
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(35), DOI: 10.17485/ijst/2019/v12i35/146797, September 2019
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Proposed Approach for Tracing the Progress of XP
Projects

Abed S. Alsahli1 and Nagy Ramadan Darwish2*
1Faculty of Business, University of Jeddah, KSA, Jeddah–23218, Saudi Arabia; asalshle@uj.edu.sa

2Faculty of Graduate Studies for Statistical Research, Cairo University, Giza–12613, Egypt; nagyrd@hotmail.com

Keywords: Agile Software Development, Extreme Programming, Project Progress, XP Phases, XP Practices

Abstract
Background/Objectives: Agile software development methods have gained popularity and are increasingly important
to a significant number of software development organizations. eXtreme Programming (XP) approach is one of the most
popular agile development methods. Tracing the progress of software projects is one of the most crucial success factors
of these projects. This study is concerned with proposing an approach for tracing the progress of XP software projects.
Methods analysis: This study introduces the values, practices, and life cycle phases of XP approach. Depending on simple
statistical techniques, this study introduces a proposed quantitative approach to evaluate the degree to which various
XP phases and activities are implemented. Findings: A software organization can use the proposed approach to track,
evaluate, control, and improve the performance of XP software projects to increase the success rate of software projects.
Improvements/Applications: The proposed approach can serve as a base for building a software tool to trace the progress
of agile software projects.

1. Introduction
Now, agile software development methods have gained
more attention in the domain of software engineering1.
Agile software development methods are the systematic
and tested processes of delivering proper solutions to
customer2. Agile software development methods are pro-
cesses that are iterative, incremental, self-organizing and
emergent3. It can be defined as a connotation of flexibil-
ity, nimbleness, readiness for motion, activity, dexterity
in motion, and adjustability4. Agile software development
methods deal with unstable and volatile requirements
by using a number of techniques, focusing on collabo-
ration between teamwork and customers and support
early product delivery5. Agile Software Development
(ASD) methods include five common methods:
eXtreme Programming (XP), Scrum, Crystal, Feature
Driven Development, Dynamic System Development
Methodology, and Adaptive Software Development6.

Kent Beck developed XP approach at Chrysler while
working on a payroll project. Beck continued to improve
XP approach after achieving the project until the new
approach gained worldwide acceptance in 20002. XP
approach is one of the most popular agile software devel-
opment methods. XP approach depends on incremental
planning, short development cycles, continuous feed-
back, and reliance on communication and evolutionary
design1. XP is a light-weight methodology for small-to-
medium-sized teams developing software in the face of
vague or rapidly-changing requirements7.

XP approach depends on four important values that
include: simplicity, communication, feedback and cour-
age. These values are implemented with twelve core
practices: planning game, small releases, metaphor, simple
design, testing, refactoring, pair programming, collective
code ownership, continuous integration, 40-hour week,
on-site customer, and coding standard. In addition, XP

Indian Journal of Science and TechnologyVol 12 (35) | September 2019 | www.indjst.org 2

A Proposed Approach for Tracing the Progress of XP Projects

life cycle phases include six phases: exploration, planning,
iterations to release, production, maintenance, and death.

Tracing the progress of software projects is one of the
most crucial success factors of these projects. Tracing the
progress of software projects includes monitoring the
achievements in every XP phase. Therefore, this study is
concerned with proposing an approach for tracing the
progress of XP projects. This study proposes a quantita-
tive approach based on a combination of simple statistical
techniques to evaluate the degree to which various XP
activities are implemented. Software organizations can
use the proposed approach to track, evaluate, control,
correct, and enhance the performance of XP software
projects to increase the success rate of software projects.

The rest of research is organized into six sections.
Section 2 provides a background about XP values, prac-
tices, phases, activities, and methods of project tracing in
agile projects. Section 3 presents the proposed approach.
Section 4 presents how to apply the proposed approach
to real projects and a discussion of the results. Section
5 presents the conclusion of the study. The last section
includes some related ideas that can be adopted in future.

2. Background
XP approach introduces best practices for a good quality
software product at small scale8. sXP approach is based on
four main values that are achieved through twelve main
practices. The development activities related to a software
project using XP approach can be viewed or understood
in the form of life cycle phases. This section consists of
three parts; the first part presents XP values and prac-
tices, the second part focuses on XP phases and activities,
then the third part focuses on the project management
approaches in agile projects.

