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Abstract
Objectives: To develop a robust paired bootstrap criterion for linear model selection and to compare the performance 
of the proposed criterion across different error distributions. Methods/Analysis: Our proposed robust paired bootstrap 
criterion is based on a robust conditional expected prediction loss function. We estimate the robust conditional expected 
prediction loss by using the m-out-of-n stratified bootstrap approach. The m-out-of-n bootstrap procedure is considered 
to obtain the asymptotic consistency. The effects of large residuals are reduced by using a robust ρ function. Model with 
a minimum robust prediction loss is used as a selection criterion. The usefulness of our proposed robust model selection 
procedure is investigated through real data set and Monte Carlo simulations under a variety of contamination and error 
structures. Findings: The conventional least squares selection procedures generally fail in the existence of outliers or 
in heavy-tailed error distributions. The stratified bootstrap selection procedure has shown good results as compared to 
simple bootstrap procedure. The proposed robust method has shown good robustness features with contaminated normal 
and heavy-tailed distributions. The proposed criterion outperforms the alternative procedure in both situations, i.e. in 
contamination-free data as well as in contaminated data. Applications: The model selection procedure has a large number 
of applications including life sciences, social sciences, business or economics. The proposed criterion can be used in both 
cases, i.e. in contamination-free data as well as in contaminated data, to select a model.

1. Introduction
Model selection procedures involve fitting a set of 
competing models and then selecting the model by 
comparing their prediction loss. Specifically, the robust 
estimators are used, when the data quality is questionable 
(i.e., assumptions about error distribution are not 
fulfilled). Various studies on model selection procedures 
depend on maximum likelihood-type or least squares 
approach such as1,2, and3. All these criteria are severely 
affected when dataset contains outliers. Some other 
criteria for model selection are based on minimizing the 
expected squared prediction loss. The prediction loss 

is estimated by re-sampling techniques such as cross-
validation or the bootstrap4-6. However, these criteria are 
susceptible because of using the unbounded loss function 
when computing the prediction loss. 

To cope with these problems to model selection, the 
researchers’ proposed different approaches, some of these 
are robust versions of well-known standard criteria1-3 
or on various re-sampling techniques, like bootstrap or 
cross-validation7-21.

The rest of the paper is organized as: Section 2 
describes paired bootstrap method to calculate prediction 
error, Section 3 discusses the stratified bootstrap 
procedure, Section 4 presents a RoBust Paired bootstrap 
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Criterion (RBPC) for model selection, Section 5 reports 
the simulation results, Section 6 demonstrates the data 
example and Section 7 provides the conclusion with a 
brief discussion.

2. Bootstrap Measures of 
Prediction Error
The re-sampling procedures such as the bootstrap and 
cross-validation are recommended to estimate the 
prediction error for variable/model selection. Bootstrap 
procedures involve obtaining multiple independent 
samples by sampling with replacement of the original data 
set. For paired bootstrap, sampling with replacement is 
done to form bootstrap samples from the original sample 

{(y1, x1), (y2, x2), … , (yn, xn)}22 The bootstrap sample 
( , )* *y xi i  for i=1,2,…,n may contain an observation from 
the original sample once or many times. The bootstrap 
estimate of β from paired bootstrap samples is:

b
∧

−

= ( )* * * * * .X X X YT T1

The estimate of the prediction error for the kth 
bootstrap sample from the original sample (yi, xi), is  
given by:
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 is the bootstrap estimator based on the kth 
bootstrap sample. The unbiased estimator of prediction 
error for the kth bootstrap sample is suggested by23 as:
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Where yi
*  is the vector of responses for the ith observation 

in the kth bootstrap sample.Author5 showed that a 
selection procedure based on Λ

∧

k  is inconsistent? To 
obtain asymptotic consistency, an m-out-of-n bootstrap 
procedure used by5 for an appropriately chosen m<n. 

