
*Author for correspondence

Indian Journal of Science and Technology, Vol 12(25), DOI: 10.17485/ijst/2019/v12i25/146005, July 2019
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

N/A and Signature Analysis for Malwares Detection
and Removal

Ahmad Ridha Jawad1*, Khaironi Yatim Sharif1 and Ammar Khalel Abdulsada2

1Universiti Putra Malaysia, Faculty of Computer Science and Information Technology. Jalan UPM, 43400
Serdang, Selangor, Malaysia; ahmad.rida10000@gmail.com, khaironi@upm.edu.my

2Department of Computer Science, College of Education, University of Kufa, Kufa City, Najaf, Iraq;
ammar.khaleel@uokufa.edu.iq.

Keywords: Dynamic Method, Malicious Software, Malware Detection, Signature Analysis, Static Method

Abstract
Objectives: This study aimed to design an application that effectively scans, detects, and removes malware based on their
signatures and behaviours. Methods/Statistical analysis: The rapid growth in the number and types of malware poses
high security risks despite the numerous antivirus softwares with Signature-Based Detection (SBD) method. The SBD
method depends on the signatures or malware names that are available in the algorithm database. Findings: Malware is a
type of malicious software that poses security threats to the targeted system, resulting in information loss, resource abuse,
or system damage. The antivirus software is one of the most commonly used security tools to detect and remove malware.
However, the malware defences should focus on the malware signatures since there is no universal way of recognising all
malware. Therefore, this study suggested N/A detection technique as the dynamic method (behaviour-based detection
method) that depends on the Windows Registry (system database). Both static and dynamic detection methods were
assessed in this study. Based on the experimental outcomes, SBD method detected and removed most of malware (only
known viruses). Application/Improvements: Meanwhile, the N/A detection method detected and removed all injected
malware (known and unknown Trojan horse) within a relatively low running time.

1. Introduction
A malware is a type of “software” with “malicious” intent
which poses major security threat to Internet users today.
New viruses can quietly evade the antivirus detector
through code misperception where the damaging content
can be hidden1. The Internet threats such as denial-of-
service attacks and huge spam emails through botnets
are increasingly extensive. In order to prevent malware
infection, Internet security specialists employ various
approaches and skills to display the details of malware
action2. However, the detection of malicious software is a
challenging and daunting task for Information Technology
(IT) managers and system operators, especially with an
ever-increasing volume of malicious programmes and

tools. Antivirus software is typically used to detect and
suspend malicious files. The malware defences should
focus on the malware signatures since there is no single
way of recognising all malware3.

In particular, this study, which employed both static
and dynamic detection methods, aimed to design an
application with the capacity to effectively scan, detect,
and remove malware based on specific malware signatures
and behaviours. Accordingly, the static detection method
focuses on malware signatures with a static detection pro-
cedure that identifies malware by inspecting the record or
files for any incidences of malware without running the
programme. Meanwhile, the dynamic detection method
focuses on malware behaviours. Basically, this type of
method evaluates whether a programme is consecutively

mailto:ahmad.rida10000@gmail.com
mailto:Khaironi@upm.edu.my
mailto:ammar.khaleel@uokufa.edu.iq

Indian Journal of Science and TechnologyVol 12 (25) | July 2019 | www.indjst.org 2

N/A and Signature Analysis for Malwares Detection and Removal

infected by a malware code and subsequently detects its
behaviour. With that, this study proposed an application
with signature-based malware detection (specifically for
viruses) and behaviour-based malware detection (spe-
cifically for Trojan horse) in scanning, detecting, and
removing various types of malware.

2. Background of Study
The following subsections describe static detection
method (signature-based detection method) and dynamic
detection method (behaviour-based detection method).

2.1 Static Detection Method
As briefly described earlier, the static detection method
identifies malware by inspecting the content or files for
any incidences of malware without running the pro-
gramme. It employs diverse techniques and tools to
quickly discover whether a file is malicious or not, offer
information about its action and collect technical point-
ers to create simple signatures. Also signature method is
distinctive identification for a binary file, which is made
by analyzing the binary file using static analysis methods.

