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Abstract
Objectives: This study is centered on four issues related to the reliability evaluation in multi-source multi-sink networks. 
Each issue discusses the reliability evaluation under different condition. These conditions play an important role in 
determining the quickest paths used in transmitting data between source and sink nodes, with the condition that the 
transmission time of the quickest path does not surpass a predetermined upper bound T. Methods/Statistical Analysis: 

Proposed algorithms used in each issue designed based on approaches taken from previous literatures to evaluate the 

reliability. Findings: The reliability (
wjd TR ) evaluated when each source transmits the demand dwj (the demand for 

resource w at sink node tj) separately to the distinct sink, this is the first issue. The second issue deals with transmitting 
demands request by sink nodes from one source via a group of disjoint paths.  In the case of transmitting demands through 
a gathering of joint paths, share one or more common arc, this is the third one. The last issue investigates the problem 
of sending demands requested by all sinks from all sources via joint paths. Application/Improvements: Examples 
are presented to illustrate how to evaluate the reliability of a multi-source multi-sink networking each case under time 
constraint.

1. Introduction 
The quickest path problem is to obtain a routing path in a 
network with a minimum time to ship σ units of data from 
the source to the sink1. In2, the proposed method is tar-
geted towards the situation where multi-commodities are 
conveyed through all disjointed minimal paths (MPs) in a 
network. In3, distributed algorithms are developed for the 
quickest path problem in any a synchronous communica-
tions networks. In4 the problem is supposed as a criteria 
path problem, allowing the use of a very efficient algorithm, 
which solves the quietest path problem for all possible val-
ues of the amount of data that has to be transmitted.

The system reliability of stochastic-flow networks 
under time constraint is defined as the probability of send-
ing d units of data from the source to the sink through 
the network within T units of time, denoted by Rd,T

5-7. The 
problem of determining the optimal routing policy with 
the highest system reliability discussed in8 and9. Network 
reliability has been evaluated in the case of sending units 
of data through a number of MPs simultaneously under 
both time and budget constraints10. Moreover, network 
reliability according to the spare routing was evaluated11. 
In order to reduce transmission time, the problem of 
simultaneously transmitting data through multiple dis-
joint minimal paths was presented in12.
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A multi-source multi-sink stochastic-flow network is 
an extension of the concept to multiple sources and sinks 
on the same network. Evaluating the system reliability of 
multi-source multi-sink stochastic flow networks has fur-
thermore been addressed in13-16. In13, the optimal resource 
allocation problem subject to reliability maximization has 
been formulated and presented an algorithm to solve it. 
For more than one resource14, the optimal resource flow 
allocation problem has been studied and a GA was pro-
posed to solve it. In15, the flow allocation problem subject 
to transportation cost was studied and solved using GAs. 
In16, the author modified and solved the formulation of 
the flow allocation problem subject to the probability of 
the capacity vector and transmission cost. Further, sys-
tem reliability was evaluated by searching for the optimal 
lower boundary points

In this paper, we will extend the quickest path problem 
to multi-source multi-sink flow networks. The presented 
problem has been studied under the following cases: 

1.	 Each source node (si) sends the specified demand dwj 
(demand for resource w at sink node tj) separately to 
each sink (tj).

2.	 Each source node (si) sends the specified demands  to 
all sink nodes (tj, j=1,2,…,through different paths that 
do not share any common arcs (disjoint paths). 

3.	 Each source node (si) sends the specified demands  
to all sink nodes (tj, j=1,2,…,through joint paths that 
share some arcs. 

4.	 All source nodes (si, i=1,2,3,… ) sends multiple 
demands  to all sink nodes (tj, j=1,2,…,) through joint 
paths, the general case, simultaneously transmitting. 

The rest of the paper is organized as follows. Section 
2 presents notations and assumptions. Section 3 pres-
ents Case A: transmitting demands separately.  Section 4 
describes Case B: transmitting demands through disjoint 
paths. Section 5 provides Case C: transmitting demands 
through joint paths. Case D: the general case, when trans-
mitting multiple demands from all sources to all sinks 
given in Section 6. Section 7 offers our conclusions.

2. Notation and Assumptions

2.1 Notation
G (A, N, M, S, T) a multi-source multi-sink stochastic-
flow network.

A }ne1a{ e ≤≤ , set of arcs.

