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Abstract
Background/Objectives: Thermodynamic study of advection phenomena relies on the analytical methods to solve a series 
of Partial Differential Equations (PDE) that generates from multi-dimensional problems, which becomes more and more 
complex, especially when a 2D or 3D temperature profile is required. Methods: For the solution of heat transfer problems 
with simultaneous advection-conduction phenomena, finite differences of 2nd, 4th and 6th order were used to approximate 
the solution of a two-dimensional PDE. Findings: The results show that a low discretization of the system, originated 
substantial errors in the application of the high order finite, but, when is correctly used, the numeric approximation shows 
with great precision the temperature profile for the simultaneous advection and conduction heat transfer. Application: To 
develop a method to accurately predict the temperature profile for complex heat transfer applications where simultaneous 
advection and conduction are takeninto account.

1.  Introduction
Advection phenomenaare the transport of a conserva-
tive property due to the movement generated by a fluid 
stream1–4; by this definition, convection can be defined as 
a particular type of advection, which involves the trans-
fer from and a surface and the whole fluid. The properties 
that are carried with the advected substance are conserved 
properties such as energy or enthalpy, in which the fluid 
may be any material that contains thermal energy, such as 
water or air. Advection is commonly seen in engineering 
applications that involve moving fluids5, such as meteo-
rology and physical oceanography, where the transport of 

some property of the atmosphere or ocean, such as heat, 
humidity, salinity or pollutants, are of special concern (due 
to the environmental effects these variables can generate).

Thermodynamic study of advection phenomena 
relies on the analytical methods to solve a series of Partial 
Differential Equations (PDE) that generates from multi-
dimensional problems6. Besides, given the fact advection 
occurs with another heat transfer mechanisms, such as 
conduction (which is defined as a 2nd order differential 
equation7), the analytical solution becomes more and 
more complex, particularly when a 2D or 3D temperature 
profile is required. Because of that, it is necessary to find 
an alternative method that Equation (1) ensures accuracy 
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in the results, Equation (2) can be easier to solve, and 
Equation (3) can be programmed in commercial software.

From the main aspects previously shown, the most 
suitable option is the application of numerical methods 
in the solution of PDE, which applies a discretization of 
these, in order to reduce them to algebraic expressions, 
which are way easier to handle that their differential coun-
terparts8; example of their usefulness, resides in a huge 
quantity of investigations done with the help of numeri-
cal methods to solve even 3D, non-steady PDE9–13. From 
this, the objective of the present work, is the solution of 
heat transfer problems, with simultaneous advection-
conduction phenomena, using finite differences of 2nd, 4th 
and 6th order to approximate the solution of an advection-
conduction two-dimensional PDE, using commercial 
software (MATLAB®) to do the calculations required. The 
results were evaluated to different values of discretization, 
to establish a comparison between the analytic solution 
and the numerical method used.

2.  Methodology
This section presents a detailed description of the gen-
eral purpose of the study, and the fundamental equations 
implemented for the realization of the investigation.

2.1  The General Aim of the Study
The main purpose of the study developed is to apply 
numerical methods in the solution of two-dimensional 
PDE (Partial Differential Equations), and their applica-
tion to predict the temperature profile near a hot spot, 
(such as a welding point or a heater in an enclosed space), 
by using finite differences to approximate the solution of 
advection-conduction equation over a previously defined 
domain. To analyze the degree of exactitude from the 
numerical method used, 2nd order, 4th order and 6th 
order finite differences approximations were programmed 
using the commercial package MATLAB® and applied to 
the case8; to verify the method accuracy, the deviation 
from analytical solution was obtained, taking in account 
the simultaneous presence of advection and conduction 
phenomena, over a gas (air, in this case).

2.2  Fundamental Equations
In a general form, the advection equation, applied to a 
case where conduction occurs simultaneously, can be 
defined as the Equation (1),

∂ ∂ ∂
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Where a is the velocity of the stream and v the kine-
matic viscosity of the fluid. From the Equation (1) and 
taking into account a space enclosed by a length L in both 
x and y directions, a solution can be found using the fol-
lowing initial boundaries:
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Where Ths is the temperature of the hot spot (the flame), 
which is related to y position with the expression
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With Equations (2) to (4) as boundary conditions, and 
(5) as the initial condition, the solution methods for the 
PDE (1) allow to calculate the temperature profile in an 
analytic form, shown in the Equation (6) for steady state 
(where the time derivative becomes zero):
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To solve the same PDE in a numerical form, a set of finite 
numerical differences was applied to approximate the first 
and second derivatives required; since these differences 
are truncated expansions of the Taylor series6, these usu-
ally come with an inherent error added. Using forward 
finite differences, the first and second derivatives of a 
function f(x) can be calculated using the Equations (7) 
and (8),
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Where α, β, a, b and c are specific coefficients, which are 
dependent of the error order used in the approximation, 
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calculated from the Taylor series expansion14,15, these 
values were calculated by previous authors, and are shown 
in Table 1 and 2.