Suppose that we have a column vector of n responses 
Y = (y1 ,y2,…,yn)

T and X is an n x p design matrix. Let α 
represent a subset of size pα from {1,2,…,p}, and Xα is an 
n x pα matrix. Let x i

T
a  represent the ith row vector of the 

design matrix Xα. The linear regression model is given by 

y x i ni i
T

i= + = …a a a ab s  , , , ,    1 2 � (3)

Where, σα > 0, Xα and єαi = (єαi, єα2,…, єαn)
T are independent, 

and the errors єαi~N(0, 1), βα, is an unknown pα -vector of 
regression coefficients. Let   represent a collection of 
candidate models. 

The interest here is to select a model α from   that 
fits the data well. So, the model is indexed by α ∈  and 
βα is estimated by the estimator βα. A good model should 
have the ability to predict future observations with great 
accuracy, so for this purpose, one can use the conditional 
expected prediction error. For a given nonnegative loss 
function ρ(.), the robust conditional expected prediction 
error for model α is measured as 
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Where ba

∧
 is the estimator of βα,σ is the measure of spread 

for a given data, and z = (z1, z2,…, zn)
T is a vector of future 

responses at X, independent of y. Initially, the measure 

of conditional expected prediction error with r x x( ) =
2

2
 

is considered by5 as as election criterion. Following5, the 

m-out-of-n stratified bootstrap procedure is used by14 to 
estimate the conditional expected prediction error. The 
estimated robust expected prediction error is given by:
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Where ba

∧

,

*

m  is the bootstrap estimate of ba

∧

 and E* 
represents expectation with respect to the bootstrap 
distribution. The interest here is to choose a model α ∈ 
  that minimizes Mm n

PE
, a( )  i.e.:

a a
a

m n m n
PEM, ,= ( )arg min

εA � (6)

Ignoring the stratification, the bootstrap estimator 
given in eq. (6) becomes a robust form of the estimator 
suggested by5.

3. The Stratified Bootstrap
Here we explain the main steps in applying the 

stratified bootstrap procedure. Following14,15, we construct 
a stratified bootstrap sample of size m from the set of n 
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original observations {(yi, xi): i=1,2…., n} by using the 
following steps: 

1.	 Calculate the residuals i.e., r y Xi i i
T

a a ab= −
∧

 and then 
arrange them to obtain the order statistics.

2.	 Determine the number of strata, say S at between 3 
and 8.

3.	 For each stratum set boundaries as 1/S, 2/S … , 
(S − 1)/S.

4.	 Allocate observations to the stratum k in which the 
residuals riα lie, so that n nkk

s

=∑ =
1 , where nk is the 

number of observation in stratum k.
5.	 From stratum k, sample rows of (y, X) independently 

with replacement and determine mk = nkm/n (rounded 
number), such that m mkk

s
=

=∑ 1
.

In the simple expression, one can make an assumption 
about mk, say these are integers. Then the bootstrap 
observations are denoted as: ( , )* *y xki ki , i = 1,2, … , mk. 

4. The Proposed Robust Model 
Selection Criterion 
In this section, a RBPC is proposed for model selection. The 
proposed criterion is based on Robust Expected Prediction 
Loss (REPL). The robust expected prediction loss is 
estimated by usingan m-out-of-n paired bootstrapping 
procedure. To obtain the bootstrap estimate of robust 
expected prediction loss, we follow the following steps: 

1.	 From the full model calculate and arrangePearson 
residuals.

2.	 Fix the number of strata S. The number of strata should 
be in between 3 to 8 as suggested by24.

3.	 Allocate observations into different strata so that 
observations in the extreme tail are kept in lower 
or upper tail strata and other strata comprising the 
remaining observations.

4.	 From each stratum, sample rows of (y, X) independently 
with replacement so that total bootstrap sample of size 
is m ≤ n.

5.	 Construct the estimator ba

∧

,

*

m  from data obtained in 
step (d).

