
*Author for correspondence

Indian Journal of Science and Technology, Vol 11(32), DOI: 10.17485/ijst/2018/v11i32/123093, August 2018
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Complexity Metrics for Component-based Software
Systems: Developer Perspective

Sellami Ali1 , Majdi Abdellatief1,2*, Mohamed Ahmed Elfaki1 and Abubaker Wahaballa2,3

1College of Computing and Information Technology, Shagra University, Riyadh, Kingdom of Saudi Arabia;
sellami2003@hotmail.com, malfaki@su.edu.sa

2MTC College, Sudan Technological University, Sudan, 2081 Khartoum; khwaja@su.edu.sa, khwaja24@yahoo.com
3Arab East Colleges, Computer Science and Technology, Riyadh, Kingdom of Saudi Arabia; wahaballah@edu.sa

Keywords: Component, Complexity, Metrics, CBSS

Abstract
Background: A Component-Based Development (CBD) is an integration centric system focusing on assembling individual
components in order to build a software system. Most of the existing CBD metrics rely on parameters that are too difficult
to measure in practice due to the component’s internal elements may not be visible to developers or testers. Objective:
We proposed two suite of metrics to measure the structural complexity and interaction complexity of Component-Based
Software System (CBSS) from perspective of component developer. Methods: Based on the analysis of the component
specification, the elements of interface which includes properties, methods and events are measured. The proposed
metrics quality is evaluated from a mathematical perspective using BMB properties. Finding: The theoretical evaluation
results indicated that the proposed metrics are valid internal measures. The proposed metrics are useful in understanding
and identifying the areas in the design where improvements are likely to have a high attention. Thus, the proposed metrics
appear promising as a means of capturing the quality of the CBSS design in question. Application/Improvements: It has
been widely reported that lower complexity is believed to provide advantages such as lower maintenance time, easier to
test, highly reusable and easier to understand.

1. Introduction
Using reusable software components, developers can
“drag and drop” components onto a system instead of
writing code. In actual practice of the CBD, we do not
need to write even a single line of code. Instead, we use
the techniques of visual programming such as clicking,
dragging and dropping of components. However, nowa-
days, the current practice of CBD is a mixture of the two
developments styles: visual programming which allows
developing a specific type’s component, while conven-
tional programming allows us to specify the behavior of
business process or component.

Considering above introduction, many people think that
CBSS construction can be designed like building by put-
ting pieces together, but this is hardly convincing. The truth

is that a CBSS is much more complex a system consisting
of many complex processes. In fact, CBSS is developed by
many people and different programming languages lead-
ing to structure, interaction, and complexity issues. A few
researches on CBSS structural complexity have been car-
ried out in recent years, and contributions to the area are
reported in1–6. A Study by Narasimhan7, reported that some
of these metrics rely on parameters that are too difficult to
measure in practice or could never be measured. This is due
to the component’s internal structure may not be visible to
developers or testers. Another limitation of these metrics is
that they all only consider one individual factor as a means to
measure component complexity. The aim of this paper is to
propose a new metric to measure CBSS structural and inter-
action attributes. The proposed metric is used at the design
phase of CBSS development process.

Indian Journal of Science and TechnologyVol 11 (32) | August 2018 | www.indjst.org 2

Complexity Metrics for Component-based Software Systems: Developer Perspective

2. Software Component
Background
Several definitions of a component are given in8–11, each
of which stated different characteristics of software
components. However, the whole software engineering
community agrees that, a component is a provider of
service, and it is a composed of two parts: an interface
(declaration part) and a body (implementation part). The
interface contains the resources and elements (e.g. prop-
erties, methods and events) that make the component
visible for CBSS developers and tester. The body contains
the implementation detail that is not to be visible to CBSS
developers. Figure 1, provides a simple model for compo-
nent, taking into account the overall interface elements
such as Properties, Methods and Events (PME). It shows
that a component has a required interface and a provided
interface. Those interfaces have properties to control the
visible part of component. A summing that method can
provide or require functions, and events can send and
receive a notification.

Figure 1. A simple model of component.