The static detection method scans, detects, and
removes malware based on their corresponding signa-
tures. This method is commonly used to detect malware
that threaten the security of computer networks and com-
puting systems. referring to4. Apart from the data mining,
machine learning, and other heuristic answers for mal-
ware detection, another method was recently introduced,
namely the extraction of opcodes. The algorithms were
applied as part of the feature determination method to
minimise the number of features. Based on the experi-
mental outcomes, the model detected malware with
sensitivity of approximately 98% and precision of approx-
imately 99%. The researchers have database that contain
a recognized viruses types of regulations. Once a file is
scanned the signature based detection works on compares
the series of symbols that showed in files with recognized
viruses’ types that saved in database. If the signature
based detection algorithm discover a match then the
algorithm states the file is a virus. Observe that signature
detection algorithm relies on the database of recognized
viruses types. The database was made by analyzing recog-
nized viruses, by taking out series of instructions showed
in them and deleting any series from them that are usual
of precious programs. Many kinds of malware have been

detected using graph mining method utilizing static anal-
ysis, though covering the current faults. The researchers
suggested Minimal Contrast Frequent Sub graph Miner
(MCFSM) algorithm, as new method for taking out mini-
mal distinctive and commonly pernicious behavioral
types that can detect accurately all family of pernicious
programs, in compare to another set of precious pro-
grams. A high detection values and low false affirmative
values have been showed by MCFSM method and pro-
duce a finite number of behavioral virus5. According to6
a number of wide security gaps were discovered through
the signature-based malware detection methods of vari-
ous general commercial antivirus tools. Their methods
created a substantial number of obfuscated types of
known viruses that were verified on numerous antivirus
software which, reaffirmed that these methods encoun-
tered critical inadequacy in detecting these viruses. This
highlights the pertinent need to establish an algorithm
that creates malware signatures used in much antivirus
software. The outcomes prove that these tools are severely
lacking in their ability to detect obscured forms of known
viruses.

2.2	 Dynamic Detection Method
As briefly introduced in the earlier section, the dynamic or
behaviour-based detection method determines whether
the specific file or program is consecutively infected by
a malware code prior to distinguishing its behaviour.
Dynamic analysis essentially turns malware to detect its
behavior, find technical indicators, and understand its
functionality which can be utilized in detection signa-
tures.

An automatic detection technique based on the graph
mining method was previously employed1. The maximal
periodic sub graphs in the list of code charts that repre-
sented common behaviours with accurate specifications
in the implementation files were removed and used as
attributes for the generation of semantic signs. Based
on the experimental outcomes, the employed technique
extracted an incomplete number of stimulating features
and achieved active malware detection. Meanwhile, the
extraction of opcodes from the decompiled runnable pro-
gram can also be executed to detect malware. Nowadays,
the opcode series are mined using text-based approaches,
but the extracted face sequences are incapable of per-
forming the appropriate characterisation of behaviours
for a runnable (malicious) programme. Hence, a control

Indian Journal of Science and Technology 3Vol 12 (25) | July 2019 | www.indjst.org

Ahmad Ridha Jawad, Khaironi Yatim Sharif and Ammar Khalel Abdulsada

flow-based procedure to extract these runnable opcode
behaviours was employed to address this restriction7.
With that, the mined behaviours can fully reflect the
behavioural characteristics of a runnable programme.
Moreover, the study also performed two types of opcode
behaviour inspection methods to validate the efficiency
of the rule flow-based behaviours, which revealed higher
overall accuracy and lesser false positive result for the
proposed control flow-based behaviour.

