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Abstract
Objectives: To examine the performance of several regression methods comprising of Ordinary Least Square (OLS), 
and certain robust methods including; M-regression, Least Median of Squared (LMS), Least Trimmed Square (LTS), MM-
estimation and S-estimation, under fluctuating levels of collinearity, using the criterion, Total Absolute Deviation (TAB) 
and Total Mean Square Error (TMSE) with some graphical tools. Methods/Statistical Analysis: Robust Regression 
methods insure good performance even in case the fundamental assumption of normality is not satisfied. The presence of 
multicollinearity affects the results of robust regression methods and marks them unsatisfactory. A quantitative evaluation 
of these techniques is provided by using the criterion, TAB and TMSE. Results are summarised by using box plot of absolute 
bias, along with the graphs of TAB, and TMSE. Findings: The results show that for minor levels of collinearity the effect 
is low and similar, but at greater levels of collinearity the effect is high and performance wise all the methods give quite 
incompatible results. It is also illustrated that greater magnitude of collinearity along with higher percentages of outliers 
ranks the underlying methods quite differently, resulting in MM-estimation method to be the most unpleasant. Conclusion: 
While applying any statistical method it is necessary to consider all the assumption underlying that method as well as 
every aspect of our data to avoid misleading results. It is illustrated that MM-estimation method although a best candidate 
for higher percentages of outliers alone, become the most unpleasant, by a simultaneous interruption of high level of 
collinearity, hence robust ridge techniques need to be adopted.

Keywords: Multicollinearity, Ordinary Least Squares, Outliers, Robust Regression Methods

1. Introduction
Regression analysis deals to model the relationship 
between variables approximated by some appropriate 
mathematical Eq. In case the regression model satisfies 
certain basic assumptions, the OLS estimators happen to 
be best linear unbiased estimates1,2. The estimate is too 
much sensitive to violation of these assumptions and 
even a single contaminated observation can result in the 
OLS estimator to be unreliable. Researchers have been 
attempting for alternative estimating procedures, known 
as robust regression methods which are robust to outliers. 

These methods down weight outliers; preserve good effi-
ciency, in case normality hold and are resilient to highly 
discrepant values. Most often used robust estimators are 
Huber M-estimation, Least Trimmed Square (LTS) esti-
mator, Least Median Square (LMS) estimator, S-estimator 
by3,4. Besides non-normality multicollinearity in regres-
sion is a condition where two or more predictor variables 
remain linearly related6-8. Exact relationship results in 
matrix (X′X) to be non-invertible9. This is a phenomenon 
where an infinite set of coefficients there are to mini-
mize the totality of squared residuals10. However, usually 
relationships between the predictors are close to exact,  
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decreases reliability of estimates, potentially affecting 
estimation, forecasting and hypothesis testing. Robust 
regression being a good alternative in case of violation 
from normality, but are suspected to lose performance 
when the problem of non-normality is joined by multicol-
linearity concurrently. In this paper efforts are carried out 
to evaluate the performance of various methods (OLS, M, 
LTS, LMS, S, and MM) under various simulation settings, 
specifically investigating the influence of collinearity  
levels on the performance of these methods.

2. Methods to be Compared

2.1 Ordinary Least Squares Method
Least square method is generally used technique to esti-
mate the parameters in the model. In this technique, 
estimates of the parameters are obtained by principle 
which minimizes the totality of squared residuals. In 
case the linear regression model accomplishes the basic 
assumptions, OLS estimators stay best linear unbiased1. 
This method provides an explicit estimate of the true val-
ues from observed data as:

β̂ = ′ ′( )−X X X Y1  (1)

With ( ) ( )β σ −′=
12ˆvar X X

The logic behind frequent use of this method is its 
computational easiness, but unfortunately this method 

depends upon a controlled set of assumptions, now being 
criticized to a greater extent for lacking robustness3.