Table 1.  First derivative coefficients for finite 
differences
Error Order α β a b c
2 0 0 1 0 0
4 1/4 0 3/2 0 0
6 1/3 0 14/9 1/9 0

Table 2.  Second derivative coefficients for finite 
differences
Error Order α β a b c
2 0 0 1 0 0
4 1/10 0 6/5 0 0
6 2/11 0 12/11 3/11 0

3.  Result and Discussion
The objective of the study was to use finite differences to 
approximate the temperature profile for a case of two-
dimensional heat transfer taking in account simultaneous 
conduction and advection, which is a common situation 
in some engineering applications that involve a fluid. To 
do this, a boundary of length L=1 m was defined for both 
x and y directions, and the temperature profile for slow-
moving atmospheric air (≈0.1m/s) from a heat source at 
60°C was determined using polynomials with a different 
order.

3.1  Comparison of the Finite Differences 
Method Used
For comparison purposes, the analytic solution of the 
advection-conduction PDE (1) in steady state was calcu-
lated, as shown in Figure 1. From this figure, it is shown 
that the temperature decreases slower in the x-direction, 
due to the fact advection takes place along that axis, as is 
suggested in the Equation (1); in this case, the low veloc-
ity of the air stream that moves near the heat source, 
induces 7 the thermal equilibrium between it and the air, 
which creates a profile with a low slope, in which the gas 
exits the boundary with approximately 50% of the source 
temperature.

Figure 1.  Analyticalsolutionof PDE (1).

For the numerical method application, polynomials of 
a different order (as said before), were formulated from 
Equations (7) and (8), together with the coefficients 
shown in Tables 1 and 2. The application of the finite 
differences equations required the discretization of the 
boundary length in a mesh of (x,y) coordinates, and three 
cases were evaluated: a 20x20 mesh (that is, 20 divisions in 
x-direction and y-direction), a 60x60 mesh, and an 80x80 
mesh; the results for each mesh type are shown in Figures 
2 to 4. To establish a method to compare the accuracy of 
each solution, the base-10 logarithm of the absolute error 
was calculated between the model and analytical solution, 
for the temperature profile in the symmetry axis along the 
x-axis, as shown in Figures 5 to 7. 

From these figures, it is evident that the low dis-
cretization generated with the 20x20 mesh originated 
substantial errors in the application of the 4th and 6th 
order polynomials, but at higher values of the mesh, 
the error is considerably lower. As the error estimated 
with the highest discretization used, falls under a range 
of 10-8 to 10-12, it is evident that the numeric approxi-
mation of the Equation (6) shows with great precision 
the temperature profile for the simultaneous advection 
and conduction heat transfer. However, given the fact 
that a more discretized mesh implies more elements, a 
way to reduce the computational load and at the same 
time obtain a robust approximation from the profile, 
is using the 2nd order polynomial with a low mesh 
(20x20).
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Figure 2.  Numerical solution of PDE (1) with a 20x20 
mesh.

Figure 3.  Numerical solution of PDE (1) with a 60x60 
mesh.

Figure 4.  Numerical solution of PDE (1), with a 80x80 
mesh.

Figure 5.  Error calculated with the polynomials used, for 
a 20x20 mesh.

Figure 6.  Error calculated with the polynomials used, for 
a 60x60 mesh.

Figure 7.  Error calculated with the polynomials used, for 
a80x80 mesh.
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4.  Conclusions
As a conclusion, the investigation demonstrated the 
efectiveness of the numerical method in the solution of 
Partial Differential Equations, with a method easier to 
formulate, program and solve than the analytic solution, 
which represents a time and cost saving; besides that, the 
same method allows to obtain a variable precision in the 
results, by selecting the discretization level and polyno-
mial order most suitable to the available computational 
load, varying from a robust approximation (with 2nd order 
polynomials with a 20x20 mesh) to the highest degree 
of approximation, using a high discretization (6th order 
polynomials with an 80x80 mesh). This fact makes the 
application of this method suitable for the development 
of software packages that automatize the calculation and 
solution algorithm, to create a useful tool in the solution 
of 2D heat transfer problems.
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