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Abstract
Objectives: Ladder networks of resistors have been discussed extensively. This paper considers polygons of resistors 
where the resistors on sides are different from those on spokes. The objective is to find how their physical quantities 
depend on the parity of the number of the sides. Methods: We calculate attenuations, nodal potentials, and input im-
pedances when a voltage source is connected between a node and the center. We introduce a continuous parameter 
ρ in equivalent ladder networks where ρ =1 and ρ = 2 correspond to odd and even numbers of sides, respectively. 

Findings: Attenuations, nodal potentials, and input impedances are expressed in terms of the Chebyshev polynomials 
of the second kind or the Fibonacci polynomials. The results depend on the parity of the number of sides. The case 
ρ = 0 interpolates the case with the odd numbers of sides. Application: The method presented in this document can 
be applicable to networks with inhomogeneous resistances around the sides. 
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1. Introduction
Ladder networks consist of passive elements like resis-
tors, capacitors, and inductors and have applications 
in filters and transmission lines. It is well known that 
the Fibonacci numbers appear in a ladder network 
of equal resistors1. Physical quantities such as input 
impedances (or equivalent resistances), attenuations, 
and nodal potentials in a ladder of resistors which is 
homogeneous along the ladder, that is, has identical 
series and identical parallel (shunt) resistors, respec-
tively, have been calculated. They are expressed in 
terms of Morgan-Voyce polynomials which have been 
studied extensively2-7.

Fibonacci numbers appear also in a polygon of 
resistors where equal resistors are connected along 
sides and spokes8. This can be understood since such 
a polygon of resistors can be deformed to a ladder net-
work9-10. The purpose of this article is to determine 
physical quantities of the polygons where the resistors 
on the sides are different from those on the spokes. 

Their expressions depend on the parity of the number 
of the sides of the polygons and are expressed in terms 
of the Chebyshev polynomials of the second kind or 
equivalently in terms of the Fibonacci polynomials. 
Finally we find a polygon of resistors interpolating the 
ones with odd numbers of sides. 

2. Polygon of Resistors

while the resistors on the spokes have 2rp . Figure 1 depicts 
an odd n case whereas Figure 2 an even n case. We removed 

networks. By the reflection symmetry about the line join-
ing⊕ and nodes the potentials Vi  and Vi′  at the nodes
i and ′i respectively are the same for each i m= … −0 1, , . 
When n is odd, V V0 0= ′  so that the resistor joining the two 
nodes 0 and ′0 can be eliminated. 

Lopez10 in order to compare easily with results of ladder 
a resistor joining the⊕ = m and nodes following Parera-

where the resistors on the sides have the resistance 2rs  
We consider a polygon of resistors with n (= 2m) sides9 
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Figure 1. A polygon of resistors. Here the number of sides 
is n m= +2 1.

Figure  2. A polygon of resistors. Here n m= 2 .

Following Sidhu9 and Pareta-Lopez10 we transform 
the polygon of resistors in Figure 1 or Figure 2 into a lad-
der network of resistors in Figure 3. In the ladder network 
equivalents series resistors have resistance rs while paral-
lel resistors have resistance rp  except the rightmost one 
with ρrp  for a continuous parameter ρ in Figure 3 where 
ρ =1 for odd n m= +2 1 and ρ = 2  for even n m= 2 . We 
see that the nodal potential Vi at the node i  in Figure 1 
is equal to that in Figure 3 with ρ =1  and that the input 
impedance Rm  between nodes ⊕ = m  and   in Figure 1 
is equal to that in the ladder network shown in Figure 3 
with ρ =1 . The same is true for Figure  2 and Figure  3  
with ρ = 2  for even n  case. 

Figure  3. The ladder equivalent. The equivalent of the 
polygon with n m= +2 1 or n m= 2  includes the equivalent 
of the 2 1i+  or 2i  sided polygon surrounded by the dotted 
line for 0 < <i m , respectively.

We apply a d.c. voltage source to the network so that 
V⊕ =  , V = 0. The Kirchhoff’s current law at the node i gives 
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which can be written in matrix form as 
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where T is a transfer matrix given by 

T
x

=
+ −









2 1
1 0 (4)

with x r r= s p/  (see Trzaska11). The characteristic equa-
tion for T  is 

0 2 12= − = − +( ) +det( )λ λ λI T x . (5)
Then the Cayley-Hamilton theorem gives 

T x T I2 2= +( ) − . (6)
If we let 

T qT q Ii
i i= − −1 , (7)

then we find the recurrence relation for qi
q x q q q qi i i+ −= +( ) − = =1 1 1 02 1 0, , . (8)

Comparing with the definition of Chebyshev polynomials 
of the second kind 

W k sin i k
sinki cos
( )( ) = +1

(9)

which satisfy the recurrence relation 
W x xW x W xi i i+ −( ) = ( ) − ( )1 12 , (10)
W x W x0 11 0( ) = ( ) =−, ,

we obtain 
q W xi i= +( )−1 2 1/ . (11)
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Iterating equation (3) gives 
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= −( )






−qT q I

V
Vi i 1
1

0
(12)

from which we find the recurrence relation for Vi
V qV q Vi i i= − −1 1 0 . (13)