N set of nodes. 

M  }M,...,M,M{M n21= , where Me is the maximum 

capacity of each arc ea .

S	 {s1,…,sq}: set of source nodes. 

T	 {t1,…,tθ}: set of sink nodes.

D }j1,m1d{ j,w θ≤≤≤≤ w , where j,dw  
is the 

demand for resource w at sink node tj.

MP  Minimal path,

MPi,j,k The kth MP from si to tj.

MPS , , ,{ 1 ,1 ,1 }i j k i jMP i j k kσ θ≤ ≤ ≤ ≤ ≤ ≤  
: a 

set of all MPs, where j,ik
 
represents the number of MPs 

from si to tj.

Li	  The lead time of arc

L(MPijk)  The total lead time of the path(MPijk)

( ) wj
lW a

 is the consumed capacity of  by commodity dwj.

np	 Total number of MPs contained in MPS.

X	 Capacity vector defined as X= (x1, x2, …xe,…, xn).

Td wj
R ,  The system reliability for the given demand dwj 

under T.

2.2 Assumptions
1.	 The capacity of each arc ea is an integer-valued ran-

dom variable, which takes values eM...210 <<<<
according to a given distribution.

2.	 The capacities of the arcs are statistically independent.
3.	 The flow along a path does not exceed its maximum 

capacity.

3. Case A: Transmitting Demands 
Separately from One Source to 
One Sink
The following subsections describe how to calculate i.e. 
the reliability of transmitting a single demand  from the 
source node to the sink . 
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3.1 Definition of Lower Boundary Points for 
(dwj, T)
If X is a minimal capacity vector such that the network 
can send dwj units of data from the source to the sink 
within T units of time, then X is called a lower boundary 
point for (dwj, T). 

3.2 Generate All Lower Boundary Points for 
(dwj, T).
In the following steps, for the kth MP,  MPi,j,k from si to 
tj, MPi,j,k = {, , …,}, we will show how to find the mini-
mal capacity vector jiX , = (x1, x2,…, xe,…, xn) such that 
the network sends dwj units of data within T units of time 
from the source si to the sink tj.

1.	 For each MPijk, determine the smallest integer v such 
that,

  Tvdmpa wj

n

i
kjji ≤+∈∑

=

/}|l{
1

,,i  … (1)

2.	 If , generate the system capacity vector j,iX = (x1, 
x2,…, xe,…, xn) for each MPi,j,k as follows:

, ,

0
i i j k

e

u v if a MP
x

otherwise
≥ ∈

= 
      … (2)

Where xe is an element of Xi,j and u is the minimal 
capacity of ai.

3.3 Evaluation of Td wj
R ,

If j,i
q

j,i
2

j,i
1 X,...,X,X  are the collection of all (dwj, T)-MPi,j, 

and then the system reliability Tdwj
R is defined as follows:  

}}{Pr{ ,
1),(

jiq

uTd uwj
XYYR ≥=

=∪ … (3)

Where }yPr{...}yPr{}yPr{}YPr{ n21 ⋅⋅⋅= . 
Several methods16-20 can be used to evaluate (3), in this 
paper, we will use to evaluate Td wj

R .

3.4 Illustrative Example
As an example, we consider the network in Figure 1, 
which has two source and two sink nodes. The arcs are 
numbered from a1 to a14; their capacities, corresponding 
probabilities and lead-time of each arc taken from15,16.

Figure 1. Two-source two-sink computer network.

In the following steps, we will show how to calculate 

Rd11,T, i.e., the reliability from the source node s1 to the 

sink node t1, where d11 = 11 and T = 9, i.e. evaluate R11,9. 

There are three MPs from s1 to t1: MP1,1,1 = {a1 , a5 }, MP1,1,2 

= {a1 , a6, a9 },MP1,1,3 = {a2 , a7, a9 }.

Step 1: (1.1) the lead-time of MP 1,1,1 = {a 1 , a 5 } is 

51 ll + =3. Then v=2 is the smallest integer such that

(3+ 





2
11

) ≤ 9.

(1.2) the maximal capacity of MP 1,1,1  is 8. Hence, 

== 51 xx 2 and ix =0 for others. So we obtain  1X

=(2,0,0,0,2,0,0,0,0,0,0,0,0,0).