2.2 M-estimation Method
M-estimation being a common robust regression proce-
dure was primarily introduced by2. This technique in a 
sense is a general form of the least squares substituting 
the quadratic loss function by function ρ .( ) . The func-
tion ρ .( )  is symmetric, continuous having a unique 
minimum at zero4,11. The function ρ .( )  may be chosen 
in such a way that it denotes some weighting scheme of 
the residuals. The set of normal Eqs to be solved is given 
by the system:

β
ψ

=

 −
=  

 

′∑ 1
0

ˆ
n i i

ii

y x
x

s
 (2)

Where ψ e( ) = 
d e

de
ρ ( )

, the score function and W e( )
= 
ψ e

e
( )

, the weight function’s being an estimate of the 

residuals scale. The choice of ψ to be monotone will not 
weight discrepant values as much as the least squares, 
whereas a re-descending ψ function results in a weighting 
scheme that assign the weights in decreasing order up to 
a definite distance (e.g. 3σ) and then declines the weight 
to zero as the remote distance is increased much. Some 
of the proposals for ρ .( )  ψ  and the weight function are 
given in Table 1.

Table 1. ρ, ψ and weight functions of various re-descending estimators

Method Objective function ρρ u( ) ψψ ρρ� �function u′( ) Weight function W(u) = ψψ u
u

( ) Range of u

OLS
u2

2
U 1 u ≤ ∞

LAD
u Sign (u) sign

u
u

( ) u ≤ ∞

Huber
u2

2
u 1 ≤u c

c u. - c2

2
c sign u. ( ) c

u
u c>

Bi-Square c2/6[1−{1−(u/c)2}3] u[1− (r/c)2]2 [1− (u/c)2]2 ≤u c

c2/6 0 0 u c>
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Method Objective function ρρ u( ) ψψ ρρ� �function u′( ) Weight function W(u) = ψψ u
u

( ) Range of u

Andrews c2[1−cos(u/c)] c sin(u/c) sin(u/c)/(u/c) u c≤ π

2 c2 0 0 u c> π
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2.3  Least Median of Squares 
(LMS) Regression 

The LMS regression was suggested by3, using the idea of 
minimization of the median of the squared residuals not 
the sum of the squared residuals. Under this procedure the 
estimates for the model parameters are provided by the Eq:

( )β = 2ˆ  LMS iMinimize mediam e  (3)

LMS regression estimator attaining a high breakdown 
of almost 0.5 is the first Equivariant estimator. Although 
the (LMS) estimator is robust to outliers in y-direction as 
well as in x-space, it has a drawback that the efficiency of 
this methodises quite low as compared to the least squares 
in the instance of Gaussian errors. Due to this deficiency 
LMS estimator has a very little direct use, but is often used 
as an initial estimator for diagnostics purposes or in some 
other robust techniques5. 

2.4 LTS Regression
The LTS regression method is an alternative robust 
regression technique suggested by Rousseeuw3. To elude 
outliers, this procedure minimizes the totality of squared 
residuals after the largest α squared residuals are trimmed. 
The LTS regression estimator is given by:

( )
β

β
=

= ∑


2
1 :

ˆ h
LTS ii i n

mimimize e  (4)

Where e e e
n n n n

2

1

2

2

2( ) ≤ ( ) ≤…≤ ( )
: : :

, are squared 
residuals arranged in order of magnitude for a value of

h
n p

=
+ +( )











1
2

, this method achieves a breakdown 

point, (n/2 - p + 2)/n. A difficulty of the LTS method is 
the action rEquired for sorting the squared residuals in 
its objective function5. Several algorithms suggested in 
literature for this approach are simulated annealing based 
LTS- algorithm developed by14, ‘Feasible Set Algorithm’ 
by12. Another algorithm called FAST-LTS, has been given 
by13, which is too fast than all the existing algorithms. The 
high statistical efficiency and faster rate of convergence 
of the LTS over the LMS make LTS a more appropri-
ate nominee than LMS as an initial step for two-stage 
estimators such as MM-estimator and the generalized 
M-estimators13,15,16. In17 an L-1 penalty is imposed on LTS 
estimator a spars estimator has been developed.

2.5 S-Estimator (S-Regression)
The S-estimator an alternative estimator possessing a 
high breakdown is suggested3. The S-estimator minimizes 
an M-estimate of the residuals scale. This method esti-
mates the true values as:

( ) ( ) ( )( )
β

β β β β= ……


1 2 S , ,ŝ nmimimize e e e  (5)
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Where the dispersion of the residuals  
S [ e e en1 2β β β( ) ( ) …………… ( ), , , ], is determining  
by solution to the Eq:

β
ρ

=

 −
=  − 

′


∑ 1

1 ˆ
p i i
i

y x
K

n p s
 (6)

Where K is Equal to Eφ ρ[ ],  with φ stances standard 
normal distribution and ρ  is a continuously differen-
tiable, and symmetric, behaving to strictly increase over 