2.1 XP Values and Practices
XP approach is based on four core values: simplicity,
communication, feedback and courage. Figure 1 illus-
trates the four core values of XP9. Simplicity is one of
the values supported explicitly by XP10. XP team mem-
bers are encouraged to start with the simplest solution
that needs less time to finish than a complex one. Simple
design increases the speed of software development while
still retaining an emphasis on working software7. Then,
extra functionality can be added later. Continuous com-
munication helps XP team members and users to own a

unified view of the requirements that reduces the pos-
sibilities of ambiguities and misunderstandings of the
requirements. In XP projects, good performance can be
achieved using story cards to collect requirements, wall
boards, and shared workspaces to maximize face-to-face
communication11.

Figure 1. XP values9.

XP team members should have methods and tech-
niques for getting information about their performance
in the project. Feedback may include many dimensions
such as: the system, customer, and team. Feedback from
the system and the team aims to provide project leaders
with quick indicators of the project’s progress to take cor-
rective or supportive actions. In addition, feedback from
customer includes the functional and acceptance tests. XP
approach encourages teams to make important decisions
that support XP practices. Courage enables developers to
feel comfortable with refactoring their code when neces-
sary12.

XP approach is suitable for small to medium-sized
teams developing software based on vague or rapidly
changing requirements, it has twelve main practices:
Planning Game, Simple Design, Small Releases, Testing,
Metaphor, Refactoring, Pair Programming, Collective
Code Ownership, Continuous Integration, On-site
Customer, 40-hour Week, and Coding Standards.
Software companies are progressively adopting develop-
ment practices associated with XP approach6, 7. There are
mutual relationships among XP practices. Therefore, any
XP practice doesn’t stand well on its own. They require
the other practices to keep them in balance7. XP practices
can be briefly explained in the following:

•	 The planning game is a collaborative process
that is achieved by all XP team members to cre-

Indian Journal of Science and Technology 3Vol 12 (35) | September 2019 | www.indjst.org

Abed S. Alsahli and Nagy Ramadan Darwish

ate, estimate, and prioritize requirements for
the next release13. The first release provides the
selected functionalities and many releases could
be necessary done before all functionalities are
completed14.

•	 The right design of the software at any point of
time is: the one that runs all the tests, has no
duplicated logic, states every intention important
to the developers, and has a minimum number
of classes and methods7. XP approach encour-
ages teams to use the simplest possible design
that will satisfy the current needs15.

•	 The processes in XP project are divided into
a sequence of small iterations where each one
implements new features testable and accepted
by the customer16. XP speed up the software
delivery using short releases of 3-4 weeks.

•	 In traditional software development methods,
testing is a phase of development that is car-
ried out after the main coding effort17. In XP
approach, tests must be created prior to coding.
Programmers write unit tests whereas customers
write functional tests.

•	 The system metaphor is a shared view that
expresses the overall method in which the sys-
tem wills operate4. It is an effective method for all
team members to visualize the project.

•	 Refactoring includes restructuring the system
without changing its behavior to remove dupli-
cation, improve flexibility, or simplify the work
to save time of development and increase qual-
ity10,17.

•	 Pair Programming means that two developers
work together to achieve a programming task
using one machine. It is useful to: perform an
immediate peer review of code, reduce the time
required for task completion, train junior devel-
opers, deal complex tasks.

•	 Collective Code Ownership means that after
testing the code and adding it into the code base,
the code can be modified by any team member18.

•	 Continuous Integration means that the code
related to each story is integrated into the evolv-
ing system as soon as it is accepted4. XP team
members integrate and build the system multiple
times per day to achieve the target scope.

•	 On-site Customer means that a customer
works with XP team members to provide all the

information required identifying and defining
requirements, performing acceptance tests, and
refining the structure and features of the system6.

•	 40-hour Week means that XP team members
should not work more than 40 hours in the week.
Therefore, requirements of each iteration should be
selected carefully by an efficient way to make team
members work without any need of overtime.

•	 Coding Standards means that XP team members
must adopt an agreed set of coding rules that
makes the understanding of code easier and facili-
tates the process of producing a consistent code.

2.2 XP Phases
XP life cycle includes six phases: exploration, planning,
iterations to release, production, maintenance, and death.
Figure 2 illustrates the phases of XP life cycle that will be
explained in the following paragraphs19. Table 1 summa-
rizes all XP phases and the activities required to achieve
each phase.

Figure 2. XP life cycle19.