Step 2: (1.1) the lead-time of MP 2,1,1 = {a 1 , a 6 , a 9 } is 

1l + 96 ll + =7. Then v=6 is the smallest integer 

Such that (7+ 





6
11

) ≤ 9.

(1.2) the maximal capacity of MP 2,1,1 is 10. Hence, 

961 xxx ++ =6 and ix =0 for others. So we obtain 2X

=(6,0,0,0,0,6,0,0,6,0,0,0,0,0).
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Step 3: (1.1) the lead-time of MP 3,1,1 = {a 2 , a 7 , a 9 } is 

972 lll ++ =6. Then v=4 is the smallest integer such that 

(6+ 





4
11

) ≤ 9.

(1.2)  the maximal capacity of MP 3,1,1 is 10. Hence, 

972 xxx ++ =4 and ix =0 for others. So we obtain 3X
=(0,4,0,0,0,0,4,0,4,0,0,0,0,0).

Hence R11,9= 0.999957 using Eq (3). Table 1 summa-

rizes the values of Tdwj
R , for different values of dwj.

Table 1. Values of ,wjd TR
 
for different values of dwj

(si, tj) MPi,j,k ,wjd TR
The value of 

,wjd TR

(1,2) MP1,2,1={a1, a6, a14}
MP1,2,2={a2, a7, a14} 12,9R

 
0.995772

(2,1) MP2,1,1={a3, a7, a9}
MP2,1,2={a4, a8, a9, a13} 9,7R 0.993354

(2,2)

MP2,2,1={a3, a7,a14 }
MP2,2,2= {a4, a8,  a13,a14}
MP2,2,3={a4, a8, a10}
MP2,2,4={a4, a1, a12}

10,9R 0.999881

4. Case B: Transmitting Demands 
through Disjoint Paths

We study how to calculates 2 ,
wj

TD
R , the reliability from 

the source node s1 to the sink nodes t1 and t2,where 

( )11 12,u
wjD d d= . There are five MPs from s1 to both t1 

and t2 shown in Table 2-3. In this case, the following con-
straint for each bandwidth should be satisfied when is 
sent through.

  wj
k kb B≤  		  (4)

Table 2. The consumed capacity 

Arc W11 (al) W12 (al) Arc W11 (al) W12 (al)
a1 1 2 a8 1 2
a2 1 2 a9 1 2

a3 1 2 a10 1 2
a4 1 2 a11 1 2
a5 1 2 a12 1 2
a6 1 2 a13 1 2
a7 1 2 a14 1 2

Table 3. The data of each MP and Bk values

k MPijk L(MPijk) Bk

1 {a1,a5} 3 8

2 {a1,a6,a9} 7 10

3 {a2,a7,a9} 6 10

4 {a1,a6,a14} 6 10

5 {a2,a7,a14} 5 10

Where  is the upper bound for bandwidth of, it is 
given by:

( )min{ }
i MPijk

k la
B c a

∈

=
   				       (5)

The wj
kb  bandwidth is evaluated by the following 

equation:

( ){ }
( )

max
l ijk

wj
l wja MPwj

k
ijk

W a d
b

T L MP
∈

×
=

−
  		      (6)

Finally, each  in the capacity vector X, X =(), is con-
structed by eq. (7), (2). 

,

1 , 1,1

1,         
,  

0          

np m
h ijkwj

h k k k
h ijkk w j

if a MP
x b where

if a MP

θ

ρ ρ
= =

∈
=  ∉

∑ ∑     (7)

The following algorithm is used to evaluate the reli-
ability for Case B.

Algorithm B
Begin

B.1. For each arc  ; Read p(, and.
B.2. Determine the source node  and the sink nodes .
B.3. Read , T, and  and .
B.4. For k=1 to np do

B.4.1. Calculate  and according to Eq. (5) and (6) 
respectively.

B.4.2. End do
B.5. Determine the set of disjoint paths.



Indian Journal of Science and Technology 5Vol 12 (22) | June 2019 | www.indjst.org 

M. R. Hassan and H. Abdou

B.6. Construct the capacity vector X using Eq. (7).
B.7. Evaluate  using Eq (3).
End.

Given = (10, 10) and T = 11, withthe consumed capac-
ity shown in Table 2. Table 4,5 summarizes the values of , 
the set of disjoint paths and respectively.

