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Abstract
Objectives: This study aimed to design an application that effectively scans, detects, and removes malware based on their 
signatures and behaviours. Methods/Statistical analysis: The rapid growth in the number and types of malware poses 
high security risks despite the numerous antivirus softwares with Signature-Based Detection (SBD) method. The SBD 
method depends on the signatures or malware names that are available in the algorithm database. Findings: Malware is a 
type of malicious software that poses security threats to the targeted system, resulting in information loss, resource abuse, 
or system damage. The antivirus software is one of the most commonly used security tools to detect and remove malware. 
However, the malware defences should focus on the malware signatures since there is no universal way of recognising all 
malware. Therefore, this study suggested N/A detection technique as the dynamic method (behaviour-based detection 
method) that depends on the Windows Registry (system database). Both static and dynamic detection methods were 
assessed in this study. Based on the experimental outcomes, SBD method detected and removed most of malware (only 
known viruses). Application/Improvements: Meanwhile, the N/A detection method detected and removed all injected 
malware (known and unknown Trojan horse) within a relatively low running time.

1. Introduction
A malware is a type of “software” with “malicious” intent 
which poses major security threat to Internet users today. 
New viruses can quietly evade the antivirus detector 
through code misperception where the damaging content 
can be hidden1. The Internet threats such as denial-of-
service attacks and huge spam emails through botnets 
are increasingly extensive. In order to prevent malware 
infection, Internet security specialists employ various 
approaches and skills to display the details of malware 
action2. However, the detection of malicious software is a 
challenging and daunting task for Information Technology 
(IT) managers and system operators, especially with an 
ever-increasing volume of malicious programmes and 

tools. Antivirus software is typically used to detect and 
suspend malicious files. The malware defences should 
focus on the malware signatures since there is no single 
way of recognising all malware3. 

In particular, this study, which employed both static 
and dynamic detection methods, aimed to design an 
application with the capacity to effectively scan, detect, 
and remove malware based on specific malware signatures 
and behaviours. Accordingly, the static detection method 
focuses on malware signatures with a static detection pro-
cedure that identifies malware by inspecting the record or 
files for any incidences of malware without running the 
programme. Meanwhile, the dynamic detection method 
focuses on malware behaviours. Basically, this type of 
method evaluates whether a programme is consecutively 
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infected by a malware code and subsequently detects its 
behaviour. With that, this study proposed an application 
with signature-based malware detection (specifically for 
viruses) and behaviour-based malware detection (spe-
cifically for Trojan horse) in scanning, detecting, and 
removing various types of malware. 

2. Background of Study
The following subsections describe static detection 
method (signature-based detection method) and dynamic 
detection method (behaviour-based detection method).

2.1 Static Detection Method
As briefly described earlier, the static detection method 
identifies malware by inspecting the content or files for 
any incidences of malware without running the pro-
gramme. It employs diverse techniques and tools to 
quickly discover whether a file is malicious or not, offer 
information about its action and collect technical point-
ers to create simple signatures. Also signature method is 
distinctive identification for a binary file, which is made 
by analyzing the binary file using static analysis methods. 

The static detection method scans, detects, and 
removes malware based on their corresponding signa-
tures. This method is commonly used to detect malware 
that threaten the security of computer networks and com-
puting systems. referring to4. Apart from the data mining, 
machine learning, and other heuristic answers for mal-
ware detection, another method was recently introduced, 
namely the extraction of opcodes. The algorithms were 
applied as part of the feature determination method to 
minimise the number of features. Based on the experi-
mental outcomes, the model detected malware with 
sensitivity of approximately 98% and precision of approx-
imately 99%. The researchers have database that contain 
a recognized viruses types of regulations. Once a file is 
scanned the signature based detection works on compares 
the series of symbols that showed in files with recognized 
viruses’ types that saved in database.  If the signature 
based detection algorithm discover a match then the 
algorithm states the file is a virus. Observe that signature 
detection algorithm relies on the database of recognized 
viruses types. The database was made by analyzing recog-
nized viruses, by taking out series of instructions showed 
in them and deleting any series from them that are usual 
of precious programs. Many kinds of malware have been 

detected using graph mining method utilizing static anal-
ysis, though covering the current faults. The researchers 
suggested Minimal Contrast Frequent Sub graph Miner 
(MCFSM) algorithm, as new method for taking out mini-
mal distinctive and commonly pernicious behavioral 
types that can detect accurately all family of pernicious 
programs, in compare to another set of precious pro-
grams. A high detection values and low false affirmative 
values have been showed by MCFSM method and pro-
duce a finite number of behavioral virus5. According to6 
a number of wide security gaps were discovered through 
the signature-based malware detection methods of vari-
ous general commercial antivirus tools. Their methods 
created a substantial number of obfuscated types of 
known viruses that were verified on numerous antivirus 
software which, reaffirmed that these methods encoun-
tered critical inadequacy in detecting these viruses. This 
highlights the pertinent need to establish an algorithm 
that creates malware signatures used in much antivirus 
software. The outcomes prove that these tools are severely 
lacking in their ability to detect obscured forms of known 
viruses.