Since we see V V r r r1 0: := +( )s p pρ ρ , or for ρ ≠ 0 from Figure 3 

V x V1 01= +








ρ

, (14)

we have the attenuation (or transfer ratio) at the node i

A V V x q qi i i i≡ = +








 − −/ 0 11

ρ

=
+ −( ) − −( )+ −q q qi i i1 12 1ρ ρ

ρ
, (15)

where equation (8) has been used. The first equality in equa-
tion (15) in the case of ρ =1  was obtained by Trzaska.11 
Letting V Vm⊕ = = , we have 

 =
+ −( ) − −( )+ −q q q

Vm m m1 1
0

2 1ρ ρ
ρ

(16)

and obtain the result 
V q q q

q q q
i mi i i i
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In view of equation (14), we see that equation (17) holds also 
at i = 0 . 

As shown in Figure 3 the ladder equivalent of the n-sided 
polygon with n m= +2 1or n m= 2 includes the (2 1i+ ) - or 2i
- sided polygon equivalent for 0 < <i m , respectively. In order 
to evaluate the input impedance Ri , we use the proportionality 

V V V r r Ri i i i+ −( ) = ( )1 : : ||s p , (18)
where we have used the operator ||  defined by 

r r r r
r r1 2
1 2

1 2

|| =
+ (19)

for the parallel combination of resistors. Solving for Ri  yields 
R
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which becomes, due to equations (15) and (8), 
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which can also be read off from a result by Hong and Choi.12 
The resulting expressions for Ai , Vi /  and R ri / p depend on the 
value of ρ . 

2.1. Odd n Case
For n m= +2 1we have ρ =1 . Then we find the attenuation 

 A q qi i i= −+1 (22)
and the nodal potentials 

V q q
q q
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for i m= …0, , . The input impedance is given for i > 0  by 
R
r

q q
q

i

p

i i

i

=
−+1 . (24)

The numerator b x q qi i i( ) ≡ −+1  and the denominator 
B x qi i− ( ) ≡1  of R ri / p are known as the Morgan-Voyce poly-
nomials,2,4 so that 
A b xi i= ( ) ,V b x b xi i m/ / , = ( ) ( ) R r b x B xi i i/ / .p = ( ) ( )−1  (25)
But due to equation  (11) they are written in terms of 
Chebyshev polynomials of the second kind as follows 

B x W xi i( ) = +( )/ 2 1 ,

b x W x W xi i i( ) = +( ) − +( )−/ /2 1 2 11 (26)
as was obtained by Mowery13 and Trzaska.11

It was also proved that3,4

B x
x
F xi i− ( ) = ( )1 2

1
,

b x
x
F x F xi i i( ) = ( ) − ( )



+

1
2 2 2 (27)

= ( )+F xi2 1 ,

where F xi ( ) are the Fibonacci polynomials defined by 

F x xF x F x F x F xi i i( ) = ( ) + ( ) ( ) = ( ) =− −1 2 1 01 0, , . (28)
Hence Ai ,Vi /  , andR ri / p can be expressed in terms of the 
Fibonacci polynomials:

A F xi i= ( )+2 1 ,
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.

2.2. Even n Case
When n m= 2 , then ρ=2 and we have the attenuation 

A q qi i i= −( )+ −

1
2 1 1
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and the nodal potentials 
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For i > 0 , we have 
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Using the Fibonacci polynomials, they are given by 
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2.3. Interpolation Between Odd n Cases
The expressions for even n cases have different forms from 
those for odd n cases. We can find expressions interpolat-
ing odd n cases by choosing ρ=0 with the corresponding 
polygon of resistors depicted in Figure 4. ThenV0 0= and 
equation (15) cannot be used. But from equation (13) we have 

Figure 4. A polygon of resistors interpolating polygons 
with odd numbers of sides.
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From equation (21), we find 
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In terms of the Fibonacci polynomials, they are expressed as 
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which interpolate the results given by equation (29) for the 
polygons with 2 1i+ and 2 1i− sides. 

3. Concluding Remarks
We have considered polygons of resistors and their equiva-
lent ladder networks. The attenuations, nodal potentials, and 
input impedances are written in terms of the Chebyshev 
polynomials of the second kind or in terms of the Fibonacci 
polynomials and depend on the parity of the number of 
sides of the polygon. The ladder networks considered have a 
continuous parameterρ . André-Jeannin6 introduced gener-
alized polynomials P xn

r( ) ( )which are found to satisfy 
P W r Wn
r

n n
( )

−−( ) = ( ) + −( ) ( )2 2 1 1ω ω ω . (38)
It follows from equation  (11) that equations  (15), (17), 
and (21) can be written, respectively, as 
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so that the polynomials P xn
r( ) ( )  find real applications. 

In fact, due to equations (26) and (27), P xn
r( ) ( )  can be 

written in terms of the Fibonacci polynomials 

P x
x
F x r F xn

r
n n

( )
+( ) = ( ) + −( ) ( )





1 12 2 2 . (40)

Finally we note that physical quantities in a ladder net-
work with inhomogeneous resistances, for example, with 
exponentially varying resistances along the ladder can be 
calculated and will be an interesting system to be analyzed. 
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