
Software Effort Estimation using Function Point
based Clustering Technique (FPBCT)

N.A. Bhaskaran* and V. Jayaraj

School of Computer Science Engineering and Applications, Bharathidasan University, Tiruchirappalli - 620 024,
Tamil Nadu, India; nabhaskaran@gmail.com, jaya_v2000@yahoo.com

Indian Journal of Science and Technology, Vol 11(48), DOI: 10.17485/ijst/2018/v11i48/138343, December 2018
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Abstract
Objectives: To estimate software development effort efficiently and easily. Methods/Statistical Analysis: Estimations
at the start of the project can help identify functions involved and connect with entire the effort and implementation of
a project. The proposed technique called FPBCT (Function Point Based Clustering Technique) is based on function point
analysis and k-means clustering technique for achieving better predictive accuracy in software effort estimation. A live
case of software development in catering is taken as a sample for study. Findings: The food service industries provide
catering services for various occasions such as School functions, Colleges functions, Hospital functions, Marriage Party
and many other formats, including ‘on-premises’ and ‘off-premises’ catering services. FPBCT groups the input values into
three clusters based on their Euclidean distance measures of three centroids namely 3 for elementary, 5 for Medium and
8 for complex functions in a software program. In each centroid, the clusters are formed based on similarity measures i.e.
time and lines of code and thus FPBCT effectively estimates the effort required to program software programs or modules
based on function points. This research takes into account the function points in software, groups them and estimates the
effort required for a project. Further, it also gives comparative efforts required in different programming languages for es-
timating efforts required using software function points. Application/Improvements: The proposed technique can also
be adapted to object oriented programming using use cases in the future.

Keywords: Clustering, k-Means, Lines of Codes, Software Development, Software Effort Estimation, FBCT

*Author for correspondence

1. Introduction
Software development is a creative process where personal
efficiencies differ, making it difficult to plan and estimate.
Software development effort estimation is the foresight
on effective utilization of resource efforts required in pro-
gramming. It is necessary for organizations to complete
projects within a stipulated budget and time. The success
of projects directly depends upon effort and cost estima-
tions. Effort estimation becomes an important parameter
as cost is based on the total effort required for complet-
ing a project. Software development cost estimation is a
future prediction of a work that is managed by managers
who decide on the time frames and resources required for
project completion.1 It is important for both customers
and software companies to plan and predict parameters
in a project at the initial stage to maximize outputs. Thus,
Project Managers determine the cost and effort for allo-
cating the right budgets. The evaluation of effort and cost

is achieved using project metrics of previous projects for
comparisons, before arriving at a conclusion on the time
frame required for new projects. Thus, software estima-
tion becomes a crucial activity for successful software
project management and fundamental to the project
planning and budgeting.

Software Effort Estimation (SEE) can be categorized
into Algorithmic and non-algorithmic models. Non-
Algorithmic methods estimate by analyzing previous
project information datasets. They do not use any formula
or statistical techniques for effort estimations. They stick
to comparisons between two sets of information for their
conclusions or results. On the other hand, Algorithmic
models (Parametric models) use mathematical formu-
lae on inputs for their estimations. Most commonly used
algorithmic models for software cost estimation include
Boehm’s COCOMO,2 Albrecht’s Function Point Analysis,3
and Putnam’s SLIM.4 The primary focuses of the algo-
rithmic model is design, analysis, implementation and

Software Effort Estimation using Function Point based Clustering Technique (FPBCT)

Indian Journal of Science and TechnologyVol 11 (48) | December 2018 | www.indjst.org2

optimization. The secondary focus is on the experimen-
tal evaluation and practical applications of the software.
Though, a significant improvement has been achieved
using soft computing techniques in SEE, limitations do
exist. The vague nature of software requirements also
complicates SEE. It is unlikely to expect very accurate SEE
because of the inherent uncertainty in software develop-
ment projects and the complex and dynamic interaction
of factors that impact software development.

The projects may have deficit or vague of information
which need extra efforts to acquire or understand. The risk
in a project rises when important functions are identified
at the end of the project impacting effort estimations and
increasing its life cycle. The quality of the estimation is
another factor, which determines the success of the proj-
ect and facilitates in avoiding risks. On-time deliverables
are an important concern for software organizations and
inaccurate estimations have frequently leads to project
failures. Under-estimated projects lead to unfavorable
outcomes on business. While over-estimated projects
result in the poor resource allocations and missed busi-
ness opportunities. Further, estimation data is inherently
non-linear, making accurate estimations difficult. Better
estimations can be achieved, when this non linearity is
eliminated using relationships and reducing heterogene-
ity by grouping. The main objective of this research is to
classify software functions based on complexity, group
them and add weights to the factors for SEE.