2.2	 Dynamic Detection Method
As briefly introduced in the earlier section, the dynamic or 
behaviour-based detection method determines whether 
the specific file or program is consecutively infected by 
a malware code prior to distinguishing its behaviour. 
Dynamic analysis essentially turns malware to detect its 
behavior, find technical indicators, and understand its 
functionality which can be utilized in detection signa-
tures. 

An automatic detection technique based on the graph 
mining method was previously employed1. The maximal 
periodic sub graphs in the list of code charts that repre-
sented common behaviours with accurate specifications 
in the implementation files were removed and used as 
attributes for the generation of semantic signs. Based 
on the experimental outcomes, the employed technique 
extracted an incomplete number of stimulating features 
and achieved active malware detection. Meanwhile, the 
extraction of opcodes from the decompiled runnable pro-
gram can also be executed to detect malware. Nowadays, 
the opcode series are mined using text-based approaches, 
but the extracted face sequences are incapable of per-
forming the appropriate characterisation of behaviours 
for a runnable (malicious) programme. Hence, a control 
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flow-based procedure to extract these runnable opcode 
behaviours was employed to address this restriction7. 
With that, the mined behaviours can fully reflect the 
behavioural characteristics of a runnable programme. 
Moreover, the study also performed two types of opcode 
behaviour inspection methods to validate the efficiency 
of the rule flow-based behaviours, which revealed higher 
overall accuracy and lesser false positive result for the 
proposed control flow-based behaviour.

Nevertheless, the extensive use of antivirus soft-
ware with SBD method remains incapable to reduce the 
increasing number and types of malware. Although the 
SBD method distinctively identifies any two similar files 
using static analysis, there is also the dynamic or behav-
iour-based detection method that determines whether a 
runnable file is malware-infected. Both of these methods 
have their own strengths and limitations. With that, an 
integration of static and dynamic methods was recom-
mended to scan unknown runnable files for malware8. 
Additionally, the machine learning was incorporated 
where recognised malware and benign platforms are used 
as training data. The attribute vector was elected by ana-
lysing any two similar codes of dynamic behaviour. With 
the strengths of both methods, the classification and effi-
ciency results were obtained with an accuracy of 97.1% 
for the dynamic method and an accuracy of 95.8% for the 
static method.

Considering the significance of malware detection in 
replicated security, the proposed solutions are expected 
to be efficient, precise, and robust, which propelled the 
need to perform malware detection in two stages through 
a hardware-assisted manner. Accordingly, the attack 
model of malware was learned through the procedure 
of “Deterministic Finite Automaton” (DFA) in an offline 
phase. Meanwhile, the DFA-based detection method was 
employed during the execution phase to examine whether 
the implementation file exhibits malicious behaviour 
using the real world data of 168 Linux malware examples 
and 370 benign examples. As a result, another malware 
of the same family was identified with the possibility of 
detecting zero-day attacks.  Applied in hardware, actual 
time detection with resource overhead, low performance 
and more importantly offered by their architecture. 
Moreover, A malware using advanced evasion techniques 
cannot avoid their architecture9. Besides that, the attempt 
to detect the modern, complex malware with numerous 
exploits was based on an out dated hierarchy of malware 
domains that describe the malware by a single prevalent 

behaviour. Considering this gap, the study recommended 
a core model for the new malware ontology that focused 
on the malware behaviours the difference between their 
suggested ontology and current ones is that is not con-
nected to classical malware lessons, but to potentially 
risky behaviors. Hence, the researchers are capable to find 
unknown applications as malware10. 