0,c[ ]  and remain constant over 0,c[ ] . The final estimate 
of the scale for S-estimate of regression is given by:

( ) ( ) ( )( )σ β β β= ……1 2
ˆ ˆ,  , ,  ˆˆ  nS e e e  (7)

A dominant choice of ρ  is:
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 (8)

The S-estimator may possess a high breakdown value 
of 50%, if K in Eq (6) and ρ  in Eq (8) satisfies:

K
cρ ( )
=

1
2

S-estimator possesses the properties of high break-
down and asymptotic normality. The compromise 
between breakdown point and efficiency is determined 
by choice of the tuning constants and K. In18 it is con-
cluded that the S-estimator under Gaussian errors can 
achieve an efficiency of 0.33 with a breakdown of 50% has 
suggested fast-S, an approximating algorithm for obtain-
ing S-estimator of regression19.

2.6 MM-Estimation
The MM-estimation recommended in4, a special brand of 
M-estimation is a multistage estimator joining the high 
breakdown from an initial robust estimator and high 
efficiency from another, bringing about high breakdown 
and good efficiency from another robust estimator. The 
calculation of MM-estimator contain, considering a high 
breakdown point initial estimator, compute an M-estimate 
of the residuals scale and obtaining an M-estimate of the 
true values on the basis of the M-estimate of residuals 
scale . The algorithm for MM-estimation procedure may 
be given by;

1. Choose an initial high breakdown estimate β̂initial ,  
consistent but not essentially efficient and calculate 
residuals ( )β̂i initialr  based on the initial estimate.

2. Calculate the M-estimate of residuals scale Sm  using 
residuals ( )β̂i initialr , where Sm  may be created as a 
solution to:

β
ρ

′

=

 −
=  −  

∑ 01

1 ˆ
n i i initial

ci
mm

y x
K

n p s
 (9)

3. The third step use an M-estimate of coefficient β̂initial  
fromstep first and estimate of residuals scale Sm  from 
the second step, gives β̂ final  as a solution to:

β
ψ

=

 −
=  

 
= = …

∑ 1
0

1,  2... 1,  2

ˆt
n i i initial

iji
m

y x
x

S
i nandj p  (10)

And the final scale estimate of the residuals is given 
by solution to Eq:

β
ρ

=

 −
  =
 −  

∑ 01

ˆ1 0.5
t

n i i final
ci

mm

y x
n p S

 (11)

For a particular value of c0 ,  the tuning constant.
The MM-estimator enjoys high efficiency, a high 

breakdown value of (50%), unluckily may be influenced 
by the occurrence of high leverage observations20-22. In23 a 
robust version of ridge estimator referred to as Weighted 
Ridge MM-estimator (WRMM) is offered by means 
of weighted ridge and the MM-estimation penalized 
MM-estimation called (MM-lasso) by using the L-1 pen-
alty and the mechanism of MM-estimation24.

3. Simulation Studies
To compare the performance of different methods, 
numerous simulation options are examined. A simulation 
structure is implemented to allow on- normality and mul-
ticollinearity together. The particulars of various aspects 
considered in various settings of simulation are:

Methods evaluated: Methods assessed under various 
simulation settings include, OLS, M-estimation, LMS, 
LTS,S and MM.

Sample size: In different simulation settings we have 
considered, the sample size at 50,100, 150 and 200.

Number of predictor variables: for fitting models using 
different multicollinearity levels and fractions of outliers, 
the number of predictors (P) is considered at 2, 4 and 6.

Fractions of outliers: In various settings of simulation, 
particularly focus is on y-outliers. While judging the per-
formance of different methods, numerous fractions of 
outliers; particularly 10%, 20%, 30%, and 40% outliers are 
generated in data sets.
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Figure 1. Left column graph of Ψ function right column graph of weight function for LS, Huber, Bi-Square, and Alarm 
objective functions.
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Figure 2. Scatterplots [(a), (b), (c) & (d)] of predictor variables (X1, X2, X3 & X4) generated through scheme given in Eq (12).