6.	 Repeat the steps (d) and (e) K independent times.

The modified robust expected prediction loss is 
estimated by Mm n

PE
,

* ,a( )  where:
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Where ba

∧

,

*

m  is the bootstrap estimate of ba

∧

,m , E* represents 
expectation with respect to the bootstrap distribution 
and m is the number of distinct observations in the boots 
trapsample and [−m] denotes the m observations are 
excluded when calculating Mm n

PE
,

* a( ) . To use eq. (7), we 
have to specify ρ(.) and σ. We take to be bounded because 
our interest here is to fit and predict the core observations 
rather than those observations that lie in the tails. Here 
we prefer trimming, which means that for large |x|, ρ(.) is 
constant. Following14, we use a function which is just like 
a quadratic about the origin and becomes constant when 
it is away from the origin, such a ρ(.) function is given by:

r x x b( ) = ( )min , .2 2

� (8)

The values of b can be varied, but b = 2 is reasonable in 
our simulation study. For simplicity, σ is measured by the 
MAD from the median and is given by: 

s
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 is the 
estimator for βα.

With the proposed robust paired bootstrap criterion, 
we select a model α ∈   that minimizes Mm n

PE
,

* ,a( )  i.e.:

a a
a

∧
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The optimal m depends on the true model, one  
should use 0.25n ≤ m ≤ 0.5n for moderate n (i.e., 50≤ 
n ≤200)14, 15. 

5. Simulation Study
We carry out two simulation studies to evaluatethe 
performance of our proposed RPBC. The first one is 
designed to compare the behavior of our proposed 
procedure for contamination free dataset (simulation 
setting 1) with that of classical procedures (i.e. the AIC 
and BIC). The second simulation study demonstrates 
the utility of our RPBC in handling contaminated data 
(simulation setting 2).
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5.1 Simulation Setting 1
To compare the performance of our proposed 

bootstrap model selection criterion in the no-outlier case, 
the following regression model is considered:

Y X X X X X ii i i i i i i= + + + + + = …b b b b b1 1 2 2 3 3 4 4 5 5 1 2 40 , , , ,

where єi~N(0,1),X1,is the column of 1’s and X2, X3, X4, and 
X5 are taken from the solid waste data of25, the same as 
those used in4,5,13,14,16,26,27. The comparison of our proposed 
criterion α̂m,n (eq. (9)) is made with a robust version of5 
–αm,n (eq. (6)). In the case of zero contamination, the LS 
estimator is used to fit the regression models. 

The estimated selection probabilities for our proposed 
criterion α̂m,n and –αm,n using the LS estimator androbust 
loss function ρ(x) = min (x2, b2) are given in Table 1. The 
results presented in Tables 1 are obtained for L=1,000 MC 
simulations using simple bootstrap and K=100 bootstrap 
replications for m=15, 20, 30. For comparison purpose, the 
classical procedures such as AIC and BIC are also included. 

The results based on our simulation study are 
summarized as follows: 

•	 The proposed selection criterion α̂m,n performs very 
well as compared to –αm,n and other classical criteria. 
For example, for β2 = (2,0,0,4,8)we see that the modi-
fied criterion α̂20,40 selects the optimal model 95.1% 
(sd0.951 =0.007), –α20,40 selects the optimal model 86.0% 
(sd0.860=0.011), the AIC selects the optimal model 
69.6% (sd0.696= 0.015) and the BIC selects the optimal 
model 83.5% (sd0.835=0.012).

•	 The proposed procedure clearly improves for smaller 
m. For example, the percent correct is 84.6% of the 
time for m = 30, which is much less than the 97.1% 
form =15, using ρ(x) = min (x2, b2) and β1 = (2,0,0,4,0) 

•	 The proposed criterion α̂m,n is less dependent on 
m(bootstrap sample size) as compared to –αm,n.

•	 If the optimal model is full model, thenoutperforms 
our proposed criterion

Table 1.  Selection probabilities of α̂m,n and –αm,n based on the LS estimator and ρ(x) = min (x2, b2)

True β Model m=15 m=20 m=30 AIC BIC
–α15.40 α̂15,40

–α20,40 α̂20,40
–α30,40 α̂30,40

(2,0,0,4,0) 1,4* 0.897 0.971 0.800 0.927 0.559 0.846 0.590 0.778
1,4,5 0.028 0.010 0.053 0.021 0.106 0.046 0.104 0.058
1,3,4 0.029 0.010 0.071 0.018 0.139 0.054 0.102 0.066
1,2,4 0.042 0.009 0.060 0.031 0.109 0.046 0.106 0.066
1,3,4,5 0.001 0.000 0.006 0.001 0.027 0.003 0.027 0.004
1,2,4,5 0.002 0.000 0.005 0.002 0.025 0.002 0.027 0.013
1,2,3,4 0.001 0.000 0.005 0.000 0.021 0.003 0.024 0.009
1,2,3,4,5 0.000 0.000 0.000 0.000 0.014 0.000 0.020 0.006