2. Effort Estimation
Estimation is an approximated value on input data which
may be incomplete or uncertain. It determines the effort,
money, time and resources required to build a specific
system or a product. Estimations are based on previously
available and recorded data about assumptions and iden-
tified risks. The basic steps in project estimation involve
estimating the size, effort, schedule and cost involved in
the project. Project metrics provide valuable inputs for
generating quantitative estimates. Generically, Project
Estimation approaches use decomposition Techniques,
where the complete project is divided into smaller man-
ageable tasks and estimated. The effort required for a
project can be estimated by breaking down a project into
related software engineering activities. For example, iden-
tifying and dividing these activities into tasks that can be
measured and estimate the effort hours or days or months

per person. The total of all efforts is the cumulative effort
required for the project. Function Point (FP), introduced
by Alan Albrecht of IBM in 1979, is a unit for expressing
business functionality quantitatively. A study compared
the accuracy of the four estimation models in software
projects using FPA for effort estimations.5 FPs is widely
accepted as an industry standard for functional sizing
and help measure the software size. Several recognized
standards for FPs are in existence like ISO Standards
(COSMIC − ISO/IEC 19761:2011 Software engineering).
Function Point Analysis (FPA) quantifies the functions
contained within software in terms that are meaningful to
the software users and are based on requirements specifi-
cation. A case study applying both the COCOMO model
and Function Point Analysis for SEE was done showing
the estimated effort and error percentage.6 Elementary
Process in FP is the smallest functional user requirement
unit that constitutes a complete transaction and is self-
contained. There are two types of functions namely data
and transaction functions. An Application boundary and
FP elements are depicted in Figure 1.

Figure 1. FP Elements in the Application Boundary.

SEE are crucial for organizations as it provides expense
management. Though many quantitative models in esti-
mation have been proposed an overwhelming majority of
these models consider Line of Code (LOC) and FPs for
their estimations. Project size estimations affect the accu-
racy of the expense estimations.7

3. Clustering and Estimation
A number of data clustering techniques have been devel-
oped to find the optimal subsets of data from the existing

N.A. Bhaskaran and V. Jayaraj

Indian Journal of Science and Technology 3Vol 11 (48) | December 2018 | www.indjst.org

datasets.8-10 Clustering is an unsupervised classification;
partitions unlabeled sets of data into smaller sets based on
similarity measures. Clustering can be useful to experts
in gathering related software product modules. Such a
system influences after grouping strategies to gathering
comparable modules together as intelligible clusters, and
facilitates the tedious issue of marking for the expert.11
Every cluster can represent a module for further review by
an expert in the marked groups. The similarity measures
used for grouping can also ease the experts work in adding
further programs to modules. Once a program or module
is identified, clustering can help in an abstract effort esti-
mation of the programming tasks and effectively modular
estimations. Clustering can be used as a preprocessing step
to break down complicated software projects into smaller
groups and hence tasks for effort estimations. Error-prone
parts can also be identified and such information can be
reduced.12 K-means clustering algorithm is a simple and
efficient algorithm to implement for categorizing data into
clusters. Its main objective is to find cluster centers or cen-
troid which is done by minimizing the distance between
clusters. The total number of clusters is pre-defined in
advance. K-means approach13-15 can be used with two vari-
ants/criteria’s in order to measure the coherence of clusters.
K-means clustering is depicted in equation (1).

J = −
==
∑∑

i

n

j

k
j

jx c
11

2() (1)

Where J is the objective function, k-cluster numbers, x is
a case, n is number of cases and C the centroid.