Nevertheless, the extensive use of antivirus soft-
ware with SBD method remains incapable to reduce the
increasing number and types of malware. Although the
SBD method distinctively identifies any two similar files
using static analysis, there is also the dynamic or behav-
iour-based detection method that determines whether a
runnable file is malware-infected. Both of these methods
have their own strengths and limitations. With that, an
integration of static and dynamic methods was recom-
mended to scan unknown runnable files for malware8.
Additionally, the machine learning was incorporated
where recognised malware and benign platforms are used
as training data. The attribute vector was elected by ana-
lysing any two similar codes of dynamic behaviour. With
the strengths of both methods, the classification and effi-
ciency results were obtained with an accuracy of 97.1%
for the dynamic method and an accuracy of 95.8% for the
static method.

Considering the significance of malware detection in
replicated security, the proposed solutions are expected
to be efficient, precise, and robust, which propelled the
need to perform malware detection in two stages through
a hardware-assisted manner. Accordingly, the attack
model of malware was learned through the procedure
of “Deterministic Finite Automaton” (DFA) in an offline
phase. Meanwhile, the DFA-based detection method was
employed during the execution phase to examine whether
the implementation file exhibits malicious behaviour
using the real world data of 168 Linux malware examples
and 370 benign examples. As a result, another malware
of the same family was identified with the possibility of
detecting zero-day attacks. Applied in hardware, actual
time detection with resource overhead, low performance
and more importantly offered by their architecture.
Moreover, A malware using advanced evasion techniques
cannot avoid their architecture9. Besides that, the attempt
to detect the modern, complex malware with numerous
exploits was based on an out dated hierarchy of malware
domains that describe the malware by a single prevalent

behaviour. Considering this gap, the study recommended
a core model for the new malware ontology that focused
on the malware behaviours the difference between their
suggested ontology and current ones is that is not con-
nected to classical malware lessons, but to potentially
risky behaviors. Hence, the researchers are capable to find
unknown applications as malware10.

Principally, the run-time behaviour of running pro-
cesses on an end-host dynamically identifies malware.
Most of these identification schemes construct a model
of run-time behaviour of a specific process based on its
corresponding data flow and/or operating system calls.
However, The genetic footstep contain elected parameters
– preserved inside the process control block of a kernel for
every running operation- that describes its correspond-
ing behaviour and semantics. Addressing that, the study
identified the discriminatory elements of a PCB through
the execution traces of benign and malware processes,
which shortlisted 16 out of 118 task construction elements
using the time series analysis. The attributes of the generic
footprint were also statistically validated. The appropriate
machine learning classifiers for malware detection were
also statistically selected. Based on a dataset of 105 benign
processes and 114 recent malware processes for Linux,
the model revealed a detection accuracy of 96% with false
alarm rate of 0% within 100 ms of the initiation of the
malicious activity. Furthermore, it only acquired partial
information at a given time during the execution of the
process, which allowed the kernel of operating system to
devise mitigation solutions; thus, reaffirming the robust-
ness of the model to evasion11.

Overall, a substantial number of studies on malware detec-
tion and the proposed malware removal models or scanners
were reviewed. Most of these studies employed static and
dynamic methods. As comparison between these methods we
found some studies used static method that depend on signature
names of many viruses that injected in database of their algo-
rithms. Static method has one weak in detection accuracy (only
known viruses signatures names detected). While some stud-
ies used dynamic method that utilized many techniques such as
opcodes, machine learning, sub graph mining and Deterministic
Finite Automaton (DFA), all these techniques depends on mal-
wares behaviours factors. Most of these techniques works better
than signatures detection techniques in detection time and
removal but also has only one weak in detection accuracy (not
all malwares detected). Hence, our study is intending to design
behavior-based detection and removal methods can detect and
remove all malwares in low time running.

Indian Journal of Science and TechnologyVol 12 (25) | July 2019 | www.indjst.org 4

N/A and Signature Analysis for Malwares Detection and Removal

3. Methodology
In general, there are various types of malware with approx-
imately 100,000 recognised viruses. This study combined
static and dynamic detection methods to effectively scan,
detect, and remove malware of various types. The static
detection method or also known as signature-based detec-
tion method scans e-mails, files, messages, programmes,
and other data to detect malicious files. Typically, a mal-
ware signature depends on a unique piece of code from
the malware. Besides that, the dynamic detection method
or also known as behaviour-based detection method,
specifically the N/A (Not Available in registry) detection
method for this study, detects and removes known and
unknown types of malware according to their behaviour.