3. CBSS Structure
Generally, structural complexity of traditional software
development is defined as the difficulty to analyze source
code, revise and maintain its modules. In object-oriented
development, it is defined as the difficulty of analyz-
ing both source code and coupling between classes and
objects. Whereas, in CBSS, due to its black box nature,
structural complexity can be defined as the difficulty
to customize, substitute, add or remove components
at design time or run-time. Customization can be per-
formed through the analysis of the structure of interface
which includes properties, methods and events. Addition

and removal can be performed through the analysis of
interaction complexity.

In the high-level design, a CBSS seems as a collection
of components, properties, methods and events. Usually,
an application is constructed by customizing properties,
handling event and adapting method calling using the
properties window. In other words, at high-level design
time, only the component and interface elements (PME)
are visible, but nothing is known about the inner work-
ings of the body of components (implementation part) in
order to make use of it. Therefore, the structure of CBSS
can be identified by the set of components and the set
of connections between PME of source component and
PME of target components. Intuitively, different types of
structures of the same system will certainly lead to differ-
ent values of structural complexity.

With respect to the paper aims, we reason about inter-
action and the structure of interface in isolation as mainly
contributors to the complexity of the CBSS. This view is
consistent with the view of Salman5. Thus, the solutions
to this design complexity center on adapting the con-
nections between components and analyzing interface
structure carefully. At this point, for better understanding
of interface specification with respect to the goal of this
paper, all its constituents are investigated in details in the
following sub-section.

3.1 Interface
An interface is a framework defining a set of services that
a component must implement, and that supports com-
munication between components. For example, Java Bean
and .NET interfaces are seen as an abstract classes with
public abstract list of Properties, Methods, and Events
(PME) that can be implemented somewhere (component
body).

Example Interface definition in C# language
Public interface ISampleInterface

{
int Add (object value); // method declaration consists

of return’s type, name and parameters.
Public string file name {get; set ;} // property decla-

ration consists of accessibility type, property type and
property name.

Public event EventHandler Click; // an event declara-
tion includes accessibility type, event keyword, event type
and event name}

Indian Journal of Science and Technology 3Vol 11 (32) | August 2018 | www.indjst.org

Sellami Ali, Majdi Abdellatief, Mohamed Ahmed Elfaki and Abubaker Wahaballa

3.2 Propoery
From a developer viewpoint, a property looks like a vari-
able, serves as an object-oriented attribute, and acts like a
method12. CBSS developer may change the property value
through visual interface or using code, to customize and
configure component at run time13–16. For example, think
about how to control television, digital and remote-con-
trol machines. They share properties such as: an on/off
property, volume property, channel property and a color
property. Thus, how properties are implemented consid-
erably affects the complexity of properties. The number
of properties involved is an indication of how much time
and effort is required to integrate and maintain a CBSS.

3.3 Method
A method is a name given to function in interface, whereas
a property is a name given to a variable in interface. The
method represents the service or functionality that the
component provides. It is defined in terms of param-
eters types constituting the signature of the method. The
method realizes the dynamic behavior of a system in the
form of explicit operation invocation or message passing
which usually is called proactive control.

3.4 Event
An event is a message sent from one component to another
component, if specific action happened such as birthday or
button click. It is another form of control used to realize
the dynamic behavior of the system12. Thus, components
use events to interact with other components in a system.
Events are similar to methods but semantically they stand
for call initiated by external causes in contrast to calls made
under program control. Other than this, methods and
events are similar in the way they are represented17.

3.5 CBSS INTERNATION
The interaction of CBSS is specified by connecting com-
ponents with each other using properties, methods and
events which are exposed through component interfaces.
As long as component-software interaction occurs on the
connections specified between components, those rela-
tionships will be called interactions and will be used to
define metrics that capture the complexity of CBSS. We
define an interaction as “an action between two or more
software elements”18. Taking into consideration the over-

all interface characterization of a component, we identify
the following types of interactions that mainly contribute
towards the interaction complexity of CBSS:

3.6 Event to Property Interation
In .NET and Java-Bean, using the properties window,
CBSS developers can link an event from the source
component to manipulate the properties of the target
components as they see fit. There are three main opera-
tions that can be associated with an event-property
interaction: getting the value of property, setting a new
value and editing the property. For example, you would
need to reset the property value to an initial value. To do
this, you will click the reset button which will call an event
method. The important thing in these operations is that
the signature of the source event must match the signa-
ture of the target property.

