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Abstract
Background/Objectives: This work mainly focuses on the role of UML Class diagram in different phases of software 
development cycle and shows the industry responses regarding its impact and importance. Methods/Statistical Analysis: 
we conducted industry survey and collected data from software practitioners. Participants were asked about their usage of 
UML for modeling software artifacts and most frequent diagram they use. Findings: Result shows that UML Class diagram 
is most important element of UML and it performed highly significant role in software development. It is most frequently 
used diagram. Application/Improvements: Usage of UML models during the software development improve the quality 
of software and UML Class diagram is most important part of UML and help practitioners to perform analysis and as well 
as design in a systematic way.

1. Introduction
UML is an industry standard and significantly used 
visual modeling language for the modern software 
system1. It hides the complexity of system and provides 
an appropriate level of abstraction2. It is used in the 
software industry for software specification, analysis, 
design and documentation. Nowadays, it is also used for 
code generation3, 4. UML offers a number of diagrams for 
dealing various aspects of software modeling2, 5. It uses 
simple diagrammatic notations for describing software. 
Therefore, customer can also easily understand the 
specification and design of the system. Currently, it is 
also used in engineering, ontology development, DBMS 
and other discipline of technology6. In Model Driven 
Architecture, UML considers as a core and the entire 
process of the MDA move around the UML Models7, 8. 

2. Research Hypothesis
Research suggests that class diagram is the most important 
part of UML9 – 16. It performs an important role in software 
analysis and design17. It describes the system through 
concepts, their relationship and constraint over concept17. 
It’s also a key ingredient of the MDA process17, 18. Therefore, 
we advanced the following research hypothesis: 

H0: The UML Class diagram is considered as a core 
diagram which is used in the different activities in the 
software development. 

H1: Class diagram is not an important artifact in 
software development.

For determining importance and impact of class 
diagram in software development, an industrial survey 
was performed and investigated:
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• Which UML diagram mostly use in software 
development (TCD).

• Is Class diagram improves the understanding of 
business domain (ICDIUBD)?

• Is Class diagram improves the communication among 
the team members (ICDICAT)? 

• Is Class diagram gives a blueprint of system to 
maintenance engineer to get a general idea of how the 
software is structured before investigating the code 
(ICDBIC)?

• Is Class diagram assists development of building other 
UML diagrams (ICDAUML)?

3. Research Methodology
In the survey, data were collected from (N = 71) software 
practitioners. The sample consisted of 13 (18.8%) 
international software practitioners and 58 national 
software practitioner (81.2%). Survey questionnaire 
consisted of three sections. In Section 1 practitioners 
were inquired about their demographic information 
(e.g. Name, email, Work Location, Position). In Section 2 
they were asked about their usage of UML for modeling 
software artifacts and most frequent diagram they use. 
Finally, in Section 3 they were asked their use of different 
diagrams.

4. Research Results
The sample consisted of 32 (45.07%) software 
developers, 11 (15.49%) Software Analysts, 12 (16.90%) 
Team Leads, 9 (12.68%) Project Managers, 4 (5.63%) 
Software Designer and 3 (4.23%) Software Testers as 
shown in Figure 1.

In the sample 2 practitioners (2.82%) have more 
than 10 years of experience, 7 practitioners (9.86%) 
have 5 to 10 years of experience, 19 practitioners 
(26.76%) have 3 to 5 years of experience and 43 
practitioners (60.56%) have 1 to 2 years of experiences 
as shown in Figure 2.

As per result shown in Figure 3, majority of the 
practitioners (89.73%) use UML for modeling software 
artifacts. Only (11.27%) stated they do not use UML.

As can be seen in Figure 4, in response of most 
frequent diagram for modeling they use. (47.89%) 
reported class diagram, (29.58%) reported use case 

diagram, (11.27%) reported Activity diagram, (4.23%) 
reported component and deployment diagram, 
(2.82%) reported state chart diagram, (1.41%) 
reported sequence diagram and (0.0%) reported 
communication, composite structure, timing, and 
interaction overview. Our hypothesis is, the UML Class 
diagram is considered as a core diagram which is used 
in the different activities in the software development. 
Whereas, alternate hypothesis is class diagram is 
not an important artifact in software development. 
Correlation analysis was performed to observe the 
effectiveness of UML Class diagram. The Table 1 
shows that the class diagram was found to be highly 
significant and integral diagram which improves the 
understanding of business domain as well as improve 
the communication among the team members with  
r = 0.008 at P < 0.05. Whereas, class diagram is 
very helpful in maintenances phase and help out 
maintenances engineer to get a general idea of how the 
software is structured before investigating the code with 
r = 0.066 at P < 0.01 and also assist the development of 
building other UML diagrams (r = 0.012; P<0.05).

Figure 1. Percentage of Software Practitioner in survey.

Figure 2. Participants industry experience. 
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5. Conclusion 
UML Class diagram is most important element of UML 
and it performed highly significant role in software 
development. It is most frequently used diagram. It 
improves the communication among the team member, 
gives a blueprint of system to maintenance engineer to 
get a general idea of how the software is structured before 
investigating the code and assists development of building 
other UML diagrams.
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