The method utilizes Microsoft windows operating
system registry (system database). Therefore, when a
malware value is injected in a system database, it will be
detected by the proposed method.

Algorithm 1: N/A detection technique.

The detection Algorithm 1 reflects malware detec-
tion based on two factors, namely “File Description” and
“Module Name”. When the “File Description” equals to
null and the “Module Name” equals to N/A, a false system
is indicated. In other words, a malware is detected. On
the other hand, when the “File Description” and “Module
Name” do not equal to null, a true system is indicated.
In other words, it indicates no malware. The quality attri-
butes of this particular algorithm were deemed reliable,
straightforward (one nested loop), reusable (can be used
more than once), and high-performance.

Signature based detection is a method used to detect
malicious code; the signature is commonly depends on
part of the code that is taken away from the malware itself.
Using this technique the scanner will scan messages, pro-
grams, files, emails, and other data. Using procedures and
compare these files to the signatures which saved in its data.

Algorithm 2: Signature detection technique.

Meanwhile, the detection Algorithm 2 involves two
factors that indicate the case of malware: 1. when the
“Directory File Name” does not equal to null, and 2. when
the “Directory File Name” equals to “Virus List Name”.
Similarly, the quality attributes of this algorithm were
deemed straightforward (one nested loop) and reusable.

Algorithm 3: N/A removal technique.
The removal Algorithm 3 is related to only one factor,

which is the “System Status”. When the “System Status”

Indian Journal of Science and Technology 5Vol 12 (25) | July 2019 | www.indjst.org

Ahmad Ridha Jawad, Khaironi Yatim Sharif and Ammar Khalel Abdulsada

reveals false sign, it indicates that the removal algorithm
detects and removes the malware in less than two sec-
onds. The quality attributes of this algorithm were also
deemed reliable, straightforward (one nested loop), reus-
able, and high-performance.

Algorithm 4: Signature removal technique.

As for the removal Algorithm 4, it has similar fac-
tors with the factors of the detection Algorithm 2. When
the “Directory File Name” does not equal to null and the
“Directory File Name” equals to “Virus List Name”, the
removal algorithm detects and removes the malware in
less than four seconds. Likewise, the quality attributes of
this algorithm were deemed straightforward (one nested
loop) and reusable.

4. Experiment Setting and Results
This study first installed scanner software with two dif-
ferent interfaces (each interface operated under a single

algorithm) in HP desktop (Intel® Core™ i5 processor with
64-bit operating system and 4.0 GB of RAM). Both algo-
rithms operated individually in the scanner software. The
SBD algorithm testing compared the viruses that were
injected in partitions to the signatures or virus names in
the algorithm database. Basically, a virus is detected when
there is a match. Besides that, the behaviours of malware
were also analysed for the N/A algorithm testing. For
this, a Trojan horse was used because it poses the high-
est security threat (hackers are able to steal all files from
infected computer) among the various types of malware.
Furthermore, a Trojan horse is associated with running
time given its behaviour to enter the Windows Registry
after the users double-click on the malware-infected file
(sent by hackers). Moreover, malware detection algo-
rithm in this study was designed based on the behaviors
of a Trojan horse.

Table 1 shows the results of malware (virus) detection
and removal time using the SBD method. This study pre-
pared between 200 and 700 lines in a file as a database
for the SBD algorithm then proceeded to inject signatures
or virus names into the SBD algorithm database. Besides
that, 25 viruses were injected in different partitions.
Overall, it was revealed that most of the viruses (1–23)
were detected within different timeframes (1.5 – 5 sec-
onds) and removed between 0.5 seconds and 4.0 seconds:

1.	 One virus was injected—SBD method detected one
virus within 1.5 seconds and removed the virus within
0.5 seconds.

2.	 Five viruses were injected—SBD method detected five
viruses within 3.5 seconds and removed the viruses
within one second.