3.7 Event to Methods Interaction
A component can offer services (or function) to the other
component. It can also require service from the other
component. A method interaction is specified by cou-
pling an event of source component with a method of the
target component. The basic operation of event-method
connection is the explicit operation invocation or mes-
sage passing.

3.8 Event to Event Interaction
An event interaction is specified by coupling an event of
the source component to an event of the target component.
An event can send notification to only one component
or to multiple components at a time. The main operation
supported by an event of the source component is the
subscription and un-subscription of an event notification.

4. Metrics Definitions

4.1 Structural Complexity Measurements
The structure of a component is defined as the set of prop-
erties it has, the set of methods (or services / functions) it
defines, and the set of events it creates.

Total Number of Elements (TNE) is the total count
of properties, methods and events declared in a compo-
nent.

Indian Journal of Science and TechnologyVol 11 (32) | August 2018 | www.indjst.org 4

Complexity Metrics for Component-based Software Systems: Developer Perspective

TNE = ()Pi Mi Ei+ +∑

 			 (1)

where:
Pi is a count of the number of properties
Mi is a count of the number of methods
Ei is a count of the number of events.

The hypothesis is that the larger the number of prop-
erties, methods and events in a components, the more
likely to contain lower level functionality, and the more
difficult to understand, which in turn implies the more
effort to integrate, test, and maintain9,19. Developers
should minimize the structure of the CBSS by eliminat-
ing unnecessary elements; make it easy to understand,
through customizing functionalities, removing redun-
dant properties and events from a component.

From the above metric we derive other three metrics as
follows:

Property Density (PD): This metric is the ratio of the
number of properties to the total number of elements in
a component:

PD =

NP
TNE

 				 (2)

Method Density (MD): This metric is the ratio of the
number of methods to the number of elements in a com-
ponent:

MD =
NM
TNE

 				 (3)

Event Density(ED): This metric is the ratio of the
number of events to the total number of elements in a
component:

 ED =
NE

TNE
 				 (4)

At this point, we can ask what the best density of PME
for the component is? Is there a best density? We believe
the answer is yes, although there is no such thing as a
perfect reference. This is because it’s varies based on the
domain and the component developer skills. But, we must
know what is too high density or too low density based on
statistical information or logical arguments. For example,

fasion9 claimed that “a good heuristic might be to shoot
for components with the following number of elements: 10
properties, 10 methods and 10 events”. Therefore, the met-
ric value can be useful semantically.

4.2 Interaction Complexity Measurements
The interaction of CBSS is designated by connecting com-
ponents with each other using properties, methods and
events. The property, method and events are defined in
terms of parameters types constituting their “signature”.
A component can be connected with target components
directly if and only if its provided interface is exactly
matched with the required interface of a target compo-
nent20.

Based on the above interpretation, we define metrics
in terms of signature similarity. Two interfaces are similar
if the union of the sets of PME signatures used is substan-
tially matched.

Matched Property Count (MPC): This metric counts
the number of properties in the target component whose
signature matches the types of properties in the source
components.

MPC = IC1P  IC2P 				 (5)

Matched Methods Count (MMC): This metric
counts the number of methods in the target component
whose signature matches the types of methods in source
components.

MMC = IC1M  IC2M 			 (6)

Matched Events Count (MEC): This metric counts
the number of events in the target component whose
signature matches the types of events in the source com-
ponents.

MEC = IC1E  IC2E 				 (7)

The underlying theory of these metrics is that a com-
ponent with the greater number of MPC, MMC and MEC
indicates a higher optionality of interaction paths, and the
communication can be distributed and controlled as we
need throughout the application which in turn proves
the easier to integrate and reuse. In contrast, a compo-
nent with a lower number of MPC, MMC and MEC could
result in the difficulty of integration and maintenance
process, because it will be necessary to create an adapting
shell around the component20,21.