To let different levels of collinearity, the values on pre-
dictors are generated by means of a methodology used 
in25-28. To generate explanatory variables the following 
mechanism is used:

x z zij ij im= −( ) + = … = …

= +

1 1 2 1 2

1

2
1
2ρ ρ , , , .. , , . , i n  j p

and m p
 (12)

zij , is a standard normal variate and ρ  is specified in 
such a way that the correlation coefficient between any 
two predictor variables is maintained at ρ 2 . The scatter-
plot matrices of predictors X1, X2, X3 andX4 generated by 
system in Eq (12) with different values of ρ  are given in 
Figure 1-2 and correlation matrix in Table 2.
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Table 2. Correlation matrix for variables (X1, X2, X3& X4) generated by Eq (12) with different ρρ  values

ρρ 2  = 0.98 ρρ 2  = 0.5

X1 X2 X3 X4 X1 X2 X3 X4

X1 1.000 0.978 0.9824 0.9826 X1 1.0000 0.5057 0.5970 0.6101

X2 0.987 1.000 0.9817 0.9789 X2 0.5057 1.0000 0.5181 0.4575

X3 0.982 0.981 1.0000 0.9779 X3 0.5970 0.5181 1.0000 0.4462

X4 0.982 0.978 0.9779 1.0000 X4 0.6101 0.4575 0.4462 1.0000

Model: In simulation studies the following models are 
used:

Model Y X Xi i i i 1 0 1 1 2 2: = + + +β β β ε  (13)

Model Y X X X Xi i i i i i 2 0 1 1 2 2 3 3 4 4: = + + + + +β β β β β ε

 (14)
Model Y X X X

X X X
i i i i

i i i i

 3 0 1 1 2 2 3 3

4 4 5 5 6 6

: = + + +
+ + + +
β β β β
β β β ε

 (15)
For each model the predictors are generated with 

scheme (12), and all β ’s are used at a constant value one, 
i.e., β0 = β1 = β2 = β3 = β4 = β5 = β6 =1.

To consider different fractions of outliers different 
options for error terms i ’s values, specifically the follow-
ing cases are observed.

Case: I ~  N (0, 1)
Case: II ~  0.9N (0, 1) + 0.1N (10, 1)
Case: III ~  0.8N (0, 1) + 0.2N (10, 1)
Case: IV ~  0.7N (0, 1) + 0.3N (10, 1)
Case: V ~  0.6N (0, 1) + 0.4N (10, 1)
Assessment Measures: To assess the results of meth-

ods understudy, for all simulations of the estimate β̂i = 
( β β β β β……0, 1, 2, 3,

ˆ ˆ ˆ ˆ ˆ  . i i i i ip ), 1≤ i≤ m, with m=1000, the 
two criterions used are:

1. Total Mean Square Error (TMSE): For all replication, 
i.e., m=1000, the TMSE is obtained by the formula:

( )β β−
=
∑ ∑

2ˆ
 

m p

ij iji jTMSE
m

 (16)

2. Total Absolute Bias (TAB):

β β−
=
∑ ∑ ˆ
 

m p

ij iji jTAB
m

 (17)

For error distribution considered in Case I to Case V, 
atn = 50, 100, 150, 200 and P = 2, 4, 6, though the values 
of TMSE vary, increases with an increase in the value of 
P and decreases as the sample size grow. With respect 
to performance for all the methods nearly similar pat-
tern is observed for each value of n(50,100,150,200)
and P (2, 4, 6). It is observed that for lower collinear-
ity levels, the values of TMSE for all techniques are not 
much divergent, but at greater collinearity levels, the 
TMSE values for all the methods are pretty different. 
The graphs of TMSE for (OLS, M,LTS, LMS, MM and S) 
for different collinearity levels and outliers percentages 
for n = 200 are given in Figure 3. Figure 3 reveals that at 
smaller levels of multi-collinearity with increasing per-
centages of outliers causes the (TMSE) to increase with 
little differences but the (TMSE) values at higher levels 
of multi-collinearity increased markedly with wider dif-
ferences and give different ranking of the methods. In 
Figure 4, a graphical analysis for (OLS, M, LMS, LTS,S 
and MM) is given for the second performance measure 
total absolute bias. The results from Figure 4 are con-
sistent with the results in Figure 3. The results over the 
two performance measures, TMSE and TAB for differ-
ent scenarios are given in Table 3 and 4, respectively. In 
Figure 5, a graphical analysis of box plots for various 
situations is also given.
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Table 3. TMSE values for sample size n = 200