(2,0,0,4,8) 1,4,5* 0.934 0.981 0.860 0.951 0.695 0.893 0.696 0.835
1,3,4,5 0.023 0.010 0.065 0.021 0.139 0.052 0.122 0.068
1,2,4,5 0.043 0.009 0.068 0.028 0.124 0.049 0.136 0.075
1,2,3,4,5 0.000 0.000 0.007 0.000 0.042 0.006 0.046 0.022

(2,9,0,4,8) 1,2,5 0.000 0.005 0.000 0.001 0.000 0.001 0.000 0.003
1,3,4,5 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001
1,2,4,5* 0.979 0.989 0.932 0.972 0.825 0.939 0.829 0.905
1,2,3,4,5 0.021 0.006 0.068 0.027 0.174 0.059 0.171 0.091

(2,9,6,4,8) 1,3,4,5 0.008 0.036 0.002 0.010 0.001 0.005 0.000 0.001
1,2,4,5 0.001 0.004 0.000 0.001 0.000 0.001 0.000 0.001
1,2,3,5 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1,2,3,4,5* 0.991 0.959 0.998 0.989 0.999 0.994 1.000 0.998

Note: (*) denotes the optimal model.
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5.2 Simulation Setting 2
Another simulation study iscarried out to show the 
performance of our proposed RPBC in handling 
contaminated data. Furthermore, the use of stratified 
bootstrap is explored when the atypical observations are 
present in the data. For this purposethe followingregression 
model is considered

y x x ii i i i= + + + = …2 2 0 1 2 641 2  , , , ,

where the design matrix X had columns generated 
as uniform on [–1, 1]; and X is kept constant for all 
simulation replications. We choose five different error 
distributions that are deviated from normality: 

1.	 є1 is [3/8] outliers (i.e., 62.5% [5/8] from a standard 
normal and 37.5% [3/8] from a normal with, μ = 30 − 
2 −2x1 and σ = 1);

2.	 є2 is [1/4] outliers (i.e., 75% [3/4] from a standard 
normal and 25% [1/4] from a normal with, μ = 30 − 2 
−2x1 and σ = 1);

3.	 є3 is [1/8] outliers (i.e., 87.5% [7/8] from a standard 
normal and 12.5% [1/8] from a normal with, μ = 30 − 
2 −2x1 and σ = 1);

4.	 є4 Is the Cauchy distribution; and
5.	 є5 is the slash distribution

In Table 2 the following possible models are considered:

•	 Model (1) means, amodel with intercept only; 
•	 Model (1, 2) means a model having intercept and X1;
•	 Model (1,3) means a model having intercept and X2; 

and
•	 Model (1, 2, 3) means the full model. 

The MM-estimator of28 is used to fit the robust 
regression models. For such purpose, the rlm ( ) function 
in R is used for estimating the regression parameters. 
The selection probabilities of the criterion –αm,n and our 
proposed criterion α̂m,n on the basis of un-stratified 
bootstrap and stratified bootstrap (using four strata) 
are computed. The selection probabilities areobtained 

Table 2.  Selection probabilities of  and based on the simple bootstrap and the stratified bootstrap using  
MM-estimator and simple bootstrap using LS-estimator

Errors Model MM-estimator LS-estimator
Simple Bootstrap Stratified bootstrap Simple Bootstrap

–α24.64 α̂24,64
–α α̂ –α24.64 α̂24,64

є1 1 0.368 0.392 0.166 0.189 0.756 1.000
1,3 0.000 0.000 0.000 0.000 0.244 0.000
1,2* 0.290 0.362 0.721 0.753 0.000 0.000
1,2,3 0.342 0.246 0.113 0.058 0.000 0.000

є2 1 0.000 0.000 0.000 0.000 0.999 1.000
1,3 0.000 0.000 0.000 0.000 0.000 0.000
1,2* 0.935 0.968 0.905 0.966 0.001 0.000
1,2,3 0.065 0.032 0.095 0.034 0.000 0.000

