
Determining Frequent Item Sets using Partitioning
Technique for Large Transaction Database

K. Sampath Kini1 and K. Karthik Pai2

1Department of Computer Science and Engineering, NMAMIT, Nitte, Karkala - 574110, Karnataka, India;
sampath@nitte.edu.in

2Department of Information Science and Engineering, NMAMIT, Nitte, Karkala - 574110, Karnataka, India;
karthikpai@nitte.edu.in

Indian Journal of Science and Technology, Vol 12(3), DOI: 10.17485/ijst/2019/v12i3/140766, January 2019
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Abstract
Objectives: Mining of frequent item sets in transactional databases has been in widely use since years. This traditional
technique involves mining of frequent itemsets on the entire set of records present in the transaction database at once.
This has been causing performance issues such as out of memory, large turnaround time for the computation. The aim of
the study is to propose suitable technique to overcome memory issues, reduce overall turnaround time and enable the
determination of frequent item sets based on specific season or a time period. Methods/Analysis: Frequent item sets
mining can be used for decision making in large number of real-life applications. With the growth in amount of data, quite
a number of FIM (frequent itemset mining) approaches were proposed to meet the requirements of scalability. However,
some existing approaches have met this requirement to some extent; they require high consumption of CPU and memory.
In this study, we present another approach, named FIMUPT (frequent itemset mining using partitioning technique). The
proposed technique eliminates processing of all records at once; instead it processes the records in small chunks in mul-
tiple increments. This technique makes various partitions of relevant size from large transaction database. It processes
the partitions one after another instead of large transaction database. This scheme also has a provision to pass support
threshold values for various partitions. Every partition of transaction database can be mapped to a season or a time period
as needed. Findings: We observed that the proposed techniques perform very well in terms of computational time and
memory usage. Size of the partition is decided based on the total number of transactions present, size of main memory and
time period applicable for the entire transaction database. It consumes less memory since partition size is less compared
entire transaction database. As the single partition is processed at once in the memory, it eliminates large memory needs of
traditional technique [reference Wikipedia]. We have used sample dataset from the data mining library source spfm which
is an open source. The size of the data sets we have used are 50MB and 100MB. Algorithms such as Apriori failed to run on
100MB datasets throwing out of memory error. Applications: However, with the partitioned approach successful execu-
tions were observed. Our test environment produced 15 partitions of entire transaction database. It concludes that with
less memory size, we can process larger number of transaction records to perform data mining tasks. When compared with
the existing approaches, experimental results tell that FIMUPT gives a performance gain of 19% on average. This technique
eliminates out of memory issues seen in Apriori algorithm and its variant algorithm.

Keywords: Data Mining, Frequent Itemset, Partitioning, and Performance, Transaction Database

1.  Introduction
FIM (Frequent Itemset Mining), as one of the most key
research topics in data mining, is an approach to retrieve
frequent items in datasets, that is widely used in the vari-
ous fields1,2. This research paper provides new approach

that can be used for determining frequent item sets from
large transaction databases. Traditional technique is to
scan through all records of database at once and these
records will be kept in the main memory for process-
ing. This approach causes problem when main memory
cannot accommodate for the entire transaction database.

*Author for correspondence

Determining Frequent Item Sets using Partitioning Technique for Large Transaction Database

Indian Journal of Science and TechnologyVol 12 (3) | January 2019 | www.indjst.org2

An alternative to candidate generate-and-test based min-
ing is pattern-growth mining, which avoids generating a
large number of candidates3 does exist. However, it still has
performance issues with large data sets and does not have
provision for time period based information retrieval.
This new approach splits the large transaction database
into multiple partitions and carries out frequent item set
extraction algorithm on these partitions. Partitioning
approach would help to reduce main memoryusage when
frequent item sets methods are invoked by data mining
algorithms. This approach also enables frequent item
set retrieval on a time period basis. Experiments were
conducted on a dataset extracted from large transaction
database.

Since algorithm such as Apriori4, requires that the
transaction database to be residing in the memory, the
objective of this paper is implemented in two stages.
1) Partitioning of large transaction database based on
number of records, size of main memory and time period.
2) Perform frequent item set generation on each of these
partitions. Analysis of computational time and memory
usage is carried out for this approach.

2.  Methodology
In this section, description about methodology applied
and algorithms used are captured. Methodology for
determining frequent item set involves various underly-
ing sub tasks. These tasks include making sub partitions
of large transaction database, iterating through all parti-
tions created one after another, perform frequent item
set retrieval on each partition and finally combine the
results obtained from processing each partition. The
steps followed in our approach are depicted in the flow
(Figure 1).

Figure 1.  FIMUPT - partitioning based approach for
frequent items set retrieval.

Algorithm: FIMUPT
Algorithm 1: P-DB

This algorithm is used for creating Q number of parti-
tions from the entire transaction database.
Input: D, a transactional database; m, size of main mem-
ory; r, size of the record;
Output: P, set of partitions; P contains partition details in
terms of start and end transaction date, which represents
time period of a given partition
N	 ← |D| /* no: records in entire transaction db */
S	 ← N * r /* total size of the transaction db */
Q	 ← �S/m /* Q represents total number of partitions */
X	 ← �m/r /* no of records in partition */
For i = 1 to Q
sdate	 ← �minimum of transaction date among X no of

records in ith partition
edate	 ← �maximum of transaction date among X no of

records in ith partition
/* sdate and edate represents both start and end date of
the corresponding partition */
add {sdate,edate} to P
Return P;

Algorithm 2: FI-PTDB

This algorithm is used for invoking frequent item set
mining algorithm on each partition in iterations. The
function find Fi can be existing algorithms such as
Apriori, FP-Growth5.