During the Exploration phase, the customers write
the story cards to be included in the first release1. A user
story is a software system requirement formulated as one
or two sentences in the everyday or business language of
the customers. This phase can be achieved through the
following activities:

1.	 Ensuring that a preliminary background of the proj-
ect is obtained (motivation, assumptions, constraints,
addressed technology, acceptance criteria).

Indian Journal of Science and TechnologyVol 12 (35) | September 2019 | www.indjst.org 4

A Proposed Approach for Tracing the Progress of XP Projects

2.	 Clarifying the purpose of the story cards as a tool for
collecting the requirements.

3.	 Clarifying the standards of writing the story cards
(consistent, clear, testable, and integrated).

4.	 Writing the story cards by customers.
5.	 Ensuring that developers understand all story cards.
6.	 Analyzing and validating the story cards.

Table 1. Summary of XP phases and activities

Phase Activities

Phase (1): The
Exploration
Phase

Ensuring that a preliminary background
of the project is obtained (motivation,
assumptions, constraints, addressed
technology, acceptance criteria).
Clarifying the purpose of the story cards
as a tool for collecting the requirements.
Clarifying the standards of writing the
story cards (consistent, clear, testable,
and integrated).
Writing the story cards by customers.
Ensuring that developers understand all
story cards.
Analyzing and validating the story cards.

Phase (2): The
Planning Phase

Determining the priority order of the
stories by the customers.
Selecting the features that must be
included in the current release.
Negotiating the features of the current
release.
Estimating the effort and time that are
required for each story.
Proposing a schedule for the current
release.
Discussing the proposed schedule of the
first release to reach to a final one.

Phase (3):
Iterations to
Release Phase

Breaking down the schedule to a number
of iterations where every iteration takes
one to four weeks.
Selecting the smallest set of most
valuable stories that make sense together
and can be included in an iteration.
Reviewing the functionality of all
iterations.
Selecting the iteration to be
implemented.
Writing the unit tests for the selected
iteration.
Writing the code for the selected
iteration.
Testing and integrating the selected
iteration.
Ensuring that all iterations scheduled are
completed.

Phase (4):
Productionizing
Phase

Ensuring extra testing of the
functionality and performance are done
(system testing, load testing, installation
testing).
Determining new changes needed to be
included in the current release.
Implementing and testing the new
changes.
Documenting the postponed ideas and
suggestions to implement them during
maintenance phase or in next releases.
Delivering the current running release to
the customers.

Phase (5):
Maintenance
Phase

Documenting and analyzing the
circumstances that led to bugs.
Editing programs to fix bugs.
Performing unit, system, and regression
testing of the edited programs.
Documenting and analyzing the causes
of the system crash.
Determining corrective instructions to
prevent the system crash (terminate the
on-line session, reinitialize the system,
recover lost or corrupted databases, fix
network problems, and fix hardware
problems).
Performing additional user training.
Determining enhancement ideas and
requests.
Taking decisions about the enhancement
ideas and requests that must be
implemented in this phase or moved to
the next releases.

Phase (6): The
Death Phase

Ensuring that all predefined stories has
been implemented.
Finalizing all project documentation.
Evaluating the quality of the current
release and the related parts of the
system.
Determining the learned lessons from
the project.
Studying the feasibility of continuing the
running of the release and the system.

During the Planning phase, the customers prioritize
the stories and select the features to be in the first small
release12,20. This phase can be achieved through the fol-
lowing activities:

1.	 Determining the priority order of the stories by the
customers.

2.	 Selecting the features that must be included in the cur-
rent release.

Indian Journal of Science and Technology 5Vol 12 (35) | September 2019 | www.indjst.org

Abed S. Alsahli and Nagy Ramadan Darwish

3.	 Negotiating the features of the current release.
4.	 Estimating the effort and time that are required for

each story.
5.	 Proposing a schedule for the current release.
6.	 Discussing the proposed schedule of the first release to

reach to a final one.

Iterations to Release phase indicates that several itera-
tions of the software development are included before
reaching the first release. The schedule is broken down
to a number of iterations that will each take one to four
weeks to be achieved19. XP promotes the concept of “small
releases”4. This phase can be achieved through the follow-
ing activities:

1.	 Breaking down the schedule to a number of iterations
where every iteration takes one to four weeks.

2.	 Selecting the smallest set of most valuable stories that
make sense together and can be included in iteration.

3.	 Reviewing the functionality of all iterations.
4.	 Selecting the iteration to be implemented.
5.	 Writing the unit tests for the selected iteration.
6.	 Writing the code for the selected iteration.
7.	 Testing and integrating the selected iteration.
8.	 Ensuring that all iterations scheduled are completed.