Method Total MSE

Rho values 0.5 0.7

Sample 
size

Outlier% P=2 P=4 P=6 P=2 P=4 P=6

OLS 0 0.01562 0.02870 0.04082 0.01818 0.03746 0.05587

10 1.1118 1.2442 1.3742 1.1374 1.3351 1.5324

20 4.1868 4.4176 4.6300 4.2306 4.5759 4.8941

30 9.2401 9.5461 9.8615 9.3016 9.7489 10.2144

40 16.2701 16.5553 16.9323 16.1487 16.7716 17.3143

M 0 0.01653 0.03008 0.04353 0.01924 0.03929 0.05962

10 0.0613 0.0844 0.1063 0.0657 0.0990 0.1321

20 0.3347 0.3949 0.4520 0.3431 0.4260 0.5075

30 8.1188 8.6069 9.0588 8.1979 8.8636 9.4877

40 16.2689 16.5535 16.9287 16.3318 16.7708 17.3127

LMS 0 0.12045 0.22525 0.3346 0.14318 0.28667 0.47401

10 0.1120 0.2110 0.3571 0.1264 0.2794 0.4846

20 0.1089 0.2132 0.4202 0.1278 0.2759 0.5688

30 0.0999 0.2192 0.4984 0.1090 0.2887 0.6857

40 0.1012 0.2434 0.7071 0.1164 0.3144 0.9643

LTS 0 0.13652 0.25097 0.36595 0.16047 0.32987 0.50627

10 0.1222 0.2300 0.3815 0.1404 0.2921 0.5249

20 0.1043 0.2116 0.4275 0.1196 0.2841 0.5763

30 0.0844 0.3051 0.4881 0.0982 0.2874 0.6761

40 0.0632 0.2221 0.6591 0.0731 0.2918 0.9336

MM 0 0.01814 0.0312128 0.04382 0.02120 0.04123 0.06012

10 0.0180 0.0334 0.0474 0.0209 0.0436 0.0646

20 0.0203 0.0357 0.0560 0.0238 0.0465 0.0764

30 0.0238 0.0433 0.0650 0.0276 0.0563 0.0889

40 4.0261 6.8552 9.6346 4.2035 7.6005 11.0224

S 0 0.07066 0.16384 0.29674 0.07865 0.21358 0.40467

10 0.0609 0.1611 0.3162 0.0687 0.2152 0.4327

20 0.0583 0.1770 0.3905 0.0676 0.2322 0.5393

30 0.0592 0.2123 0.5162 0.0706 0.2776 0.6973

40 0.0705 0.2676 0.7710 0.0816 0.3539 1.0465
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Method Total MSE

Rho values 0.9 0.99

Sample 
size

Outlier % P=2 P=4 P=6 P=2 P=4 P=6

OLS 0 0.03398 0.08771 0.13896 0.25705 0.78028 1.27754

10 1.2982 1.8496 2.4015 3.5640 8.9336 14.3019

20 4.5132 5.4750 6.3456 8.4940 17.8580 26.2344

30 9.6865 10.8984 12.1567 15.0544 26.6940 38.7711

40 16.7600 17.9982 19.4186 22.8454 34.8704 48.2549

M 0 0.03602 0.09198 0.14826 0.27271 0.81808 1.36314

10 0.0920 0.1819 0.2736 0.4626 1.3253 2.2104

20 0.3975 0.6026 0.8116 1.1637 3.0351 4.9856

30 8.6926 10.2927 11.8542 15.5564 29.9880 44.3502

40 16.7598 18.0026 19.4297 22.8591 34.9442 48.4432

LMS 0 0.25797 0.69073 1.15800 1.92192 6.07449 10.45611

10 0.2292 0.6413 1.2067 1.7611 5.5850 11.0966

20 0.2392 0.6366 1.3835 1.8283 5.7739 13.0223

30 0.2108 0.6963 1.6806 1.5445 6.3729 15.7386

40 0.2005 0.7364 2.4300 1.5514 6.7014 22.2894

LTS 0 0.29857 0.77320 1.28011 2.25997 6.98294 11.84773

10 0.2620 0.6817 1.3313 2.0226 6.2598 12.1469

20 0.2268 0.6811 1.4549 1.6894 6.0393 13.5082

30 0.1927 0.7295 1.7001 1.4710 6.5908 16.1195

40 0.1383 0.7141 2.3973 1.0515 6.5808 22.5637

MM 0 0.04021 0.09756 0.14938 0.30721 0.87201 1.37167

10 0.0388 0.1020 0.1597 0.2918 0.9062 1.4630

20 0.0452 0.1080 0.1889 0.3456 0.9561 1.7290

30 0.0519 0.1310 0.2203 0.3935 1.1607 2.0192

40 5.3527 11.8497 18.6131 21.4597 70.4481 122.4721

S 0 0.14511 0.50016 0.98509 1.19003 4.37143 9.08112

10 0.1288 0.5094 1.0598 0.9357 4.6377 9.7189

20 0.1300 0.5488 1.2785 0.9784 4.9468 11.8010

30 0.1358 0.6581 1.7183 0.9913 5.8713 15.8645

40 0.1505 0.8662 2.5929 1.1382 7.8683 23.8235
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Table 4. TAB values for sample size 200