4. Proposed Function Point based
Clustering Technique (FPBCT)

SEE can be predicted by machine learning techniques due
to its nature of learning. These techniques focus on data
analysis. Researchers using different techniques are more
concerned about accurate predictions in effort estima-
tions while developing software. Estimations at the start
of project can help identify functions involved in learn-
ing resource difficulties from the project. This kind of
earlier estimation connected with entire effort and imple-
mentation is extremely important because this specific
estimation (both effort as well as time) is needed for over-
all improvements in project developments. FPBCT takes
into account the atom of effort estimations by consider-
ing functional points in its analysis and applies k-means

clustering for its effort estimation. The FPBCT algorithm
is listed below:
Input: Functional Point Module Dataset with X data

points FP = {FP1, ...,FPx}
 Where FP is the Function Points and X is finite
 And P = {M1….MN}
 Where M-Modules and N is finite
Step 1: For Each Module do

For I = 1 to N do
If FPI= ‘C’ then
Multiply Complexweight to FPI

Else If FPI= ‘M’ then
Multiply Medium weight to FPI

Else If FPI= ‘E’ then
Multiply Elementary weight to FPI

End if
End Function List

End Module
Step 2: K-Means Input: FP dataset with X data points FP

= {FP1, ...,FPx} FPX∈ {1, ..., X}.
Step 3: Declare the cluster centroid points for Complex,

Medium and Elementary.
Step 4: Centroid prediction: For cluster c, Let

MN = {FPN|MN = c}, the centroids predicted as
µMc = 1 |FPc| such that FP∈M.

Step 5: Stop if M does not change, otherwise go back to
Step 3.

Similar cluster numbers form centroids. In each cen-
troid the clusters are formed based on similarity measures
i.e. time and lines of code.

5. Results
Catering is multifaceted as they may provide food service
at a remote site or a site such as hotels, and hence there
is a need of software application for maintaining master
and transaction records and making system automated.
The system has to support all activities related to the Menu
Creation including master tables maintenance and report
generation. The Master Maintenance module consists of
information about the products and services including
sub-modules, Items master (information about the par-
ticular Items), Team master (Expert team in making food
items), Sub items master (detail to item master), Event
master (Information on booked events), and Customer
master (Information on Customers). A food menu module
caters to customer requirements on events. The reporting

Software Effort Estimation using Function Point based Clustering Technique (FPBCT)

Indian Journal of Science and TechnologyVol 11 (48) | December 2018 | www.indjst.org4

Modules output required reports from the software. The
Food Service software top level functions are listed in Table
1. Table 2 lists the top level function as functions points in
terms of complexity, while Table 3 details lines of code met-
rics of computer languages based on Software Economics
and Function Point Metrics, Version 10.0 April 14, 2017.

Table 1. Food Service Software Top Level Functions

No Function Description Function Type

1 Customer Master Add, Modify, Delete, View

2. Item Master Add, Modify, Delete, View

3 Item Sub-Master Add, Modify, Delete, View

4 Team Master Add, Modify, Delete, View

5 Event Master Add, Modify, Delete, View

6 Customer Events Master Add, Modify, Delete, View

7 Menu Creations Add, Modify, Delete, View

8 Date wise Menus Display Report

9 Display Menu handling
Status Date Wise Report

10 Display Team Task
(Individual) Report

11 Display Team Task
(Customer/Party wise) Report

Table 2. Food Service Software Function Points with
Complexity

No. Function Description
Function

Point
Complexity

1 Customer Master Add C

2. Item Master Add C

3 Item Sub-Master Add C

4 Team Master Add C

5 Event Master Add C

6 Customer Events Master Add C

7 Menu Creations Add C

8 Customer Master Modify C

9 Item Master Modify C

10 Item Sub-Master Modify C

11 Team Master Modify C

12 Event Master Modify C

13 Customer Events Master Modify C

No. Function Description
Function

Point
Complexity

14 Menu Creations Modify C

15 Customer Master Delete E

16 Item Master Delete E

17 Item Sub-Master Delete E

18 Team Master Delete E

19 Event Master Delete E

20 Customer Events Master Delete E

21 Menu Creations Delete E

22 Customer Master View M

23 Item Master View M

24 Item Sub-Master View M

25 Team Master View M

26 Event Master View M

27 Customer Events Master View M

28 Menu Creations View M

29 Date wise Menus Display Report C

30 Display Menu handling
Status Date Wise

Report C

31 Display Team Task
(Individual)

Report C

32 Display Team Task
(Customer/Party wise)

Report C

Table 3. Language-Complexity and lines of code
metrics

Complexity Language
Kilo

Lines of
Code

Work
Hours /
KLOC

Estimated
Time / KLOC

Complex Java 53.33 238.07 4.46409151

Complex C 128 205.26 1.60359375

Complex HTML 160 200.57 1.2535625

Medium Java 53.33 258.07 4.83911494

Medium C 128 235.26 1.83796875

Complex HTML 160 230.57 1.4410625

Elementary Java 53.33 268.07 5.02662666

Elementary C 128 240.26 1.87703125

Elementary HTML 160 245.57 1.5348125

N.A. Bhaskaran and V. Jayaraj

Indian Journal of Science and Technology 5Vol 11 (48) | December 2018 | www.indjst.org