During product ionizing phase, there are more testing
and checking of the functionality and performance of the
system. This phase can be achieved through the following
activities:

1.	 Ensuring extra testing of the functionality and per-
formance are done (system testing, load testing,
installation testing).

2.	 Determining new changes needed to be included in
the current release.

3.	 Implementing and testing the new changes.
4.	 Documenting the postponed ideas and suggestions to

implement them during maintenance phase or in next
releases.

5.	 Delivering the current running release to the custom-
ers.

The Maintenance phase includes the efforts of cus-
tomer support. Development stays in this phase until the
system satisfies all customers’ requirements21. This phase
can be achieved through the following activities:

1.	 Documenting and analyzing the circumstances that
led to bugs.

2.	 Editing programs to fix bugs.
3.	 Performing unit, system, and regression testing of the

edited programs.
4.	 Documenting and analyzing the causes of the system

crash.
5.	 Determining corrective instructions to prevent the

system crash (terminate the on-line session, reinitial-
ize the system, recover lost or corrupted databases, fix
network problems, and fix hardware problems).

6.	 Performing additional user training.
7.	 Determining enhancement ideas and requests.
8.	 Taking decisions about the enhancement ideas and

requests that must be implemented in this phase or
moved to the next releases.

During the Death phase, the software development
process has been finished and there is no change to archi-
tecture, design or code will be made. Death may occur
if the system is not delivering the desired outcomes, or
if it becomes non-feasible for further development. This
phase can be achieved through the following activities:

1.	 Ensuring that all predefined stories has been imple-
mented.

2.	 Finalizing all project documentation.
3.	 Evaluating the quality of the current release and the

related parts of the system.
4.	 Determining the learned lessons from the project.
5.	 Studying the feasibility of continuing the running of

the release and the system.

2.3 Methods of Project Tracing in Agile
Projects
There are many attempts, studies, and researches con-
ducted in the domain of tracing the progress of agile
software projects, especially XP approach.

In18, the researchers consider an optimal control
model of extreme programming where user and devel-
oper efforts (the control variables) are optimally chosen
during the development period to maximize net system
value (system value minus user and developer effort). The
researchers incorporate both demand side (user value)
and supply side (developer and user effort) consider-
ations in software development.

Indian Journal of Science and TechnologyVol 12 (35) | September 2019 | www.indjst.org 6

A Proposed Approach for Tracing the Progress of XP Projects

In22, the researcher presents an approach of evaluating
the degree to which various XP practices are implemented.
For each XP practice, the researcher adapts Goal Quality
Metric (GQM) method to elaborate its goal, questions,
and metrics. The calculation of the elaborated metrics
provides an efficient indicator regarding the degree of the
implementation of XP practices. This approach doesn’t
focus on XP life cycle phases and activities.

In23, the researchers present an improved version of
XP to be applied to large scale projects with hundreds
of software developers. The basic idea was to apply the
“hierarchical approach”, as a management principle of
reorganizing companies, to organize XP project. The
researchers discuss how the elements of the hierarchical
approach can improve XP and how to scale up XP to very
large projects.

In24, the researchers investigate how teams adopt
and use agile practices to help in moving to agile. They
identified two methods for adopting agile in an organiza-
tion, the big bang and gradual adoption. The researchers
studied teams which adopted some or all agile practices.
These teams committed to continuous assessment and
improvement of their ways of working. The researchers
concluded that teams prefer adapting agile-based, team-
oriented practices suited to their particular needs over
technical practices and defined methodologies.

In25, the researchers present the effect of applying a dis-
ciplined project management method “PRINCE2” on the
flexibility and agility of agile methods. So, the researchers
resort to the findings of a real life project, where a team
of eleven developers was able to deliver high quality soft-
ware within budget and time limitations.

In26, the researchers present a proposed method to
estimate the optimal size, effort, and cost of XP projects.
The researchers utilize the data of completed real projects.
A tool is developed which takes the finished project as
input and produce the output of the size, effort and cost
of the project, which is more transparent and trustworthy
to the client.

In27, the researchers focused on team productivity in
XP projects and provide a productivity model dedicated
to this approach. The proposed model is developed based
on the most significant features affecting team productiv-
ity. This model evaluated and gained enough acceptance.
The researchers also show the most effective XP practices
that increase team productivity in XP projects.