Method Total Absolute Bias

Rho values 0.5 0.7

Sample 
size

Out-lier 
%

P = 2 P = 4 P = 6 P = 2 P = 4 P = 6

OLS 0 0.1725 0.3023 0.4254 0.1851 0.3441 0.4958

10 1.3666 1.7858 2.1893 1.4116 1.9216 2.4173

20 2.4858 3.0276 3.5494 2.5392 3.2058 3.8523

30 3.5629 4.1780 4.7837 3.6283 4.3837 5.1273

40 4.5973 5.2070 5.8781 4.6660 5.4146 6.2386

M 0 0.1770 0.3095 0.4397 0.1899 0.3525 0.5130

10 0.3456 0.5125 0.6793 0.3637 0.5656 0.7724

20 0.7533 1.0047 1.2613 0.7764 1.0843 1.3972

30 3.4327 4.1355 4.8082 3.5078 4.3668 5.1895

40 4.5975 5.2083 5.8815 4.6663 5.4162 6.2430

LMS 0 0.4821 0.8445 1.2159 0.5235 0.9533 1.4462

10 0.4664 0.8149 1.2626 0.4921 0.9329 1.4657

20 0.4559 0.8222 1.3660 0.4961 0.9359 1.5907

30 0.4343 0.8369 1.4901 0.4590 0.9488 1.7369

40 0.4391 0.8844 1.7721 0.4734 0.9988 2.0534

LTS 0 0.5104 0.8890 1.2681 0.5508 1.0146 1.4907

10 0.4846 0.8533 1.2963 0.5166 0.9616 1.5136

20 0.4450 0.8230 1.3805 0.4772 0.9461 1.5951

30 0.4027 0.9742 1.4679 0.4339 0.9380 1.7264

40 0.3469 0.8305 1.6906 0.3738 0.9429 2.0054

MM 0 0.1846 0.3134 0.4445 0.1991 0.3592 0.5190

10 0.1868 0.3262 0.4596 0.2010 0.3715 0.5356

20 0.1983 0.3374 0.4999 0.2142 0.3843 0.5814

30 0.2134 0.3717 0.5358 0.2296 0.4216 0.6248

40 2.5675 4.2779 5.9513 2.6666 4.6552 6.6326

S 0 0.3656 0.7192 1.1504 0.3870 0.8232 1.3451

10 0.3395 0.7193 1.1907 0.3608 0.8276 1.3845

20 0.3355 0.7562 1.3211 0.3601 0.8639 1.5466

30 0.3375 0.8225 1.5233 0.3657 0.9368 1.7754

40 0.3672 0.9244 1.8619 0.3950 1.0649 2.1665
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Method Total Absolute bias