Table 4. The disjoint MPS

Disjoint Pair Commonly-used arcs

MP111∩MP113 φ

MP111∩MP122 φ

MP112∩MP122 φ

MP113∩MP121 φ

Table 5.  wj
 Values

j MPijk bk
11 bk

12 Bk

1 {a1,a5} 2 3 8

2 {a1,a6,a9} 3 5 10

3 {a2,a7,a9} 2 4 10

4 {a1,a6,a14} 2 4 10

5 {a2,a7,a14} 2 3 10

Finally, Table 6 summarizes the candidate vectors. The 
corresponding reliability is =0.999988. The reliability val-
ues for other sources and sinks are shown in Table 7.

Table 6. The candidate capacity vectors

(b11,b12)
(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x

11,x12,x13,x14))
QP 
candidate

(b1
11,b3 

12)=(2,4) (2,4,0,0,2,0,4,0,4,0,0,0,0,0) X1

(b3
11,b1 

12)=(2,3) (3,2,0,0,3,0,2,0,2,0,0,0,0,0) X2

(b1
11,b5 

12)=(2,3) (2,3,0,0,2,0,3,0,0,0,0,0,0,3) X3

(b5
11,b1

12)=(2,3) (3,2,0,0,3,0,2,0,0,0,0,0,0,2) X4

(b5
11,b2

12)=(2,5) (5,2,0,0,0,5,2,0,5,0,0,0,0,2) X5

(b5
11,b5

12)=(3,3) (3,3,0,0,3,0,3,0,3,0,0,0,0,3) X6

(b4
11,b5

12)=(2,4) (2,4,0,0,0,2,4,0,4,0,0,0,0,2) X7

(b3
11,b4

12)=(2,4) (4,2,0,0,0,4,2,0,2,0,0,0,0,4) X8

Table 7. Values of TDR ,2 for different values of dwj

Between different 
sources and sinks

MPi,j,k
2 ,wjD T

R

((1,2)→1) MP1,2,1,1={a1,a5}
MP1,2,1,2={a1,a6,a9}
MP1,2,1,3={a2,a7,a9}
MP1,2,1,4={a3,a7,a9}
MP1,2,1,5={a4,a8,a9,a13}

0.999990

(2→(1,2)) MP2,1,2,1={a3, a7,a9}
MP2,1,2,2={a4,a8,a9,a13}
MP2,1,2,3={a3,a7,a14}
MP2,1,2,4={a4,a8,a13,a14}
MP2,1,2,5={a4,a8,a10}
MP2,1,2,6={a4,a11,a12}

0.999986

((1,2)→2) MP1,2,2,1={a1, a6,a14}
MP1,2,2,2={a2,a7,a14}
MP1,2,2,3={a3,a7,a14}
MP1,2,2,4={a4,a8,a13,a14}
MP1,2,2,5={a4,a8,a10}
MP1,2,2,6={a4,a11,a12}

0.999995

5. Case C: Transmitting Demands 
Via Joint Paths from One Source 
to all Sinks
We study how to calculates TDwj

R ,2 , the reliability from 

the source node s1 to the sink node t1 and t2, where. There 
are five MPs from s1 to both t1 and t2 shown in Table 8 
and 9. In this case, the following constraint for each band-
width should satisfy Eqs. (4), (5), (6) and 

( )*

1 1

  
m u

i
j j

j i

b c aρ
= =

≤∑∑  			     (8)

Table 8. The consumed capacity 

Arc W11 (al) W12 (al) Arc W11 (al) W12 (al)
a1 1 2 a8 1 2
a2 1 2 a9 1 2
a3 1 2 a10 1 2
a4 1 2 a11 1 2
a5 1 2 a12 1 2
a6 1 2 a13 1 2
a7 1 2 a14 1 2

Table 9. The data of each MP and Bk values
k MPijk L(MPijk) Bk

1 {a1,a5} 3 8
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2 {a1,a6,a9} 7 10

3 {a2,a7,a9} 6 10

4 {a1,a6,a14} 6 10

5 {a2,a7,a14} 5 10

where a*  is a commonly-used arc of two or more MPs .

Given D2= (10, 10) and T = 11, with the consumed 
capacity  shown in Tables 10,11 summarizes the values of 
, the set of joint paths and respectively. 

