized for the experimentation. 
The proposed algorithm depends on the noise variance 
(sigma) value for finding the optimal spectral coefficients 
( ). Noise level is estimated using the high frequency 
component of discrete wavelet transform.

The visual denoising results of simulated microarray 
test image inflicted with biological and hybridization 

noise are presented in Figure 3. It can be seen clearly 
from visual outcome that the suggested approach with 
various distance metrics constantly outperforms collab-
orative approach for well-known patch based denoising 
methods and other two common schemes. The PSNR 
and SSIM values for the specified algorithms and for 
eight images in the test set are reported in Tables 3 and 
4. Specifically, Figure 4(a-f) represents the visual out-
comes illustrating the mean spot intensity values in 
red channel and green channel images. One can see 
that the proposed method with Chebyshev, Cityblock, 
Euclidean, Minkowski results in a denoised image with 
the spot intensity values very close to original simulated 
microarray image.

Figure 2. a) Comparative plot of PSNR values at various noise levels for simulated microarray image b) Comparative plot of 
SSIM values at various noise levels for simulated microarray image.
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Figure 3. Denoising results of various methods on simulated microarray images with hybridization noise.

(a)

(b)
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(c)

(d)

(e)
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(f)

Figure 4. (a) Visual representation of simulated original microarray image and its spot intensity values for red channel and 
green channel images. (b) Visual representation of simulated noisy microarray image and its spot intensity values for red channel 
and green channel images (c) Visual representation of denoised simulated microarray image and its spot intensity values for red 
channel and green channel images using proposed collaborative approach with Chebyshev distance, (d) Visual representation 
of denoised simulated microarray image and its spot intensity values for red channel and green channel images using proposed 
collaborative approach with Cityblock distance, (e) Visual representation of denoised simulated microarray image and its spot 
intensity values for red channel and green channel images using proposed collaborative approach with Minkowski distance, (f) 
Visual Representation of Denoised Simulated Microarray Image and its spot intensity values for red channel and green channel 
images using proposed collaborative approach with Euclidean distance.

Finally, after validating our proposed method on sim-
ulated microarray images, the experiment is performed 
on realistic microarray image. The realistic microarray 
image is taken from Stanford microarray database. The 
visual outcomes for proposed method with various dis-
tance metric on a realistic microarray image is shown in 
Figure 5 (a – e). Here PSNR and SSIM evaluation on real-
istic microarray image cannot be carried out as there is no 
availability of noise free image. So the denoising results 
of realistic image as spot intensity values is shown in  

Figure 6 (a-b) for various algorithms. From graph, it is  
seen that the trend lines for the suggested method is 
well above the noisy trend line giving us the conclu-
sion that the suggested approach has minimized noise. 
Experimentation outcomes on realistic and simulated 
microarray imagesshows that the proposed method with 
the distance metric of Chebyshev, Cityblock, Euclidean, 
Minkowski retains signal quality by reducing the noise 
and limiting the inclusion of false patterns within the 
image.
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Figure 5. Denoising output of various methods on realistic microarray image.

(a)
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(b)

Figure 6. (a) Comparison result of spot intensity values of various algorithms for realistic microarray green channel image, 
(b) Comparison result of spot intensity values of various algorithms for realistic microarray red. 

4. Conclusion
In this article, an approach that combines the prior learned 
from noisy image and prior learned from dataset for 
image denoising is suggested. Firstly, algorithm considers 
8 x 8 patches of input noisy image and based on the signal 
to noise ratio parameter it starts checking for its match in 
the inquiry window of every search image in the database 
or from the noisy image. The match is done considering 
various distance metrics. Then, the algorithm further 
implements singular value decomposition to enable the 
process of denoising. The proposed model is validated 
on simulated microarray image and realistic microarray 
image. The experimental results shows that, suggested 
method offers improved PSNR and SSIM in comparison 
to existing methods. The suggested scheme validates the 
effectiveness of collaborating the prior learned from noisy 
image and prior learned from dataset. Further, the next 
challenge will be sought after towards the path to improve 
the performance of denoising framework and to reduce 
the computational complexity.
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