є3 1 0.000 0.000 0.000 0.000 1.000 1.000
1,3 0.000 0.000 0.000 0.000 0.000 0.000
1,2* 0.894 0.952 0.887 0.956 0.000 0.000
1,2,3 0.106 0.048 0.113 0.044 0.000 0.000

є4 1 0.008 0.016 0.006 0.013 0.770 0.823
1,3 0.000 0.000 0.000 0.000 0.001 0.001
1,2* 0.954 0.974 0.937 0.966 0.227 0.175
1,2,3 0.038 0.010 0.057 0.021 0.002 0.001

є5 1 0.062 0.139 0.047 0.097 0.828 0.882
1,3 0.004 0.005 0.007 0.003 0.005 0.002
1,2* 0.885 0.842 0.889 0.877 0.164 0.116
1,2,3 0.049 0.014 0.057 0.023 0.003 0.000

Note: (*) denotes the optimal model. For both selection criteria.

24 64,
SB

24 64,
SB
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by using 1,000 MC simulations and K=100 bootstrap 
replications. These results are mentioned in Table 3.

From the simulation outputs in Table 3, it is clear 
that for all error distributions our proposed robust 
criterion α̂m,n performs very well as compared to –αm,n. 
However, in the case of Slash error distribution, our 
modified procedure does not perform well as compared 
to. The output indicates thatthe proposedmodel 
selection procedure using the robustfunction in (8) 
and MM-estimator is robust in the presence of highly 
contaminated data. For example, the percent correct 
is 36.2% for un-stratified bootstrap, whereas the 
percent correct is75.3%for stratified bootstrap for the 
contaminated normal situation є1. Furthermore, we 
observe that, in the presence of outliers and heavy-
tailed error distributions, the conventional least 
squares selection procedures are not performing well. 
For example, under є4 error distribution, the percent 
correct is 96.6% for our proposed robust criterion 
using MM-estimator, whereas the percent correct is 
17.5%for the least squares procedure. Similarly, under 
∈5 error distribution, our proposedprocedure with 
MM-estimator is 87.7% correct, whereas the least 
squares procedure is11.6% correct. 

These outputs show that the proposed robust method 
has good robustness features with contaminated normal 
and heavy-tailed distributions, while the least squares 
procedure performs very poorly in both situations. This 
clearly proves the lack of robustness of the least squares 
procedure in the presence of outliers and heavy-tailed 
distributions.

5.3 Data Example (Stack Loss Data)
In this section, we analyze the Stack loss data presented 

by29. This dataset consists of three explanatory variables, 

and it contains four outliers, namely observations 1,3,4, 
and 21.The response is the Stack loss (y) observed on 
n=21 observations. The explanatory variables are theFlow 
of cooling air (X1), Cooling Water Temperature (X2), and 
Concentration of acid (X3).We applied our robust method, 
the existing methods, and the traditional methods on the 
data. Table 2 presents a summary of selected best models. 
Table 2 shows that the classical methods select the full 
model whereas robust criteria agreed with the importance 
of the two variables, X1 and X2.The best model according 
to our criterion includes X1 and X2.

6. Conclusion
A RPBC is proposed to select the best subset of 

variables in linear regression models. The proposed 
method is based on robust conditional expected 
prediction loss and a robust -function. A stratified 
bootstrap procedure is used to estimate the expected 
prediction loss function.We recommended a robust 
-function to decrease the effect of large residuals. From 
the simulation outputs, it is clear that in both cases, i.e. 
in contamination-free data as well as in contaminated 
data, the proposed selection criterion performed well. 
The results show that the proposedprocedure has good 
robustness features with contaminated normal and 
heavy-tailederrors distributions, while the least squares 
method performed very poorly in both situations. This 
clearly proved the lack of robustness of the least squares 
procedure in the presence of outliers and heavy-tailed 
distributions.Furthermore, our proposed criterion is less 
dependent ona bootstrap sample of sizemas compared 
to the robust version of5. In conclusion, our proposed 
criterion is superior and will do better when the data 
generating model is small.
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