Table 10. The joint MPS

Joint Pair Commonly-used arcs (a*)

MP111, MP112, MP121 {a1}

MP112, MP113 {a9}

MP112, MP121 {a6}

MP113, MP122 {a7}

MP121, MP122 {a14}

Table 11. wj
kb  values

j MPijk bj
1 bj

2 C(a*)

1 {a1,a5} 2 3 8

2 {a1,a6,a9} 3 5 10

3 {a2,a7,a9} 2 4 10

4 {a1,a6,a14} 2 4 10

5 {a2,a7,a14} 2 3 10

Finally, each xl in the capacity vector X, X =(x1,x2,x3

,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14), is constructed by Eq. 

(7). Table 12 summarizes the candidate vectors, the cor-

responding =11,2DR  0.999988 the reliability value from 

s2 to both t1 and t2 shown in Table 13. 

Table 12. The candidate capacity vectors

(b11,b12)
(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x

11,x12,x13,x14)
QP 
candidate

(b1
11,b2

12)=(2,5) (7,0,0,0,2,5,0,0,5,0,0,0,0,0) x1

(b2
11,b1

12)=(3,3) (6,0,0,0,3,3,0,0,3,0,0,0,0,0) x2

(b1
11,b4

12)=(2,4) (6,0,0,0,2,4,0,0,0,0,0,0,0,4) x3

(b4
11,b1

12)=(2,3) (5,0,0,0,3,2,0,0,0,0,0,0,0,2) x4

(b2
11,b3

12)=(3,4) (3,4,0,0,0,3,4,0,7,0,0,0,0,0) x5

(b3
11,b2

12)=(2,5) (5,2,0,0,0,5,2,0,7,0,0,0,0,0) x6

(b2
11,b4

12)=(3,4) (7,0,0,0,0,7,0,0,3,0,0,0,0,4) x7

(b4
11,b2

12)=(2,5) (7,0,0,0,0,7,0,0,5,0,0,0,0,2) x8

(b3
11,b5

12)=(2,3) (0,5,0,0,0,0,5,0,2,0,0,0,0,3) x9

(b5
11,b3

12)=(2,4) (0,6,0,0,0,0,6,0,4,0,0,0,0,2) x10

(b4
11,b5

12)=(2,4) (2,3,0,0,0,2,3,0,0,0,0,0,0,5) x11

(b5
11,b4

12)=(2,4) (4,2,0,0,0,4,2,0,0,0,0,0,0,6) x12

Table 13. Values of TDR ,2 for different values of dwj

Between 
different 
sources and 
sinks

MPi,j,k
2 ,
wj

TD
R

The 
value of 

2 ,
wj

TD
R

(2→(1,2)) MP2,1,2,1={a4,a8,a9,a13}
MP2,1,2,2={a3,a7,a14}
MP2,1,2,3={a4,a8,a13,a14}
MP2,1,2,4={a4,a8,a10}
MP2,1,2,5={a4,a11,a12}

2 ,11D
R

0.999968

6. Case D: Transmitting Multiple 
Demands Via Joint Paths from all 
Sources to all Sinks
The system reliability RD, T of the multi-source multi-sink 
flow network can be calculated by using the inclusion-
exclusion rule according to the generated set of all lower 
boundary points for (D, T). Given D4= (5, 5, 5, 5) and T 
= 11, with the consumed capacity W11(al)= W12(al)=1,W21 
(al )=W22(al)=2..  Table 14-16 summarizes the values 

of, the set of joint paths and, and the candidate capac-

ity vectors respectively. The corresponding reliability 

2 ,11
0.999998.

D
R =  In addition, using different con-

sumed capacity W11 (al )= W12 (al )=W21 (al )=W22 (al)=1.  

Table 17-19 summarizes the values of, the set of joint 
paths and, and the candidate capacity vectors respectively. 

