
Importance and Impact of Class Diagram in Software
Development

Abdul Hafeez1*, Mansoor Ahmed1, Muhammad Furqan2 ,Wasi-Ur-Rehaman3 and Imtiaz Husain1

1Department of Computer Science, SMI University; karachi,ahkhan@smiu.edu.pk
2Department of Infromation Technology, Higher Technology Collage Muscat; muhammadfurqan@hct.edu.om

3Techway System, Musacat; wasi@gmail.com

Abstract
Background/Objectives: This work mainly focuses on the role of UML Class diagram in different phases of software
development cycle and shows the industry responses regarding its impact and importance. Methods/Statistical Analysis:
we conducted industry survey and collected data from software practitioners. Participants were asked about their usage of
UML for modeling software artifacts and most frequent diagram they use. Findings: Result shows that UML Class diagram
is most important element of UML and it performed highly significant role in software development. It is most frequently
used diagram. Application/Improvements: Usage of UML models during the software development improve the quality
of software and UML Class diagram is most important part of UML and help practitioners to perform analysis and as well
as design in a systematic way.

1. Introduction
UML is an industry standard and significantly used
visual modeling language for the modern software
system1. It hides the complexity of system and provides
an appropriate level of abstraction2. It is used in the
software industry for software specification, analysis,
design and documentation. Nowadays, it is also used for
code generation3, 4. UML offers a number of diagrams for
dealing various aspects of software modeling2, 5. It uses
simple diagrammatic notations for describing software.
Therefore, customer can also easily understand the
specification and design of the system. Currently, it is
also used in engineering, ontology development, DBMS
and other discipline of technology6. In Model Driven
Architecture, UML considers as a core and the entire
process of the MDA move around the UML Models7, 8.

2. Research Hypothesis
Research suggests that class diagram is the most important
part of UML9 – 16. It performs an important role in software
analysis and design17. It describes the system through
concepts, their relationship and constraint over concept17.
It’s also a key ingredient of the MDA process17, 18. Therefore,
we advanced the following research hypothesis:

H0: The UML Class diagram is considered as a core
diagram which is used in the different activities in the
software development.

H1: Class diagram is not an important artifact in
software development.

For determining importance and impact of class
diagram in software development, an industrial survey
was performed and investigated:

*Author for correspondence

Indian Journal of Science and Technology, Vol 12(25), DOI: 10.17485/ijst/2019/v12i25/145739, July 2019

ISSN (Print) : 0974-6846
 ISSN (Online) : 0974-5645

Keywords: Software Class Development, Software Class Diagram, Software System

Importance and Impact of Class Diagram in Software Development

Indian Journal of Science and Technology2 Vol 12 (25) | July 2019 | www.indjst.org

• Which UML diagram mostly use in software
development (TCD).

• Is Class diagram improves the understanding of
business domain (ICDIUBD)?

• Is Class diagram improves the communication among
the team members (ICDICAT)?

• Is Class diagram gives a blueprint of system to
maintenance engineer to get a general idea of how the
software is structured before investigating the code
(ICDBIC)?

• Is Class diagram assists development of building other
UML diagrams (ICDAUML)?

3. Research Methodology
In the survey, data were collected from (N = 71) software
practitioners. The sample consisted of 13 (18.8%)
international software practitioners and 58 national
software practitioner (81.2%). Survey questionnaire
consisted of three sections. In Section 1 practitioners
were inquired about their demographic information
(e.g. Name, email, Work Location, Position). In Section 2
they were asked about their usage of UML for modeling
software artifacts and most frequent diagram they use.
Finally, in Section 3 they were asked their use of different
diagrams.

4. Research Results
The sample consisted of 32 (45.07%) software
developers, 11 (15.49%) Software Analysts, 12 (16.90%)
Team Leads, 9 (12.68%) Project Managers, 4 (5.63%)
Software Designer and 3 (4.23%) Software Testers as
shown in Figure 1.

In the sample 2 practitioners (2.82%) have more
than 10 years of experience, 7 practitioners (9.86%)
have 5 to 10 years of experience, 19 practitioners
(26.76%) have 3 to 5 years of experience and 43
practitioners (60.56%) have 1 to 2 years of experiences
as shown in Figure 2.

As per result shown in Figure 3, majority of the
practitioners (89.73%) use UML for modeling software
artifacts. Only (11.27%) stated they do not use UML.

As can be seen in Figure 4, in response of most
frequent diagram for modeling they use. (47.89%)
reported class diagram, (29.58%) reported use case

diagram, (11.27%) reported Activity diagram, (4.23%)
reported component and deployment diagram,
(2.82%) reported state chart diagram, (1.41%)
reported sequence diagram and (0.0%) reported
communication, composite structure, timing, and
interaction overview. Our hypothesis is, the UML Class
diagram is considered as a core diagram which is used
in the different activities in the software development.
Whereas, alternate hypothesis is class diagram is
not an important artifact in software development.
Correlation analysis was performed to observe the
effectiveness of UML Class diagram. The Table 1
shows that the class diagram was found to be highly
significant and integral diagram which improves the
understanding of business domain as well as improve
the communication among the team members with
r = 0.008 at P < 0.05. Whereas, class diagram is
very helpful in maintenances phase and help out
maintenances engineer to get a general idea of how the
software is structured before investigating the code with
r = 0.066 at P < 0.01 and also assist the development of
building other UML diagrams (r = 0.012; P<0.05).

Figure 1. Percentage of Software Practitioner in survey.

Figure 2. Participants industry experience.

