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Abstract

Objectives: The motion of test particles and photons within a spherical liquid star is studied. Equations of motion of test 
particles in the star’s interior and equatorial plane are derived. The general relativity interior metric tensor for a spherical 
liquid star and tensor analysis is used to study the motion of particles and photons within the star. Methods: The obtained 
geodesic equations of motion for stellar particles are explicitly space coordinate and coordinate proper time derivatives. 
This differs from Schwarz child’s equations of motion in a gaseous field. Findings: Along the equatorial plane of the liq-
uid star, the equations of motion have additional terms not found in Schwarz child’s field and in Newtonian theory. The 
equation of motion of a photon in this gravitational field differs from that of Schwarz child’s mass point field by the defini-
tion of its Hilbert radius. Applications: This article thus initiates the study of the motion of stellar particles and photons 
within spherical liquid stars in the framework of the General Theory of Relativity which hitherto has not been exploited. 

*Author for correspondence

1.  Introduction
In the conventional approach to the study of stars in the 
universe, the stars are considered to be gaseous spheres in 
nature; consisting mainly of hydrogen and a very inho-
mogeneous interior1. A liquid star model was proposed 
in the 1920’s2 in which the internal constitution of stars is 
much populated. Though, there were many astrophysical 
evidences of liquid stars, this model was not convincing 
to the scientific community as it lacked a solid mathemat-
ical basis. This theory was based on observational analysis 
and arguments rather than a mathematical model. 
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An absolutely different approach to the problem 
was introduced in 20143. This approach is based on the 
simultaneous consideration of a liquid star and its field 
according to the General Theory of Relativity (which is 
the most accepted modern theory of gravitation intro-
duced by Einstein in 1916). Liquid stars are considered 
as this matches certain new observational evidences for 
the state of condensed matter inside stars; in particular 
that the Sun consists of high-temperature liquid metallic 
hydrogen4. In this article, the motion of stellar particles 
and photons within spherical liquid stars is studied in the 
framework of the General Theory of Relativity3,5.
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2. � Metric Tensor of a Spherical 
Liquid Star

Fields of spherical liquid stars can be considered to be 
spherically symmetric such that the structure, matter, and 
field of such a star can be defined in terms of a spherically 
symmetric space (space-time) metric. Among the space-
time metrics of General Relativity Theory, three primary 
metrics describe spherically symmetric gravitational 
fields. These are Schwarzschild metric of a mass-point6, 
Schwarzschild metric of a sphere filled with incom-
pressible liquid7 and de Sitter’s metric which describes a 
spherical distribution of physical vacuum8.

Schwarzschild mass-point metric describes the field 
of a spherically symmetric massive body to so large a dis-
tance from it that the physical size of the body is neglected 
and space does not rotate or deform6.

De Sitter’s metric on the other hand, describes a space 
filled with a spherically symmetric homogeneous distri-
bution of physical vacuum without any island of mass. 
The physical vacuum has a very low density and the met-
ric manifest in such a way that the space does not deform 
and rotate8.

The metric of a space filled with an incompressible 
fluid was introduced by Schwarzschild7 in a truncated 
form containing a lot of limitations. He re-imposed the 
limitations in the process of deriving the metric in order 
to avoid breaking in the field. The most complete form 
of the metric that is free of limitations and takes space 
breaking into consideration was introduced in 20093,5. 
The metric of a space filled with an incompressible fluid 
in its complete form in spherical polar coordinates is 
given as:
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where a is the physical radius of the sphere,
22 /gr GM c= is the Hilbert radius of the massive body 

and M is the spherical body’s mass (which is the mass of 
the field source). This metric is the most suitable for 
studying spherical liquid stars in General Relativity 
Theory.

If r a< , the metric is the internal metric of the sphere 
filled with an incompressible fluid. At the surface r a=  
the metric coincides with that of a mass point. Also, the 
outer metric is the same as that of the mass point. 

From equation (1), we can deduce the contra variant 
metric tensor using the quotient theorem of tensor analy-
sis and formulate the non-vanishing coefficients of affine 
connection in their complete form9 as: 
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3. � Motion of Stellar Particles 
within a Spherical Liquid Star

General Relativistic equation of motion for particles of 
non-zero rest mass in a gravitational field10,11 is given as:
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Where τ  is a proper time.