In28, the researchers present that the adoption of the
human-centered methodology “Design Thinking” (DT)

leads to creativity and innovation. The researchers inte-
grate DT practices into XP approach to improve the
quality of software products for the end-users and enable
businesses to achieve creativity and innovation. The pro-
posed integrated framework presents the various DT
practices (empathy, define, persona, DT user stories) that
were adopted into XP phases.

In29, the researchers introduce a proposed effort esti-
mation model for agile software projects. The proposed
model is divided into three parts; the first part is dedi-
cated to estimating the project velocity, the second part
dedicated to estimating the story size, and the third part
is dedicated to calculating the contingency allowance
using COCOMO II factors. The results evaluated via
Magnitude of Relative Error (MRE) and Prediction Level
(PRED) metrics. The results showed that the accuracy of
the proposed model is superior to agile story point model.
This study focused only on one activity in agile life cycle
phases.

Most of the previous attempts in the domain of trac-
ing the progress of XP projects are not enough because
they don’t introduce a comprehensive guide that includes
all the phases and activities of achieving XP project.
Therefore, this study tries to solve this problem by intro-
ducing a proposed approach that can be used to trace the
progress of XP projects.

3. The Proposed Approach
Depending on a combination of simple statistical tech-
niques and the phases and activities of XP projects, the
study introduces a proposed approach that can be used to
trace the progress of XP projects. The proposed approach
depends on the following main steps:

1.	 Performing the project phase.
2.	 Evaluating the actual achievement of the project phase.
3.	 Comparing the actual achievement of the phase with

the accepted level.

3.1 Performing the Project Phase
This step means that XP team members perform the cur-
rent project phase using the predefined activities that
were listed in Table 1. XP team members review the steps
required for each phase. One of the team members must
ensure these steps are clear to all the team members. In
addition, she/he must trace the progress of the project to

Indian Journal of Science and Technology 7Vol 12 (35) | September 2019 | www.indjst.org

Abed S. Alsahli and Nagy Ramadan Darwish

help in redirecting the team to the right way of perfor-
mance.

3.2 Step (2): Evaluating the Actual
Achievement of the Project Phase
This step means that XP team members evaluate the
actual achievement of the project phase. This phase
depends on two statistical techniques which are the rat-
ing scale and the average. The activities of each phase are
organized in the form of a checklist with 5-rating scale
which expresses the level of actual achievement of each
step. The 5-rating scale includes the possible responses:
“Very Good”, “Good”, “Neutral”, “Poor”, and “Very Poor”
which corresponding to 5,4,3,2, and 1 respectively. The
usage of the rating scale is an attempt to convert the quali-
tative answers to quantitative values.

Table 2 illustrates a representation of the Exploration
Phase using the rating scale with some actual answers.
The actual achievement (AC) of each phase can be mea-
sured by calculating the average of the activities’ answers
as shown in equation 130.

SAC
N

=
					 (1)

From Equation 1, S represents the sum of quantita-
tive answers and N represents the number of activities
(answers). Upon the answers in Table 2:

N = 6
S = 4 + 5 + 3 + 4 + 3 + 1 = 20
AC= S/N= 20/6 = 3.33 out of 5
The actual achievement of the Exploration Phase =

3.33 out of 5 = 66.6 %

3.3 Comparing the Actual Achievement of
the Phase with the Accepted Level
This step means that XP team members compare the actual
achievement of the phase (AC) with the accepted level
(AL). The accepted level of achievement is determined by
the software organization and XP team members prior to
starting of the work on the projects. Sometimes this level
determined differently depending on the domain of the
project. The comparison has two cases:

•	 If AC < AL , then take corrective actions to cor-
rect mistakes in the performance of the phase
and perform step 2 to reevaluating the updated
achievement of the current phase

•	 Else (the actual achievement is greater than or
equal to the accepted level) move to the next
phase and perform step 1

Upon the accepted level of achievement is 80% and
the results of the previous calculations, the researcher
found that:

Table 2. The exploration phase and rating scale

Activities Very
Good (5)

Good
(4)

Neutral
(3)

Poor
(2)

Very
Poor (1)

Ensuring that a preliminary
background of the project is
obtained (motivation, assumptions,
constraints, addressed technology,
acceptance criteria).

√

Clarifying the purpose of the story
cards as a tool for collecting the
requirements.

√

Clarifying the standards of writing
the story cards (consistent, clear,
testable, and integrated).

√

Writing the story cards by
customers.

√

Ensuring that developers
understand all story cards.

√

Analyzing and validating the story
cards.