Abdul Hafeez, Mansoor Ahmed, Muhammad Furqan ,Wasi-Ur-Rehaman and Imtiaz Husain

Indian Journal of Science and Technology 3Vol 12 (25) | July 2019 | www.indjst.org

5. Conclusion
UML Class diagram is most important element of UML
and it performed highly significant role in software
development. It is most frequently used diagram. It
improves the communication among the team member,
gives a blueprint of system to maintenance engineer to
get a general idea of how the software is structured before
investigating the code and assists development of building
other UML diagrams.

6. References
1. Fu C, Yang D, Zhang X, Hu H. An approach to translating

OCL invariants into OWL 2 DL axioms for checking
inconsistency. Automated Software Engineering. 2017;
24(2):295–339. https://doi.org/10.1007/s10515-017-0210-9

2. Artale A, Calvanese D, Angelica I. Full satisfiability of
UML Class diagrams. Conceptual Modeling - ER Lecture
Notes in Computer Science. 2010; 6412:317–31 https://doi.
org/10.1007/978-3-642-16373-9_23

3. Anastasakis K, Bordbar B, Georg G, Ray I. On challenges
of model transformation from UML to Alloy. Software

and Systems Modeling. 2010; 9(1):69–86. https://doi.
org/10.1007/s10270-008-0110-3

4. Szlenk M. Formal-semantics-reasoning-UML-class-diagram.
Dependability of Computer Systems. DepCos-RELCOMEX
‘06. 2006; 59:25–7. https://doi.org/10.1109/DEPCOS-
RELCOMEX.2006.27

5. Cadoli M, Calvanese D, Giacomo G, Mancini T. Finate
satisfibaility of UML Class diagram by constraint
programming. Proc of the 2004 International Workshop
on Description Logics. vol 104 of CEUR Workshop
Proceedings; 2004. p. 1–15.

6. Maraee A, Balaban M. Efficient reasoning about finite
satisability of UML Class diagram with contrained
generalization sets. Model Driven Architecture - Foundations
and Applications Lecture Notes in Computer Science. 2007;
4530:17–31. https://doi.org/10.1007/978-3-540-72901-3_2

7. Hafeez Khan A, Hyder Abbas Musavi S, Rehman A, Shaikh
A. Ontology-based finite satisfiability of UML Class model.
IEEE Access. 2018; 6:3040–50. https://doi.org/10.1109/
ACCESS.2017.2786781

8. Shaikh A,Wiil UK. Overview of slicing and feedback
techniques for efficient verification of UML/OCL Class
diagrams. IEEE Access. 2018; 6:23864–82. https://doi.
org/10.1109/ACCESS.2018.2797695

Figure 3. Use of UML in industry.
Figure 4. Most frequently used diagram of UML.

Table 1. Correlations

Control Variables ICDIUBD ICDICAT ICDBIC ICDAUML
Types of Class used for
Software Development ICDIUBD

Correlation 1.000 0.315 0.221 0.298

Significance (2-tailed) 0.008* 0.066** 0.012*

ICDICAT
Correlation 1.000 0.255 0.322

Significance (2-tailed) 0.033** 0.007

ICDBIC
Correlation 1.000 0.187

Significance (2-tailed) 0.120*

ICDAUML Correlation 1.000
Significance (2-tailed)

Importance and Impact of Class Diagram in Software Development

Indian Journal of Science and Technology4 Vol 12 (25) | July 2019 | www.indjst.org

9. Gonzlez CA, Cabot J. Formal verification of static software
models in MDE: A systematic review. Information and
Software Technology. 2014; 56(8):821–38. https://doi.
org/10.1016/j.infsof.2014.03.003

10. Balaban M, Maraee A. Finite satisfiability of UML
Class diagrams with constrained class hierarchy. ACM
Transactions on Software Engineering and Methodology
- In memoriam, fault detection and localization, formal
methods, modeling and design TOSEM Homepage archive.
2013; 22(3). https://doi.org/10.1145/2491509.2491518

11. Malgouyres H, Motet G. A UML model consistency
verification approach based on metamodeling
formalization. SAC ‘06 Proceedings of the 2006 ACM
Symposium on Applied Computing; 2006. p. 1804–9.
https://doi.org/10.1145/1141277.1141703

12. Maraee A, Balaban M. Efficient recognition of finite
satisfiability in UML Class diagrams strengthening
by propagation of disjoint constraints. Model-based
Systems Engineering, MBSE. 2009; 1(8):2–5. https://doi.
org/10.1109/MBSE.2009.5031714

13. Maraee A, Balaban M, Vicktor. Efficient recognition
and detection of finite satisfiability problems in UML

Class diagram. 1st International Workshop on Model
Co-evolution and Consistency Management; 2008.

14. Berardi D, Calvanese D, Giacomo GD. Reasoning on UML
Class diagrams. Artificial Intelligence. 2005; 168(1-2):70–
118. https://doi.org/10.1016/j.artint.2005.05.003

15. Berardi D, Calvanese D, De Giacomo G. Reasoning on UML
Class diagrams is EXPTIME-hard. Proc of the Description
Logic Workshop; 2003. p. 28–37.

16. Shaikh A, Wiil UK. A feedback technique for unsatisfiable
UMLOCL Class diagrams. Software Practice and
Experience. Wiley Journal. 2013. https://doi.org/10.1002/
spe.2211

17. Shaikh A, Wiil U. UML to CSP (UOST). A tool for efficient
verification of UMLOCL Class diagrams through model
slicing. Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering;
2012. p. 1–4. https://doi.org/10.1145/2393596.2393639

18. Shaikh A, Wiil UK. Evaluation of tools and slicing
techniques for effcient verifcation of UMLOCL Class.
Advances in Software Engineering Archive. New York,
NY, United States: Hindawi Publishing Corp; 2011. p. 18.
https://doi.org/10.1155/2011/370198