3.	 10 viruses were injected—SBD method detected 10
viruses within four seconds and removed the viruses
within 1.5 seconds.

Table 1. SBD results
No of Files as
database

No of malware in
partitions

No of
Detectedmalwares

Detection
Time/ second

Removal Time/
second

200 1 1 1.5 0.5

300 5 5 3.5 1

400 10 10 4 1.5

500 15 14 4.5 2

600 20 18 5 3

700 25 23 5 4

Indian Journal of Science and TechnologyVol 12 (25) | July 2019 | www.indjst.org 6

N/A and Signature Analysis for Malwares Detection and Removal

4.	 15 viruses were injected—SBD method detected 14
viruses within 4.5 seconds and removed the viruses
within two seconds.

5.	 20 viruses were injected—SBD method detected 18
viruses within five seconds and removed the viruses
within three seconds.

6.	 25 viruses were injected—SBD method detected 23
viruses within five seconds and removed the viruses
within four seconds.

Table 2. N/A results

No of
processes

No of
injected
malwares

No of
detected
malwares

Detection
time
(Second)

Removal
time
(Second)

38 2 2 1 1

45 3 3 1.5 1

58 4 4 1.5 1

68 5 5 2 2

72 6 6 2 2

88 7 7 2 2

Table 2 shows the results of malware (Trojan horse)
detection and removal time using the N/A detection
method. The processes in Windows Registry (system
database) for the Windows operating system were oper-
ated within different timeframes, which involved between
38 and 88 processes. The malwares (Trojan horse) were
also injected in six different partitions. Overall, it was
revealed that the malware were detected within different
timeframes (between one second and four seconds) and
removed between one second and two seconds:

1. 	 Two malwares were injected—N/A detection method
detected two malware within one second and removed
the malware within one second.

2.	 Three malwares were injected—N/A detection
method detected three malware within 1.5 seconds
and removed the malware within one second.

3.	 Four malwares were injected— N/A detection method
detected four malware within 1.5 seconds and removed
the malware within one second.

4.	 Five malwares were injected—N/A detection method
detected five malware within 2 seconds and removed
the malware within two seconds.

5.	 Six malwares were injected—N/A detection method
detected six malware within 2 seconds and removed
the malware within two seconds.

6.	 Seven malware were injected—N/A detection method
detected seven malware within 3 seconds and removed
the malware within two seconds.

Based on Table 1 and 2, the result of N/A detection
algorithm and SBD algorithm depends on three factors.
First is detected malwares, second detection time and
third removals time. However, N/A detection algorithm
(dynamic method) show better results than SBD algo-
rithm (static method) in quality attributes, detection
accuracy (unknown and known malwares were detected),
detection time and removal time.

5. Conclusion
This study employed two types of malware detection
methods, specifically the static or signature-based detec-
tion method and the N/A detection method (dynamic or
behaviour-based detection method). The signature-based
detection method revealed a drawback, which is the need
to regularly update the signatures or malware names in
its algorithm database for effective malware detection.
Otherwise, the algorithm is unable to detect most of the
malware. Meanwhile, the N/A detection method in this
study exhibited better quality attributes, detection time,
and removal time compared to the signature-based detec-
tion method.

6. Reference
1.	 Hellal A, Ben Romdhane L. Maximal Frequent Sub-Graph

Mining for Malware Detection. 2015 15th International
Conference on Intelligent Systems Design and Applications
(ISDA), Marrakech; 2015. p. 31−39. https://doi.org/10.1109/
ISDA.2015.7489265.

2.	 Kawakoya Y, Iwamura M, Shioji E, Hariu T. API Chaser: Anti-
Analysis Resistant Malware Analyzer. In: Stolfo S.J., Stavrou
A., Wright C.V. (eds) Research in Attacks, Intrusions, and
Defenses. RAID 2013. Lecture Notes in Computer Science,
vol 8145. Springer, Berlin, Heidelberg; 2013. p. 123−43.
https://doi.org/10.1007/978-3-642-41284-4_7.