√

Indian Journal of Science and TechnologyVol 12 (35) | September 2019 | www.indjst.org 8

A Proposed Approach for Tracing the Progress of XP Projects

•	 The actual achievement of the Exploration Phase
= 3.33 out of 5 = 66.6 %

•	 The accepted level of achievement is 80%
•	 The actual achievement is less than the accepted

level. Therefore, take corrective actions to cor-
rect mistakes in the performance of the phase.
Then, perform step 2 to reevaluating the updated
achievement of the current phase

4. Applying the Proposed
Approach and a Discussion
The proposed approach was applied on two XP projects.
The first project was in the domain of higher educational
institutions. The second project was in the domain of con-
struction.

4.1 Project (1)
The first project was a graduation project in a higher edu-
cational institute. The basic data about the project are
summarized in Table 3. The results of achievement and
tracing this project can be summarized in Table 4. The
column “Deviation” is the difference between the actual
achievement and the accepted level of achievement. The
negative values present a shortage in performance while
the positive values present a good performance. Figure 3
illustrates a graphical representation of the actual achieve-
ment for all phases in project (1).

Figure 3. The actual achievements of project (1).

4.2 Project (2)
The second project was a software application in the
construction domain. The basic data about the project
are summarized in Table 5.The results of achievement

and tracing this project can be summarized in Table 6.
Figure 4 illustrates a graphical representation of the actual
achievement for all phases in project (2).

Table 3. The basic data of project (1)

Data Item Description
Scope To develop a software application to

manage the training department in AAI
institute.

Duration 7 months
(3 months in the first term and 4 months in
the second term)

Cost There is no funding for this project because
it was a graduation project.

Team size 5 students
Accepted
level of
achievement
for each phase

70 %

Number of
iterations

4 iterations
each one was one month duration

Table 4. The results of achievement of project (1)

Phase Actual
Achievement

Deviation
=(Actual-
Accepted)

Phase (1): Exploration 63% -7%
Phase (2): Planning 70% 0%
Phase (3): Iterations to
Release
Iteration (1) 55% -15%
Iteration (2) 70% 0%
Iteration (3) 72% +2%
Iteration (4) 75% +5%
The average of phase (3) 68% -2%
Phase (4): Production 70% 0%
Phase (5): Maintenance 60% -10%
Phase (6): Death 60% -10%

4.3 Discussion
The actual achievement of the phases of project (1)
increased after the first phase because of the knowledge
gained by the team members. In the same project, the
actual achievement of last two phases was less than the
accepted level. Because of the main focus of the team
members was low after phase (3) which is the main phase
of implementation. The results agree with the nature of the

Indian Journal of Science and Technology 9Vol 12 (35) | September 2019 | www.indjst.org

Abed S. Alsahli and Nagy Ramadan Darwish

graduation projects. The actual achievement of the phases
of project (2) increased after the first phase and contin-
ued in the same trend. Generally, the actual achievement
of the phases related to project (2) is significantly higher
than the values of project (1) as shown in Figure 5.

Table 5. The basic data of project (2)

Data Item Description
Scope To develop a software application to

manage the procurement department
in XYZ construction company.

Duration 6 months
Cost 22000 $
Team size 8 (6 Professional and 2 Juniors)
Accepted level of
achievement for
each phase

85 %

Number of
iterations

7 iterations
each one was two weeks duration

Table 6. The results of achievement of project (2)

Phase Actual
Achievement

Deviation
=(Actual-
Accepted)

Phase (1): Exploration 80% -5%
Phase (2): Planning 82% -3%
Phase (3): Iterations to
Release
Iteration (1) 85% 0%
Iteration (2) 87% +2%
Iteration (3) 85% 0%
Iteration (4) 90% +5%
Iteration (5) 84% -1%
Iteration (6) 85% 0%
Iteration (7) 90% +5%
The average of phase (3) 86.6% +1.6%
Phase (4): Production 88% +3%
Phase (5): Maintenance 95% +10%
Phase (6): Death 92% +7%

The software organizations or XP teams can adopt the
proposed approach for tracing the progress of the projects
and revealing any weaknesses or problems to solve them
at a suitable time. Therefore, the proposed approach can
be used to identify the performance gap which is the dif-

ference between the actual achievement and the accepted
level of achievement. Consequently, the team members
can highlight the factors that lead to this gap31.When the
team members become more familiar with the proposed
approach, the adoption will be more useful. The accu-
mulated experience of the team members in applying XP
practices and activities enhance their maturity across the
time.

Figure 4. The actual achievements of project (2).