Rho values 0.9 0.99

Sample 
size

Outlier 
%

P = 2 P = 4 P = 6 P = 2 P = 4 P = 6

OLS 0 0.2464 0.5160 0.7693 0.6160 1.4641 2.2557

10 1.6137 2.4727 3.2997 2.8078 5.5099 8.0909

20 2.8075 3.9294 5.0074 4.4003 7.9189 11.2686

30 3.9451 5.2135 6.4536 5.8037 9.7791 13.6473

40 4.9917 6.2611 7.6226 6.9262 10.9315 15.1408

M 0 0.2527 0.5294 0.7964 0.6320 1.5027 2.3348

10 0.4454 0.7844 1.1301 0.9345 1.9939 3.0701

20 0.8927 1.4053 1.9180 1.5877 3.1725 4.7478

30 3.8684 5.2956 6.6627 5.9826 10.4072 14.6490

40 4.9922 6.2639 7.6306 6.9280 10.9414 15.1687

LMS 0 0.6907 1.4417 2.2128 1.7215 4.0641 6.4711

10 0.6552 1.3807 2.2666 1.6484 3.8850 6.6635

20 0.6642 1.3983 2.4501 1.6666 4.0076 7.2612

30 0.6207 1.4484 2.6895 1.5324 4.1749 7.9610

40 0.6093 1.4966 3.2084 1.5234 4.2670 9.4167

LTS 0 0.7368 1.5231 2.3243 1.8401 4.3638 6.8480

10 0.6892 1.4320 2.3660 1.7450 4.1201 6.9573

20 0.6480 1.4282 2.4906 1.6004 4.0798 7.3557

30 0.5852 1.4607 2.6885 1.4512 4.2036 8.0262

40 0.5004 1.4419 3.1517 1.2575 4.2015 9.4308

MM 0 0.2684 0.5416 0.8047 0.6747 1.5428 2.3544

10 0.2675 0.5560 0.8297 0.6679 1.5741 2.4259

20 0.2872 0.5741 0.8985 0.7182 1.6214 2.6243

30 0.3080 0.6297 0.9693 0.7768 1.7802 2.8391

40 3.1588 6.1975 9.2492 6.1294 14.7160 23.4415

S 0 0.5139 1.2367 2.0624 1.3421 3.4483 6.0518

10 0.4815 1.2448 2.1368 1.1778 3.5635 6.2528

20 0.4856 1.3033 2.3534 1.2200 3.7101 6.9023

30 0.4924 1.4112 2.7355 1.2129 4.0323 8.0522

40 0.5220 1.6298 3.3513 1.3180 4.6490 9.8129
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Figure 3. [(a)…..(o)], n=200, Total MSE vs ρ values.

www.indjst.org


Muhammad Ilyas and Salahuddin

Indian Journal of Science and Technology 13Vol 12(26) | July 2019 | www.indjst.org

Figure 4. [(a), …., (o)], Total absolute bias vs ρ values, sample size n=200.
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Figure 5. [(a), …., (o)]: Boxplot of various methods for different outliers percentages and multicollinearity levels, with a 
sample size n=200.
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4. Conclusions
In this study efforts are carried out to compare the per-
formance of different regression methods under the 
influence of varying levels of multicollinearity. A case 
wise discussion over performance of different methods is 
as under:

Case I:  ~  N (0, 1): For the error distribution consid-
ered standard normal, at lower collinearity levels all the 
methods performance is very similar but as the level of 
collinearity grows they behave quite differently. Moreover 
it is evident that at higher collinearity levels LTS, LMS 
seem the poor, S the next whereas OLS, M and MM 
appear to perform reasonably fine.

Case II:  ~  0.9N (0, 1) + 0.1N (10, 1): In this case 
the error distribution is considered in this case allow 10% 
outliers in y-direction. In this case at lower levels of col-
linearity OLS appear to be markedly different, while the 
other methods behave fairly alike. At higher collinearity 
levels and 10% fraction of outliers OLS appear the worse 
whereas (LTS, LMS and S) the next and (M, MM) per-
form sensibly well with MM the finest of all.

Case III:  ~  0.8N (0, 1) + 0.2N (10, 1): For a frac-
tion of 20% outliers OLS is markedly different at all levels 
while the remaining all methods perform nearly similar 
at lower collinearity levels but behave very differently for 
greater values of collinearity levels. In this case the rank-
ing of the methods nearly similar to that in Case II.

Case IV:  ~  0.7N (0, 1) + 0.3N (10, 1): In this case at 
lower levels of collinearity there seem to be two catego-
ries (M-Estimation and OLS) and (LTS, LMS, S and MM), 
together all the methods have quite diverse behavior at 
higher collinearity levels. Particularly at higher levels of 
collinearity MM is the best with (LTS,LMS, and S) the 
succeeding set of best, whereas OLS and M perfomance is 
very poor and M-Estimation give the worse result.

Case V:  ~  0.6N (0, 1) + 0.4N (10, 1): In this case 40% 
outliers all together with lower to moderate collinear-
ity levels OLS and M method results in higher values of 
(TMSE), MM the next method giving subsEquent higher 
values of (TMSE), the other methods (LTS, LMS and S) 
havinglow and nearly similar values. However 40% outli-
ers considered with a high multi-collinearity level, ranks 
the methods quite differently. The MM method which is 
unsurpassed one in all cases turn out to worse among all, 
M and OLS forming the second set resulting in higher 
(TMSE) values, and the other three methods (LTS, LMS 
and S) generating relatively small values of (TMSE).
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