FPBCT is tested on a dataset generated from a
Catering Services Software requirement. The food ser-
vice industries provide catering services for various
occasions such as School functions, Colleges func-
tions, Hospital functions, Marriage Party and many
other formats, including ‘on-premises’ and ‘off-prem-
ises’ catering services. Table 4 lists the input table with
complexities.

Table 4. FPBCT Input Table

No Function Description
Function
Point

Complexity /
Weight

1 Customer Master Add 8

2. Item Master Add 8

3 Item Sub-Master Add 8

4 Team Master Add 8

5 Event Master Add 8

6 Customer Events Master Add 8

7 Menu Creations Add 8

8 Customer Master Modify 8

9 Item Master Modify 8

10 Item Sub-Master Modify 8

11 Team Master Modify 8

12 Event Master Modify 8

13 Customer Events Master Modify 8

14 Menu Creations Modify 8

15 Customer Master Delete 3

16 Item Master Delete 3

17 Item Sub-Master Delete 3

18 Team Master Delete 3

19 Event Master Delete 3

20 Customer Events Master Delete 3

21 Menu Creations Delete 3

22 Customer Master View 5

23 Item Master View 5

24 Item Sub-Master View 5

25 Team Master View 5

No Function Description
Function
Point

Complexity /
Weight

26 Event Master View 5

27 Customer Events Master View 5

28 Menu Creations View 5

29 Date wise Menus Display Report 8

30 Display Menu handling
Status Date Wise

Report 8

31 Display Team Task
(Individual)

Report 8

32 Display Team Task
(Customer/Party wise)

Report 8

FPBCT the groups the input table into three clustersbased
on their Euclidean distance measures of three centroids
namely 3 for elementary, 5 for Medium and 8 for complex.
The grouping of the input table in FPBCT based on the
centroidand elements in the group are listed in Table 5.

Table 5. FPBCT Clustering Output 1

 Centroid Elements
Cluster

Elements

Group 1 8 1-14, 29-32 19

Group 2 5 22-27 6

Group 3 3 15-21 7

FPBCT then takes the values into consideration the com-
plexity and line metrics values of Table 3 for applying
to the clustered output of Table 5 to arrive the effective
efforts required in three languages namely C, Java and
HTML for the Food Service Software and is listed in
Table 6 and Figure 2.

Table 6. FPBCT Comparative KLOC/Hour of Languages

Effective
KLOC /

Hr

Effective
KLOC /

Hr

Effective
KLOC /

Hr
Total Man

Hours

Language Java C HTML

Complex 0.558011 0.200449 0.156695 758.29679

Medium 0.967823 0.367594 0.288213 81.611834

Elementary 1.675542 0.625677 0.511604 33.56364

Software Effort Estimation using Function Point based Clustering Technique (FPBCT)

Indian Journal of Science and TechnologyVol 11 (48) | December 2018 | www.indjst.org6

Figure 2. Effective KLOC of Languages based on Code
Complexity.

It is evident from Figure 2 that less effort is required
in programming in Java for three levels of program-
ming when compared to C or HTML as more kilo lines
of code can be duplicated in java when compared to C
or HTML. Table 7 lists the final output table of FPBCT
and depicted as Figure 3, where FPBCT implies the

total man hour efforts estimated for three programming
languages.

It is evident from Figure 3 that FPBCT can effectively
estimate the effort required to program software pro-
grams or modules based on function points as identified
by experts in software development.

Figure 3. Language wise Estimated Effort for Food Service
Software by FPBCT.