Figure 5. Comparison between project (1) and project (2).

5. Conclusion
Tracing the progress of software projects is one of the most
crucial success factors of these projects. This study aimed to
utilize the XP life cycle phases and activities and simple sta-
tistical techniques to propose an approach for tracing the
progress of XP software projects. The proposed approach
starts by performing the current project phase using the
predefined activities then evaluating the actual achieve-
ment of the current phase. Then, comparing the actual
achievement of the phase with the accepted level.

Indian Journal of Science and TechnologyVol 12 (35) | September 2019 | www.indjst.org 10

A Proposed Approach for Tracing the Progress of XP Projects

Software organizations can use the proposed approach
to track, evaluate, control, and enhance the performance
of XP software projects to increase the success rate of
software projects. In addition, the proposed approach can
serve as a base for building a software tool to trace the
progress of agile software projects.

6. Future Work
In the domain of the progress of XP projects and trac-
ing implementation of its phases and activities, there are
many issues that can be targeted in the future:

•	 Utilizing the proposed approach for building a
software tool to trace the progress of agile soft-
ware projects.

•	 Expanding the work to include other agile meth-
ods such as Scrum.

•	 Extracting the metrics that can be used for mea-
suring the performance of each phase in XP
projects.

•	 Expanding the work to include human factors
related to XP team that have the critical effect on
the success of XP projects.

7. References
1.	 Yang Y, Bosheng Z. Evaluating Extreme Programming

Effect through System Dynamics Modeling. Proceedings
of International Conference on Computational Intelligence
and Software Engineering (CiSE). 2009; 1–4. https://doi.
org/10.1109/CISE.2009.5365556.

2.	 Flora H, Chande S. A Systematic Study on Agile Software
Development Methodologies and Practices. Int. j. comput.
sci. inf. technol. 2014; 5(3): 3626–3637.

3.	 Cohen D, Lindvall M, Costa P. An Introduction to Agile
Methods. Advances in computers. 2004; 62: 20–22. https://
doi.org/10.1016/S0065-2458(03)62001-2.

4.	 Agile Software Construction [internet]. https://www.
springer.com/gp/book/9781852339449. Date accessed:
2006.

5.	 Best Practices for Implementing Agile Methods: A Guide
for Department of Defence Software Developers [inter-
net]. http://www.businessofgovernment.org/report/
best-practices-implementing-agile-methods-guide-depart-
ment-defense-software-developers. Date accessed: 2008.

6.	 Scaling Software Agility: Best Practices for Large
Enterprises [internet]. https://www.amazon.com/Scaling-
Software-Agility-Practices-Enterprises/dp/0321458192.
Date accessed: 08/03/2007.

7.	 Extreme Programming Explained: Embrace Change.
https : / /www.amazon. in/Extreme-Programming-
Explained-Embrace-Change/dp/0321278658. Date
accessed: 16/11/2004.

8.	 Nortier B, Von Leipzig K, Schutte C. The Development
of a Software Development Framework by Combining
Traditional & Agile Methods to Address Modern
Challenges. Proceedings of ISEM 2011. 2011; 1–18.

9.	 Extreme Programming in Perl [internet]. https://www.
extremeperl.org/f/extremeperl.pdf. Date accessed: 2004.

10.	 Sharp H, Robinson H. Collaboration and co-ordina-
tion in mature eXtreme programming teams. INT J
HUM-COMPUT ST. 2008; 66(7): 506–518. https://doi.
org/10.1016/j.ijhcs.2007.10.004.

11.	 Karlheinz K, Sabine Z. Just Enough Structure at the Edge of
Chaos: Agile Information System Development in Practice.
Proceedings of 9th International Conference: XP2008. 2008;
137–146. https://doi.org/10.1007/978-3-540-68255-4_14.

12.	 Wallace N, Bailey P, Ashworth N. Managing XP with
Multiple or Remote Customers. Proceedings of 3rdInter-
national Conference on eXtreme Programming and Agile
Processes in Software Engineering: XP2002. 2002; 134–137.

13.	 Williams L, Kessler R, Cunningham W, Jeffries R.
Strengthening the Case for Pair Programming. IEEE Software.
2000; 17: 19–25. https://doi.org/10.1109/52.854064.

14.	 Angioni M, Carboni D, Pinna S, Sanna R, Serra N, Soro
A. Integrating XP Project Management in Development
Environments. J SYST ARCHITECT. 2006; 52(11): 619–
626. https://doi.org/10.1016/j.sysarc.2006.06.006.