3.	 Han L, Liu S, Han S, Jia W, Lei J. Owner based malware dis-
crimination, Future Generation Computer Systems. 2018;
80:496−504. https://doi.org/10.1016/j.future.2016.05.020.

4.	 Divandari H, Pechaz B, Jahan MV. Malware detection
using Markov Blanket based on opcode sequences. 2015

https://doi.org/10.1109/ISDA.2015.7489265
https://doi.org/10.1109/ISDA.2015.7489265
https://doi.org/10.1007/978-3-642-41284-4_7
https://doi.org/10.1016/j.future.2016.05.020

Indian Journal of Science and Technology 7Vol 12 (25) | July 2019 | www.indjst.org

Ahmad Ridha Jawad, Khaironi Yatim Sharif and Ammar Khalel Abdulsada

International Congress on Technology, Communication
and Knowledge (ICTCK), Mashhad; 2015. p. 564−69.
https://doi.org/10.1109/ICTCK.2015.7582730.

5.	 Hellal A, Ben Romdhane L. Maximal Frequent Sub-Graph
Mining for Malware Detection. 2015 15th International
Conference on Intelligent Systems Design and Applications
(ISDA), Marrakech; 2015. p. 31−39. https://doi.
org/10.1109/ISDA.2015.7489265.

6.	 Preda MD, Maggi F. Testing android malware detectors
against code obfuscation: A systematization of knowledge
and unified methodology, Journal of Computer Virology
and Hacking Techniques. 2017; 13(3):209−32. https://doi.
org/10.1007/s11416-016-0282-2.

7.	 Ding Y. Dai W, Yan S, Zhang Y. Control flow-based opcode
behavior analysis for Malware detection, Computers
and Security. 2014; 44:65−74. https://doi.org/10.1016/j.
cose.2014.04.003.

8.	 Shijo PV, Salim A. Integrated static and dynamic analysis
for malware detection, Procedia Computer Science. 2015;
46: 804−11. https://doi.org/10.1016/j.procs.2015.02.149.

9.	 Das S, Xiao H, Liu Y, Zhang W. Online Malware Defense
Using Attack Behavior Model. In: Int’l Symposium on
Circuits and Systems (ISCAS 2016), Montreal, Canada;
May 22-26, 2016. p. 1322−25.

10.	 Paulista CL. Ontology for Malware Behavior : A Core
Model Proposal. In: IEEE 23rd International WETICE
Conference; 2014. https://www.lasca.ic.unicamp.br/
paulo/papers/2014-WETICE.Web2Touch-gregio-afonso-
ontology.malware.pdf.

11.	 Shahzad F. Shahzad M, Farooq M. In-execution dynamic
malware analysis and detection by mining information in
process control blocks of Linux OS, Information Sciences.
2013; 231:45−63. https://doi.org/10.1016/j.ins.2011.09.016.

https://doi.org/10.1109/ICTCK.2015.7582730
https://doi.org/10.1109/ISDA.2015.7489265
https://doi.org/10.1109/ISDA.2015.7489265
https://doi.org/10.1007/s11416-016-0282-2
https://doi.org/10.1007/s11416-016-0282-2
https://doi.org/10.1016/j.cose.2014.04.003
https://doi.org/10.1016/j.cose.2014.04.003
https://doi.org/10.1016/j.procs.2015.02.149
https://www.lasca.ic.unicamp.br/paulo/papers/2014-WETICE.Web2Touch-gregio-afonso-ontology.malware.pdf
https://www.lasca.ic.unicamp.br/paulo/papers/2014-WETICE.Web2Touch-gregio-afonso-ontology.malware.pdf
https://www.lasca.ic.unicamp.br/paulo/papers/2014-WETICE.Web2Touch-gregio-afonso-ontology.malware.pdf
https://doi.org/10.1016/j.ins.2011.09.016