Table 7. FPBCT Effort Table

Clusters Centroid Elements
Cluster
Element
Count

Effective
KLOC

Effective
KLOC/
Hr Java

(Table 3)

Total Man
Hours

Java

Effective
KLOC/

Hr C
(Table 3)

Total Man
Hours

C

Effective
KLOC/

Hr C
HTML

Total Man
Hours
HTML

Complex 8 1-14,
29-32

19 152 0.558011 272.39585 0.200449 758.29679 0.156695 970.035415

Medium 5 22-27 6 30 0.967823 30.997404 0.367594 81.6118337 0.288213 104.089864

Elementary 3 15-21 7 21 1.675542 12.533256 0.625677 33.5636396 0.511604 41.0473589

6. Conclusion
Software effort estimation (SEE) is a tedious task and
project managers face problem in selecting a suitable
effort based cost estimation techniques for calculating
efforts and effectively the project cost. This research takes
into account the function points in software, groups them
and estimates the effort required for a project. Further, it
also gives comparative efforts required in different pro-
gramming languages for estimating efforts required using
software function points. Challenges faced in effort esti-
mation of software can be overcome with the proposed
SEE using Function Point Based Clustering Technique
(FPBCT). It can be concluded that FPBCT is a simple,
effective technique based on clustering function points in
software development projects and can be implemented
to estimate efforts irrespective of the programming lan-
guage chosen for development. It can help experts define

a path for software development in cases where the num-
ber of complex modules or programs is too many and
becomes tedious to arrive even at abstract effort estima-
tion for development of software.

7. References
1. Khoshgoftaar TM, Seliya N. Analogy-based practi-

cal classification rules for software quality estimation.
Empirical Software Engineering. 2003; 8(4):325-50.
https://doi.org/10.1023/A:1025316301168

2. Boehm BW. Software Engineering Economics. NJ, Prentice
Hall. p. 1-767.

3. Albrecht AJ, Gaffney JR. Software measurement, source
lines of code, and development effort prediction: a soft-
ware science validation. IEEE Transactions on Software
Engineering. 1983; 9(6):639-48. https://doi.org/10.1109/
TSE.1983.235271

N.A. Bhaskaran and V. Jayaraj

Indian Journal of Science and Technology 7Vol 11 (48) | December 2018 | www.indjst.org

4. Putnam LH. A General Empirical Solution to the
Macro Software Sizing and Estimating Problem. IEEE
Transactions on Software Engineering. 1978; 4(4):345-61.
https://doi.org/10.1109/TSE.1978.231521

5. Kemerer CF. An empirical validation of software cost estima-
tion models. Communication of the ACM. 1987; 30(5):416-29.
https://doi.org/10.1145/22899.22906

6. Chandrasekaran R, Kumar R. On the Estimation of the
Software Effort and Schedule using Constructive Cost
Model-II and Function Point Analysis. International
Journal of Computer Applications. 2012; 44(9):1-3844.

7. Khoshgoftaar M, Bullard LA, Gao K. Detecting outli-
ers using rule-based modeling for improving CBR-based
software quality classification models. Case-Based
Reasoning Research and Development. 2003; p. 216-30.
https://doi.org/10.1007/3-540-45006-8_19

8. El-Zaghmouri BM, Abu-Zanona MA. Fuzzy C-Mean
Clustering Algorithm Modification and Adaption for
Application. World of Computer Science and Information
Technology Journal. 2012; 2(1):42-5.

9. Lin CT, Tsai HY. Hierarchical Clustering Analysis Based
on Grey Relation grade. Information and Management
Sciences. 2005; 16(1):95-105.

10. Wong CC, Chen CC. Data clustering by grey relational
analysis. Journal of Grey System. 1988; 10(3):281-8.

11. Pedrycz W, Succi G, Reformat M, Musilek P, Bai X. Self
organizing maps as a tool for software analysis. Canadian
IEEE Conference on Electrical and Computer Engineering.
2001; 1:93-7. https://doi.org/10.1109/CCECE.2001.933665

12. Briand C, Melo WL, Wust J. Assessing the applicability of
fault-proneness models across object-oriented software
projects. IEEE Transactions on Software Engineering. 2002;
28(7):706-20. https://doi.org/10.1109/TSE.2002.1019484

13. Srichandan S. A new approach of Software Effort
Estimation Using Radial Basis. International Journal on
Advanced Computer Theory and Engineering (IJACTE).
2012; 1(1):113-20.

14. Idri A, Abran A, Mbarki S. An Experiment on the Design
of Radial Basis Function Neural Networks for Software
Cost Estimation. 2nd IEEE International Conference on
Information and Communication Technologies. 2006;
1:230-5. https://doi.org/10.1109/ICTTA.2006.1684625

15. Idri A, Zahi A, Mendes E, Zakrani A. Software Cost
Estimation Models Using Radial Basis Function Neural
Networks. International Conference on Software Process
and Product Measurement. 2007; p. 21-31.