15.	 Agile Software Development: Evaluating the Methods for
Your Organization [internet]. https://www.mobt3ath.com/
uplode/book/book-48346.pdf. Date accessed: 2005.

16.	 Concas G, DiFrancesco M, Marchesi M, Quaresima R,
Pinna S. An Agile Development Process and Its Assessment
Using Quantitative Object-Oriented Metrics. Proceedings
of 9thInternational Conference: XP2008. 2008; 83–93.
https://doi.org/10.1007/978-3-540-68255-4_9.

17.	 Rittenbruch M, McEwan G, Ward N, Mansfield T,
Bartenstein D. Extreme Participation: Moving Extreme
Programming Towards Participatory Design. Proceedings
of the Participatory Design Conference.2002; 29–41.

18.	 KumarS, Susarla A, Mookerjee V. Coordinating
User-Developer Efforts in Extreme Programming: A
Control-Theoretic Approach. Proceedings of the 15thAn-
nual Workshop on Information Technologies and
Systems (WITS). 2005; 189–194. https://doi.org/10.2139/
ssrn.885435.

19.	 Agile Software Development Methods: Review
and Analysis [internet]. https://arxiv.org/ftp/arxiv/
papers/1709/1709.08439.pdf. Date accessed: 2002.

20.	 Hildenbrand T, Geisser M, Kude T, Bruch D, Acker
T. Agile Methodologies for Distributed Collaborative

Indian Journal of Science and Technology 11Vol 12 (35) | September 2019 | www.indjst.org

Abed S. Alsahli and Nagy Ramadan Darwish

Development of Enterprise Applications. Proceedings of
the International Conference on Complex, Intelligent and
Software Intensive Systems. 2008; 540–545. https://doi.
org/10.1109/CISIS.2008.105.

21.	 Usha K, Poonguzhali N, Kavitha E. A Quantitative Approach
for Evaluating the Effectiveness of Refactoring in Software
Development Process. Proceedings of the International
Conference on Methods and Models in Computer Science.
2009; 1–7. https://doi.org/10.1109/ICM2CS.2009.5397935.

22.	 Darwish N. Towards an Approach for Evaluating the
Implementation of Extreme Programming Practices.
International Journal of Intelligent Computing and
Information Sciences (IJICIS). 2013; 13(3): 55–67.

23.	 Rumpe B, Scholz P. A Manager’s View on Large Scale XP
Projects. Proceedings of 3rdInternational Conference on
Extreme Programming and Flexible Processes in Software
Engineering: XP2002. 2002; 158–159.

24.	 Brendan J, James N, Craig A. Agile Practices in Practice:
Towards a Theory of Agile Adoption and Process
Evolution. Proceedings of 20thInternational Conference
on Agile Processes in Software Engineering and
Extreme Programming: XP2019. 2019; 3–18. https://doi.
org/10.1007/978-3-030-19034-7_1.

25.	 Alnoukari M, Alzoabi Z, Elshiek A. Introducing Discipline
to XP: Applying PRINCE2 on XP Projects. Proceedings

of IADIS Multi Conference on Computer Science and
Information Systems (MCCMIS), Portugal, 2009; 51–58.
https://doi.org/10.1109/ICTTA.2008.4530347.

26.	 Karunakaran E, Sreenath N. A Method to Effort Estimation
for XP Projects in Clients Perspective. Int. J. Appl. Eng.
2015; 10(7): 18529–18550.

27.	 Tavakoli F, Gandomani T. A Novel Team Productivity
Model for XP Teams. Journal of Cases on Information
Technology. 2018; 20(4): 93–109. https://doi.org/10.4018/
JCIT.2018100106.

28.	 Sohaib O, Solanki H, Dhaliwa N, Hussain W, Asif M.
Integrating Design Thinking into eXtreme Programming.
J AMB INTEL HUM COMP. 2019; 10(6): 2485–2492.
https://doi.org/10.1007/s12652-018-0932-y.

29.	 Raslan A, Darwish N, Hefny H. A Proposed Contingency
Model for Effort Estimation of Agile Projects. JOKULL
Journal. 2017; 67(10): 86–95.

30.	 Arithmetic Mean (Average) – GMAT Math Study Guide
[internet]. http://www.platinumgmat.com/gmat_study_
guide/statistics_mean. Date accessed: 2019.

31.	 How Gap Analysis Can Improve Your Project Management
[internet]. https://www.projectmanager.com/blog/gap-
analysis-project-management. Date accessed: 08/01/2019.