From metrics above we derived other three metrics as
follows:

Indian Journal of Science and Technology 5Vol 11 (32) | August 2018 | www.indjst.org

Sellami Ali, Majdi Abdellatief, Mohamed Ahmed Elfaki and Abubaker Wahaballa

Matched Property Ratio (MPR): This metric is the
ratio of MPC and total number of properties in applica-
tion

MPR =
MPC
NP

 				 (8)

Matched Methods Ratio (MMR): This metric is the
ratio of MPC and total number of methods in application

MMR =
MMC
NM

 				 (9)

Matched Events Ratio (MER): This is a derivative
metric, which is the ratio of MEC and total number of
methods in application

MER =
MEC
NE 				

(10)

5. Theoretical Validation of
Proposed Metrics
The main goal of this section is to evaluate the proposed
metrics quality from mathematical perspective. Several
authors have introduced desirable properties for software
measurements which used to validate existing or newly
proposed software measurmes22–26. As has been noted the
properties given by Brain, Morasca and Basili (BMB)22
are reported to be more practical and more popular than
others in term of Google Scholar citation. The reader
should refer to the description of properties of BMBs to
get a better understanding of the theoretical validation of
proposed metric system. The two set of metrics we pro-
posed are indeed complexity metrics. Therefore, we need
to validate them against complexity properties which are
Non-negativity, Null value, Monotonicity, Symmetry and
Disjoint module additivity.

5.1 Structural Complexity Metrics
Evaluation and Discussion
Non-negativity:

1-The TNE metric is obtained by counting the total
count of properties, methods and events declared in a
component, so it can be zero (null) or positive, but cannot
be negative.

2- The PD, MD and ED metrics is a ratio of non-nega-
tive numbers (i.e. NP, NM, NE and TNE), so it cannot be
negative in value

Null value:
1-We expect the TNE to be null when a component

interface does not contain any property, method or event
2- We expect the PD, MD and ED values to be null,

when NP, NM and NE values are null, respectively.

Monotonicity:
1- The TNE of a component is a sum of the TNE of

individual interfaces that may make it up. Consequently,
the sum of the TNE of any two of its interfaces cannot be
more than the TNE of components.

2- PD, MD and ED of component is a sum of PD,
MD and ED of its individual interfaces respectively.
Consequently, the sum of the PD, MD and ED of any two
of its interfaces cannot be more than the component’s PD,
MD and ED respectively.

Symmetry:
1- In order to integrate two interfaces together we

have to link each property, methods and events of the first
interface and the other the interface. Consequently, this
property holds.

2- PD, MD and ED are metrics used as relationship
indicator between interfaces. Thus, this property holds.

Disjoint module additivity:
1- Given two disjoint interfaces (or non-connected

interfaces) the TNE obtained by integrating two the inter-
faces will be TNE (1) + TNE (2), thus this property holds.

2- Given that a component ‘C’ is formed by two single
and non- connected components ‘A’ component ‘B’, the
following statement hold:

PD (C) = PD (A) + PD (B)
MD (C) = MD (A) + MD (B)
ED (C) = ED (A) + ED (B)

5.2 Integration Complexity Metrics
Evaluation and Discussion
Non-negativity:

1- The MPC metric is obtained by counting matched
signature of properties in the source components and
target component, so it can be zero (null) or positive, but
cannot be negative. In the same way MMC and MEC can
be zero (null) or positive, but cannot be negative.

2- The MPR, MMR and MER metrics is a ratio of
non-negative numbers (i.e. MPC, MMC, and MEC), so it
cannot be negative in value

Indian Journal of Science and TechnologyVol 11 (32) | August 2018 | www.indjst.org 6

Complexity Metrics for Component-based Software Systems: Developer Perspective

Null value:
1-We expect the MPC, MMC and MEC to be null when

a component interface does not contain any matched sig-
nature of property, method or event respectively.

2- We expect the MPR, MMR and MER values to be
null, when MPC, MMC, and MEC values are null, respec-
tively

Monotonicity:
1- The MPC of a component is a sum of the MPC of

individual interfaces that may make it up. Consequently,
the sum of the MPC of any two of its interfaces cannot be
more than the MPC of the components. In the same way,
this property holds for MMC and MEC.

2- MPR, MMR and MER of component is a sum of
MPR, MMR and MER of its individual interfaces respec-
tively. Consequently, the sum of the MPR, MMR and
MER of any two of its interfaces cannot be more than the
component’s MPR, MMR and MER respectively.

Symmetry:
1- In order to integrate two interfaces together we have

to count the matched signature of properties, methods
and events between interfaces. Consequently, this prop-
erty holds.