The equations of motion are therefore obtained explic-
itly as follows: 

Firstly, setting 0µ = in Equation (3) yields:
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Substituting Equation (2h) into Equation (7) gives:
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Equation (9) is the time equation of motion for test 

particles in this gravitational field. 

Similarly, setting 1µ =  in Equation (3) gives:

2 1 3 3 1 1 2 2
1 1 1
33 11 222 0d x dx dx dx dx dx dx

d d d d d d dτ τ τ τ τ τ τ
        

+ Γ + Γ + Γ =        
        

	
						      (10)

and substituting the explicit expressions of the affine 
connection coefficients gives
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This is the radial equation of motion of stellar particles

Also for 2µ = and 3µ =  in Equation (3), the polar 
and azimuthal equations of motion in the inner gravita-
tional field of a spherical liquid star are obtained 
respectively as: 
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The radial geodesic Equation (11) is explicitly space 
related unlike Schwarzschild radial equation of motion 
which is space-time related12.

Note that when 0µ =  , the geodesic equation of 
motion (9) is explicitly a function of radial and time coor-
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dinate derivatives of proper time. Geodesic equation with 
1,2,3µ =  are purely space related.

Now, consider stellar particles moving in the equato-
rial plane ( / 2θ π= ) of the spherical liquid star. Thus, 
Equation (1) reduces to:
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Explicit expressions for t  and φ  are obtained respec-

tively by solving the geodesic Equations (9) and (13). 

From the time – like geodesic Equation (9) we can 
write:
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and integrating (15) yields:
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Where A is a constant.
Considering the geodesic Equation (13) at the equa-

tor, it can be shown that:
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Now, writing Equation (14) in terms of (16) and (17) 
gives:
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Where l  is a constant.

Equation (18) can be written in a simplified form as:
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Differentiating Equation (19) with respect to proper 
time we obtain:
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It can be deduced from Equation (20b) that:
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Expressing r on the left hand side of (23) as a func-

tion of φ  using the substitution 1/ ( )r u θ= , yields:	
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Equation (23) can thus be written as:
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Equation (25) is the equation of motion of stellar par-
ticles of non-zero rest masses along the equatorial plane 
of a spherical liquid star. The 2nd and 4th terms on the right 
hand side are contributions from general relativity and 
the liquid nature of the star, while the 1st and 3rd terms are 
regular terms obtained in Newtonian theory for a spheri-
cal mass. 

4. � Motion of Photons within a 
Spherical Liquid Star

According to the General Theory of Relativity, light (pho-
ton) moves along a curve that has zero interval (null 
geodesic), i.e.

2 2 2 0ds c dτ= = 				    (26)

The implication of Equation (26) is that photon or 
light is timeless. 

Now, considering a photon moving in the equatorial 
plane, Equations (1) and (26) yield:
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Describing the motion of the photon with respect to a 
parameterω , and dividing Equation (27) by 2d ω  all 

through yields;

	 2 12 2 22 22
2

3 30 3 1 1 1
4

g g gr r r r rc dt dr dr
a a d a d d

φ
ω ω ω

−         = − − − − − −                
	

						      (28)

Or

	 2 12 22
2 2 2 2

3 30 3 1 1 1
4

g g gr r r r rc t r r
a a a

φ
−   

 = − − − − − −      

  	

						      (29)

Where /t dt dω= , /r dr dω=  and /d dφ φ ω= .

Substituting Equations (16) and (17) into (29) yields:
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Expressing r  as a function of φ  i.e ( )r r φ= , then 
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Differentiating Equation (32) with respect to φ yields:
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Equation (33) is the relativistic equation of motion of 

a photon in the equatorial plane of a spherical liquid star. 
The motion of a photon in the equatorial plane of a 

spherical liquid star is similar to equation of motion of a 
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photon obtained from Schwarzschild metric of a mass-
point; though the Hilbert radius differs in the two cases.

5. � Conclusion
The inner space metric of a spherical liquid star is 
exploited to deduce the equation of motion of stellar 
particles within a star. Also, the equation of motion of 
a photon is obtained from the space metric by using the 
condition that light (photon) travels along a null geodesic. 

These equations can be solved to appreciate the behav-
ior of stellar particles and photons as they move within 
spherical liquid stars as compared to the external field 
which is well known to be that of Schwarz child’s mass-
point metric. This work can also be extended to study the 
mechanics of spheroidal stars that abound in the universe. 
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