Principally, the run-time behaviour of running pro-
cesses on an end-host dynamically identifies malware. 
Most of these identification schemes construct a model 
of run-time behaviour of a specific process based on its 
corresponding data flow and/or operating system calls. 
However, The genetic footstep contain elected parameters 
– preserved inside the process control block of a kernel for 
every running operation- that describes its correspond-
ing behaviour and semantics. Addressing that, the study 
identified the discriminatory elements of a PCB through 
the execution traces of benign and malware processes, 
which shortlisted 16 out of 118 task construction elements 
using the time series analysis. The attributes of the generic 
footprint were also statistically validated. The appropriate 
machine learning classifiers for malware detection were 
also statistically selected. Based on a dataset of 105 benign 
processes and 114 recent malware processes for Linux, 
the model revealed a detection accuracy of 96% with false 
alarm rate of 0% within 100 ms of the initiation of the 
malicious activity. Furthermore, it only acquired partial 
information at a given time during the execution of the 
process, which allowed the kernel of operating system to 
devise mitigation solutions; thus, reaffirming the robust-
ness of the model to evasion11.

Overall, a substantial number of studies on malware detec-
tion and the proposed malware removal models or scanners 
were reviewed. Most of these studies employed static and 
dynamic methods. As comparison between these methods we 
found some studies used  static method that depend on signature 
names of many viruses that injected in database of their algo-
rithms. Static method has one weak in detection accuracy (only 
known viruses signatures names detected). While some stud-
ies used dynamic method that utilized many techniques such as 
opcodes, machine learning, sub graph mining and Deterministic 
Finite Automaton (DFA), all these techniques depends on mal-
wares behaviours factors. Most of these techniques works better 
than signatures detection techniques in detection time and 
removal but also has only one weak in detection accuracy (not 
all malwares detected). Hence, our study is intending to design 
behavior-based detection and removal methods can detect and 
remove all malwares in low time running.
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3. Methodology
In general, there are various types of malware with approx-
imately 100,000 recognised viruses. This study combined 
static and dynamic detection methods to effectively scan, 
detect, and remove malware of various types. The static 
detection method or also known as signature-based detec-
tion method scans e-mails, files, messages, programmes, 
and other data to detect malicious files. Typically, a mal-
ware signature depends on a unique piece of code from 
the malware. Besides that, the dynamic detection method 
or also known as behaviour-based detection method, 
specifically the N/A (Not Available in registry) detection 
method for this study, detects and removes known and 
unknown types of malware according to their behaviour.

The method utilizes Microsoft windows operating 
system registry (system database). Therefore, when a 
malware value is injected in a system database, it will be 
detected by the proposed method.

Algorithm 1: N/A detection technique.

The detection Algorithm 1 reflects malware detec-
tion based on two factors, namely “File Description” and 
“Module Name”. When the “File Description” equals to 
null and the “Module Name” equals to N/A, a false system 
is indicated. In other words, a malware is detected. On 
the other hand, when the “File Description” and “Module 
Name” do not equal to null, a true system is indicated. 
In other words, it indicates no malware. The quality attri-
butes of this particular algorithm were deemed reliable, 
straightforward (one nested loop), reusable (can be used 
more than once), and high-performance.

Signature based detection is a method used to detect 
malicious code; the signature is commonly depends on 
part of the code that is taken away from the malware itself. 
Using this technique the scanner will scan messages, pro-
grams, files, emails, and other data. Using procedures and 
compare these files to the signatures which saved in its data.

Algorithm 2: Signature detection technique.

Meanwhile, the detection Algorithm 2 involves two 
factors that indicate the case of malware: 1. when the 
“Directory File Name” does not equal to null, and 2. when 
the “Directory File Name” equals to “Virus List Name”. 
Similarly, the quality attributes of this algorithm were 
deemed straightforward (one nested loop) and reusable.

Algorithm 3: N/A removal technique.
The removal Algorithm 3 is related to only one factor, 

which is the “System Status”. When the “System Status” 
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reveals false sign, it indicates that the removal algorithm 
detects and removes the malware in less than two sec-
onds. The quality attributes of this algorithm were also 
deemed reliable, straightforward (one nested loop), reus-
able, and high-performance.

Algorithm 4: Signature removal technique.

As for the removal Algorithm 4, it has similar fac-
tors with the factors of the detection Algorithm 2. When 
the “Directory File Name” does not equal to null and the 
“Directory File Name” equals to “Virus List Name”, the 
removal algorithm detects and removes the malware in 
less than four seconds. Likewise, the quality attributes of 
this algorithm were deemed straightforward (one nested 
loop) and reusable.