2- MPR, MMR and MER are metrics used as relation-
ship indicator between interfaces. Thus, this property
holds.

Disjoint module additivity:
1- Given two disjoint interfaces (or non-connected

interfaces) the MPC obtained by integrating two inter-
faces will be MPC (1) + MPC (2), thus this property hold.

2- Given that a component ‘C’ is formed by two single
and non- connected components ‘A’ component ‘B’, the
following statement hold:

MPR (C) = MPR (A) + MPR (B)
MMR(C) = MMR (A) + MMR (B)
MER (C) = MER (A) + MER (B)

6. Conclusion
The motivation of this paper is that the measurement
based on the interface specification is suitable to char-
acterize and evaluate the complexity of CBSSs. This is
because, the internal of components are hidden and are
unreachable except via abstract interfaces. This imposes
difficulties on sufficient evolution of an integrated CBSS.

In this paper, we proposed a suite of metrics to measure
the structure and interaction of CBSS. We proposed two
suite of metrics to measure the structural complexity and
interaction complexity of Component-Based Software
System CBSS. Results confirmed that the new metrics are
theoretically valid and structurally sound since they satis-
fied the properties in their respective categories. Applying
these measurements to the CBSS design can identify the
complexity of the design, and give unbiased evaluation
of the components. The proposed metrics can be used
to identify complex components and/or critical compo-
nents. Complex and/or critical components design would
potentially take longer time to develop and substantial
testing effort than a simple one. Therefore, developers,
testers, with better experience should be assigned to inte-
grate and test critical components.

7. References
1.	 Kumar P, Tomar P. Design of dynamic metrics to measure

component based software. Computing, Communication
and Automation (ICCCA), International Conference; 2017.
p. 753–7.

2.	 Kharb L, Singh R. Complexity metrics for component-ori-
ented software systems. SIGSOFT Software Engineer Notes.
2008; 33(2):1–3. https://doi.org/10.1145/1350802.1350811
https://doi.org/10.1145/1350802.1350810

3.	 Mahmood S, Lai R. A complexity measure for UML com-
ponent-based system specification. Software Practice and
Experience. 2008; 38(2):117–34. https://doi.org/10.1002/
spe.769

4.	 Narasimhan L, Hendradjaya B. Some theoretical consider-
ations for a suite of metrics for the integration of software
components. Information Sciences. 2007; 177(3):844–64.
https://doi.org/10.1016/j.ins.2006.07.010

5.	 Salman N. Complexity metrics AS predictors of maintain-
ability and integrability of software components. Journal of
Arts and Sciences; 2006. p. 39–50.

6.	 Brosig F, Meier P, Becker S, Koziolek A, Koziolek H, Kounev
S. Quantitative evaluation of model-driven performance
analysis and simulation of component-based architectures.
IEEE Transport Software Engineering. 2015; 41(2):157–75.
https://doi.org/10.1109/TSE.2014.2362755

7.	 Narasimhan VL, Parthasarathy PT, Das M. Evaluation of a
suite of metrics for Component Based Software Engineering
(CBSE). Issues in Informing Science and Information
Technology. 2009; 6:731–40. https://doi.org/10.28945/1093

8.	 Crnkovic I, Larsson M. Building reliable component-based
software systems. London Artech House. Estublier J, Favre
JM. Component model and technology. Building reliable

https://doi.org/10.1145/1350802.1350811
https://doi.org/10.1145/1350802.1350810
https://doi.org/10.1002/spe.769
https://doi.org/10.1002/spe.769
https://doi.org/10.1016/j.ins.2006.07.010
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.28945/1093

Indian Journal of Science and Technology 7Vol 11 (32) | August 2018 | www.indjst.org

Sellami Ali, Majdi Abdellatief, Mohamed Ahmed Elfaki and Abubaker Wahaballa

component-based software system (). London: Artech
House; 2002. PMid:12476477

9.	 Faison T. Component-based development with visual C#.
New Yourk. Hungry Minds; 2002. PMid:12526889

10.	 Gill NS, Grover PS. Component-based measurement. Few
useful guidelines. SIGSOFT Software Engineering Notes.
2003; 28(6):4–4. https://doi.org/10.1145/882240.882255
https://doi.org/10.1145/966221.966237

11.	 Szyperski C. Component software: Beyond object oriented
programming (Second Edition ed.). New York. Addison
Wesley; 2002.