Input: D, a transactional database; P, set of partitions;
ttable, a threshold table;
Output: PIs, a set of complete frequent items sets
For each partition Pq Є P do
Lq	 ←findFI(Pq, ttable[Pq]);
PIs	 ← PIs ∪ Lq;
Return PIs;

Frequent Item Set Retrieval based on Specific Time
Period or a Season

Assuming a scenario of large supermarket tracks sales
data for each item: each item is assigned a unique
number. The retail market has a transaction database
where every transaction consists of set of itemsets
that were purchased and a timestamp to capture the
transaction date.

K. Sampath Kini and K. Karthik Pai

Indian Journal of Science and Technology 3Vol 12 (3) | January 2019 | www.indjst.org

Let us assume that transactions consist of itemsets as
below:

Itemsets Transaction Date Season
{1,2,3,4} 12/Jun/2018 Rainy
{1,2,4,6} 13/Jun/2108 Rainy
{1,2,5} 13/Jul/2108 Rainy
{1,3,4} 14/Sep/2018 Winter
{2,3} 14/Sep/2018 Winter
{3,4} 2/Mar/2018 Summer
{1,4,7} 4/Apr/2018 Summer

Let us assume item number 1 represents item name
umbrellaand item number 2 represents item name Rain
Coat (used mainly during rainy season). We would apply
regular Apriori technique to retrieve the frequent item
sets of the above database. Let us assume that frequent
item set is an item set if it is existed in at least 3 transac-
tions: the value 3 here, is the support threshold. We would
see the result as below.

Itemno Min.Support

{1} 5
{2} 4
{3} 4
{4} 5

The itemsets{1},{2},{3},{4} with size 1 have a support
threshold of minimum 3. With this all items are deter-
mined as frequent from entire database transactions.
Current algorithms do not have provision to know infor-
mation about frequent itemsets during specific season e.g.
rainy season.

With the partitioning technique based on time period
explained in the algorithm: FI-PTDB above, it is possible
retrieve frequent itemsets during specific time period or
a season. So when we apply Apriori using partitioning. ie
find FI(3,Rainy) for the period Rainy and threshold value
as 3, we would see the below result.

Item Min.Support
{1} 3
{2} 3

From the above result, item number 1 and item number
2 are determined as frequent itemset during rainy sea-
son. This way partitioning technique enables information

extraction during specific time period, mainly useful for
retail enterprises.

3.  Results of Experiments
Experiments were conducted on dataset obtained from
the source spmf - an open source data mining library6.
We ran the algorithms on datasets by both partitioning
and without partitioning approach. Size of the dataset was
around 50MB with 5898255 transactions. Recorded com-
putational time for all the runs is shown via graph (Figure
1). Memory usage for all the runs is shown via graph
(Figure 2 and 3). Comparison of features of FIMUPT with
other existing algorithms is shown in Table 1. Experiments
were conducted on following system environment.

•	 Processor type : Intel(R) Pentium(R) CPU N3540
@2.16GHZ

•	 RAM size : 4GB
•	 System : windows 8.1, 64 bit, x-64 based processor
•	 Java/JVM: 1.8

Figure 2.  Turnaround time determined across different
approaches of frequent item retrieval.

Figure 3.  Memory usage determined across different
approaches of frequent item retrieval.

Determining Frequent Item Sets using Partitioning Technique for Large Transaction Database

Indian Journal of Science and TechnologyVol 12 (3) | January 2019 | www.indjst.org4

4.  Conclusion
We have come to following conclusions from the experi-
mental findings.
•	 Most of the existing techniques on frequent itemsets

retrieval will get into performance issues such as out of
memory or large computational time on large datasets.

•	 The partitioning based technique discussed in this
paper overcomes resource consumption problems.

•	 The partitioning based technique also enables season
or time period based frequent item sets retrieval.

•	 This technique cannot be applied if the transaction
record does not have transaction date captured for
each transaction.

5.  References
1.	 Ishita R, Rathod A. Frequent itemset mining in data mining:

A survey. International Journal of Computer Applications.
2016; 139(9):15-8.

2.	 Abbar MAJ, Deekshatulu BL, Chandra P. A novel algo-
rithm for utility-frequent itemset mining in market basket

analysis. Proceedings of the 2015 Innovations in Bio-
inspired Computing and Applications. 2015; p. 337-45.

3.	 Pei J, Han J, Wang W. Constraint-based sequential pattern
mining: The pattern-growth methods. Journal of Intelligent
Information Systems. 2007; 28(2):133-60. https://doi.
org/10.1007/s10844-006-0006-z

4.	 Apriori Algorithm. Available from: https://en.wikipedia.
org/wiki/Apriori_algorithm. Date accessed: 10/10/2018.

5.	 Han J, Pei J, Yin Y, Mao R. Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern
Tree Approach. Data Mining and Knowledge
Discovery. 2004; 8(1):53-87. https://doi.org/10.1023/
B:DAMI.0000005258.31418.83	

6.	 An open source data mining library. Available from:
http://www.philippe-fournier-viger.com/spmf/index.
php?link=datasets.php. Date accessed: 08/01/2019.	

Table 1. Comparison of features of FIMUPT with other existing algorithms

Comparison of features of FIMUPT with other existing algorithms

Algorithm/features Computational time Memory Usage Scalability Mining based on time period

Apriori High High low No

Apriori -TID High Out of memory low No

FP-Growth High low Medium No

FIMUPT Medium optimal High Yes