4. Experiment Setting and Results 
This study first installed scanner software with two dif-
ferent interfaces (each interface operated under a single 

algorithm) in HP desktop (Intel® Core™ i5 processor with 
64-bit operating system and 4.0 GB of RAM). Both algo-
rithms operated individually in the scanner software. The 
SBD algorithm testing compared the viruses that were 
injected in partitions to the signatures or virus names in 
the algorithm database. Basically, a virus is detected when 
there is a match. Besides that, the behaviours of malware 
were also analysed for the N/A algorithm testing. For 
this, a Trojan horse was used because it poses the high-
est security threat (hackers are able to steal all files from 
infected computer) among the various types of malware. 
Furthermore, a Trojan horse is associated with running 
time given its behaviour to enter the Windows Registry 
after the users double-click on the malware-infected file 
(sent by hackers). Moreover, malware detection algo-
rithm in this study was designed based on the behaviors 
of a Trojan horse.

Table 1 shows the results of malware (virus) detection 
and removal time using the SBD method. This study pre-
pared between 200 and 700 lines in a file as a database 
for the SBD algorithm then proceeded to inject signatures 
or virus names into the SBD algorithm database. Besides 
that, 25 viruses were injected in different partitions. 
Overall, it was revealed that most of the viruses (1–23) 
were detected within different timeframes (1.5 – 5 sec-
onds) and removed between 0.5 seconds and 4.0 seconds:

1.	 One virus was injected—SBD method detected one 
virus within 1.5 seconds and removed the virus within 
0.5 seconds.

2.	 Five viruses were injected—SBD method detected five 
viruses within 3.5 seconds and removed the viruses 
within one second.

3.	 10 viruses were injected—SBD method detected 10 
viruses within four seconds and removed the viruses 
within 1.5 seconds.

Table 1. SBD results
No of Files as 
database

No of malware in 
partitions

No of 
Detectedmalwares

Detection 
Time/ second

Removal Time/ 
second

200 1 1 1.5 0.5

300 5 5 3.5 1

400 10 10 4 1.5

500 15 14 4.5 2

600 20 18 5 3

700 25 23 5 4
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4.	 15 viruses were injected—SBD method detected 14 
viruses within 4.5 seconds and removed the viruses 
within two seconds.

5.	 20 viruses were injected—SBD method detected 18 
viruses within five seconds and removed the viruses 
within three seconds.

6.	 25 viruses were injected—SBD method detected 23 
viruses within five seconds and removed the viruses 
within four seconds.

Table 2. N/A results

No of  
processes

No of 
injected 
malwares

No of 
detected 
malwares

Detection 
time 
(Second)

Removal 
time 
(Second)

38 2 2 1 1

45 3 3 1.5 1

58 4 4 1.5 1 

68 5 5 2 2 

72 6 6 2 2

88 7 7 2 2

Table 2 shows the results of malware (Trojan horse) 
detection and removal time using the N/A detection 
method. The processes in Windows Registry (system 
database) for the Windows operating system were oper-
ated within different timeframes, which involved between 
38 and 88 processes. The malwares (Trojan horse) were 
also injected in six different partitions. Overall, it was 
revealed that the malware were detected within different 
timeframes (between one second and four seconds) and 
removed between one second and two seconds:

1. 	 Two malwares were injected—N/A detection method 
detected two malware within one second and removed 
the malware within one second.

2.	 Three malwares were injected—N/A detection 
method detected three malware within 1.5 seconds 
and removed the malware within one second.

3.	 Four malwares were injected— N/A detection method 
detected four malware within 1.5 seconds and removed 
the malware within one second.

4.	 Five malwares were injected—N/A detection method 
detected five malware within 2 seconds and removed 
the malware within two seconds.

5.	 Six malwares were injected—N/A detection method 
detected six malware within 2 seconds and removed 
the malware within two seconds.

6.	 Seven malware were injected—N/A detection method 
detected seven malware within 3 seconds and removed 
the malware within two seconds.

Based on Table 1 and 2, the result of N/A detection 
algorithm and SBD algorithm depends on three factors. 
First is detected malwares, second detection time and 
third removals time. However, N/A detection algorithm 
(dynamic method) show better results than SBD algo-
rithm (static method) in quality attributes, detection 
accuracy (unknown and known malwares were detected), 
detection time and removal time. 

5. Conclusion
This study employed two types of malware detection 
methods, specifically the static or signature-based detec-
tion method and the N/A detection method (dynamic or 
behaviour-based detection method). The signature-based 
detection method revealed a drawback, which is the need 
to regularly update the signatures or malware names in 
its algorithm database for effective malware detection. 
Otherwise, the algorithm is unable to detect most of the 
malware. Meanwhile, the N/A detection method in this 
study exhibited better quality attributes, detection time, 
and removal time compared to the signature-based detec-
tion method.  
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