12.	 Sharp J. Microsoft visual C#. Step by step Microsoft Press;
2008.

13.	 Gill NS, Grover PS. Few important considerations for
deriving interface complexity metric for component-based
systems. SIGSOFT Software Engineering Notes. 2004;
29(2):4–4. https://doi.org/10.1145/979743.979758

14.	 Han J. A comprehensive interface definition framework for
software components. Proceedings of the Fifth Asia Pacific
Software Engineering Conference; 1998. p. 110. https://doi.
org/10.1109/APSEC.1998.733601

15.	 Sharma A, Kumar R, Grover PS. Empirical evaluation and
validation of interface complexity metrics for software
components. International Journal of Software Engineering
and Knowledge Engineering. 2008; 18(7):919–31. https://
doi.org/10.1142/S0218194008003957

16.	 Washizaki H, Yamamoto H, Fukazawa Y. A metrics
suite for measuring reusability of software components.
Proceedings of the 9th International Symposium on
Software Metrics; 2003. p. 1– 211. https://doi.org/10.1109/
METRIC.2003.1232469

17.	 Cesare SD, Lycett M, Macredie RD. Development of com-
ponent-based information system. New Delhi. Prentice
Hall of India; 2006. p. 1–239.

18.	 Heineman G, Councill W. Component definition. In B.
Councill, G. Heineman (Eds.). Component-based software
engineering Putting pieces together () Addison Wesley;
2001.

19.	 Abdellatief M, Sultan ABM, Ghani AAA, Jabar MA. A map-
ping study to investigate component-based software system
metrics, Journal of System Software. 2013; 86(3):587–603.
https://doi.org/10.1016/j.jss.2012.10.001

20.	 Abdellatief M, Sultan ABM, Ghani AAA, Jabar MA.
Component-based software system dependency metrics
based on component information flow measurements in
The Sixth International Conference on Software Engineering
Advances ICSEA2011 Barcelona, Spain; 2011. p. 76–83.

21.	 Abdellatief M, Sultan ABM, Ghani AA, Jabar MA.
Multidimentional size measure for design of component-
based software system, IET Software. 2012; 6(4):350–7.
https://doi.org/10.1049/iet-sen.2011.0122

22.	 Briand LC, Morasca S, Basili VR. Property-based soft-
ware engineering measurement. IEEE Transaction
Software Engineering. 1996; 22(1):68–86. https://doi.
org/10.1109/32.481535

23.	 Weyuker E.J. Evaluating software complexity measures.
IEEE Transaction Software Engineering. 1988; 14(9):1357–
65. https://doi.org/10.1109/32.6178

24.	 Zuse H. Software complexity measures and methods.
Walter deGruyter; 1991.

25.	 Kitchenham B, Pfleeger SL, Fenton N. Towards a framework
for software measurement validation. IEEE Transaction
Software Engineering. 1995; 21(12):929–44. https://doi.
org/10.1109/32.489070

26.	 Tian J, Zelkowitz MV. A formal program complex-
ity model and its application. Journal of System
and Software. 1992; 17(3):253–66. https://doi.
org/10.1016/0164-1212(92)90114-Y

https://doi.org/10.1145/882240.882255
https://doi.org/10.1145/966221.966237
https://doi.org/10.1145/979743.979758
https://doi.org/10.1109/APSEC.1998.733601
https://doi.org/10.1109/APSEC.1998.733601
https://doi.org/10.1142/S0218194008003957
https://doi.org/10.1142/S0218194008003957
https://doi.org/10.1109/METRIC.2003.1232469
https://doi.org/10.1109/METRIC.2003.1232469
https://doi.org/10.1016/j.jss.2012.10.001
https://doi.org/10.1049/iet-sen.2011.0122
https://doi.org/10.1109/32.481535
https://doi.org/10.1109/32.481535
https://doi.org/10.1109/32.6178
https://doi.org/10.1109/32.489070
https://doi.org/10.1109/32.489070
https://doi.org/10.1016/0164-1212(92)90114-Y
https://doi.org/10.1016/0164-1212(92)90114-Y