The corresponding reliability 2 ,11
0.999998

D
R = .
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Table 14. The data of each MP and Bk values

k MPijk L(MPijk) Bk

1 {a1,a5} 3 8

2 {a1,a6,a9} 7 10

3 {a2,a7,a9} 6 10

4 {a1,a6,a14} 6 10

5 {a2,a7,a14} 5 10

6 {a3,a7,a9} 8 10

7 {a3,a7,a14} 7 10

8 {a4,a8,a9,a13} 8 12

9 {a4,a8,a13,a14} 7 12

10 {a4,a8,a10} 5 8

11 {a4,a11,a12} 7 10

Table 15. bk
wj values

j MPijk bj
11 bj

12 bj
21 bj

22

1 {a1,a5} 1 2 1 2

2 {a1,a6,a9} 2 3 2 3

3 {a2,a7,a9} 1 2 1 2

4 {a1,a6,a14} 1 2 1 2

5 {a2,a7,a14} 1 2 1 2

6 {a3,a7,a9} 2 4 2 4

7 {a3,a7,a14} 2 3 2 3

8 {a4,a8,a9,a13} 2 4 2 4

9 {a4,a8,a13,a14} 2 3 2 3

10 {a4,a8,a10} 1 2 1 2

11 {a4,a11,a12} 2 3 2 3

Table 16. The candidate capacity vectors

(b11, b12, b21, b22)
(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
x11,x12,x13,x14)

QP 
candidate

a5 {a1,a5} (7,0,0,0,2,5,0,0,5,0,0,0,0,0) x1

a10 {a4,a8,a10} (6,0,0,0,3,3,0,0,3,0,0,0,0,0) x2

a11 {a4,a11,a12} (6,0,0,0,2,4,0,0,0,0,0,0,0,4) x3

a12 {a4,a11,a12} (5,0,0,0,3,2,0,0,0,0,0,0,0,2) x4

Table 17. The data of each MP and Bk values

k MPijk L(MPijk) Bk

1 {a1,a5} 3 8

2 {a1,a6,a9} 7 10

3 {a2,a7,a9} 6 10

4 {a1,a6,a14} 6 10

5 {a2,a7,a14} 5 10

6 {a3,a7,a9} 8 10

7 {a3,a7,a14} 7 10

8 {a4,a8,a9,a13} 8 12

9 {a4,a8,a13,a14} 7 12

10 {a4,a8,a10} 5 8

11 {a4,a11,a12} 7 10

Table 18.  bk
wj values

j MPijk bj
1 bj

2 bj
3 bj

4

1 {a1,a5} 1 1 1 1

2 {a1,a6,a9} 2 2 2 2

3 {a2,a7,a9} 1 1 1 1

4 {a1,a6,a14} 1 1 1 1

5 {a2,a7,a14} 1 1 1 1

6 {a3,a7,a9} 2 2 2 2

7 {a3,a7,a14} 2 2 2 2

8 {a4,a8,a9,a13} 2 2 2 2

9 {a4,a8,a13,a14} 2 2 2 2

10 {a4,a8,a10} 1 1 1 1

11 {a4,a11,a12} 2 2 2 2

Table 19. The candidate capacity vectors

(b1, b2, b3, b4)
(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
x11,x12,x13,x14)

QP 
candidate

a2{a2,a7,a9} and 
{a2,a7,a14}

(0,8,0,0,0,0,8,0,4,0,0,0,0,4) x1

a5{a1,a5} (0,4,0,0,4,0,0,0,0,0,0,0,0,0) x2

a10{a4,a8,a10} (0,0,0,4,0,0,0,4,0,4,0,0,0,0) x3

a11{a4,a11,a12} (0,0,0,8,0,0,0,0,0,0,8,8,0,0) x4

a12{a4,a11,a12} (0,0,0,8,0,0,0,0,0,0,8,8,0,0) x5

a2{a2,a7,a9} and 
{a2,a7,a14}

(0,8,0,0,0,0,8,0,4,0,0,0,0,4) x6

7. Conclusions
The study is successfully evaluated the reliability in multi-
source multi-sink stochastic flow networks in different 
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situations.   Given the network information (arcs capacities, 
probabilities, lead times), required demand single or multiple 
based on the source and sink nodes, and the time constraints 
T. Situation A, transmitting with no restriction on determin-
ing the relationship between the group of paths, joint or 
disjoint. Situation B, transmitting the required demands via 
disjoint paths situation C, transmitting demands through a 
group of joint paths, share one or more common arc. Finally, 
the general case when all sources send the required demands 
to the sink nodes via joint paths, evaluating, of a multi-source 
multi-sink flow network. 
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