
Indian Journal of Science and Technology, Vol 11(23), DOI: 10.17485/ijst/2018/v11i23/125648, June 2018 
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645 

Development and Implementation of Parallel to 
Serial Data Transmitter using Aurora Protocol for High 

Speed Serial Data Transmission on Virtex-7 FPGA
C. Mani Pradhitha* and S. Kolangiammal

SRM University, Kattankulathur, Chennai - 603203, Tamil Nadu, India; cpraditha@gmail.com,  
kolangiammal.s@ktr.srmuniv.ac.in

*Author for correspondence

Abstract
The objective of this paper is Development and Implementation of parallel to serial data converter using Aurora protocol 
for high speed serial data transmission at the rate of 3.125Gbps by using architectural features of Virtex-7 FPGA. It involves 
the study and configuring the Xilinx Core Generator Tool to achieve the required high speed serial data transmission by 
using of Aurora 8b/10b Protocol & Multi-Gigabit Transceivers present in Virtex-7 FPGA. Firstly, a 192-bit parallel data is 
generated using simulators, which is implemented using VHDL language. The 192-bit data is sent to Asynchronous First-In 
First-Out (AFIFO) as input and produces an output of 32-bit parallel data. This data is sent to the aurora module in parallel 
form as successive frames (i.e. 6 frames, each frame consists of 4 bytes). Finally, the 192-bit parallel data is transmitted to 
the receiver module serially over fiber optic cable at the rate of 3.125Gbps using architectural features of virtex7 FPGA. 
Finally, the data is transmitted on dual independent aurora channels and the entire logic will be tested for its complete 
functionality in standalone mode by porting on to the Virtex-7 FPGA based custom Hardware. 

Keywords: Aurora Protocol, Independent Aurora Channels, Serial Data Transmission, Virtex-7 FPGA, AFIFO, GTX TILE, 
MGT’s

1. Introduction
Communication plays one of the most significant role 
in day to day life. There should be a transmitter and 
receiver in order to communicate. There are two ways of 
transmission i.e., serial communication and parallel com-
munication. In earlier days in order to achieve the high 
speed we used parallel transmission. In parallel transmis-
sion, Binary data consisting of 1s and 0s are arranged into 
groups of n bits each. By grouping, we can send n bits data 
at a time instead of one. We use n wires to send n bits once 
at a time. That way each bit will have its own wire, and all 
n bits of one group can be transmitted with each clock 
pulse from one device to another. For n = 9. Typically, the 
nine wires are bundled in a cable with a connector at each 
end. The main advantage of parallel transmission is its 
speed. Parallel transmission increases the transfer speed 
by a factor of n over serial transmission6. A significant 

disadvantage of parallel transmission is its cost. Parallel 
transmission requires n communication lines (wires in 
the example) to transmit the data stream. Because this is 
very expensive, parallel transmission is usually suitable to 
short distances.

In serial transmission one bit follows another, so only 
one communication channel is required rather than n 
channels to transmit data between two communicat-
ing devices. The main advantage of serial over parallel 
transmission is that with only one communication 
channel, serial transmission reduces the cost of trans-
mission roughly by a factor of n. Since communication 
within devices is parallel, parallel to serial conversion 
devices are required at the interface between the sender 
and the line (parallel-to-serial) and between the line 
and the receiver (serial-to-parallel). Serial transmission 
occurs in any one of two ways: asynchronous or syn-
chronous.



Development and Implementation of Parallel to Serial Data Transmitter using Aurora Protocol for High Speed Serial Data 
Transmission on Virtex-7 FPGA

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org 2

Multi-gigabit transceivers are transceivers which can 
be used for data transmission which are present in the 
FPGA as hard IP and they can run over longer distances. 
They can be used with the help of the soft IP and their 
main function is to convert the parallel data into serial 
data and this action can be performed by configuring the 
MGT’s using aurora core. These MGT’s are present in the 
Virtex-7 FPGA as hard IPs and we have to interface to our 
application by configuring hard IPs using soft IPs such as 
aurora core to achieve the high speed serial data transmis-
sion. The MGT’s present in the FPGA are configured as 
either transmitter or receiver to perform the data trans-
mission.

In Virtex-7 FPGAs the Rocket IO GTX transceivers 
are a power-efficient transceiver. The GTX transceiver is 
highly configurable and it is integrated very tightly with 
the programmable logic resources of the FPGA. GTX 
transceivers are placed as Quad transceiver GTX_QUAD 
tiles in Virtex-7 FXT devices. This configuration allows 
four transceivers to share a single PLL with the TX and 
RX functions of both, size reduction and power con-
sumption. Multi Gigabit Transceiver (MGT) is a Serialiser 
/Deserialiser (SerDes) it can be operated at serial bit rates 
above 1 Gigabit/second. 

2. AFIFO

2.1 Introduction
A synchronous FIFO is a FIFO where the same clock is 
used for both writing and reading6. An asynchronous 
FIFO uses different clocks for writing and reading. AFIFO 
is used for clock transition and non-asymmetric ratio of 
the data in and out. AFIFO is generated using BRAM and 
customized according to our application.

FIFOs are used commonly in electronic circuits for 
flow control and buffering which is from hardware to 
software. In hardware form a FIFO primarily consists 
of a set of read and writes pointers, storage and control 
logic. Storage may be SRAM, flip-flops, latches or any 
other forms of storage. For FIFOs of significant size, a 
dual-port SRAM is usually used where one port is used 
for writing and the other is used for reading1. FIFOs are 
often used to safely pass data from one clock domain to 
another asynchronous clock domain. There are multi-
asynchronous clock design techniques to pass FIFO 
data.

2.2 Asynchronous FIFO
An asynchronous FIFO is a FIFO design where data val-
ues are written to a FIFO buffer from one clock domain 
and the data values are read from the same FIFO buffer 
from another clock domain, where the two clock domains 
are asynchronous to each other. Asynchronous FIFOs are 
used to safely pass data from one clock domain to another 
clock domain.

2.3 FIFO Usage and Control
•	 Write Operation:

  When write enable is asserted and the FIFO 
is not full, data is added to the FIFO from the 
input bus (DIN) and write acknowledge (WR_
ACK) is asserted. It fills with data, if the FIFO 
is continuously written to without being read. If 
FIFO is not full then Write operations are suc-
cessful. If FIFO is full and a write is initiated, 
the request is ignored, then the overflow flag is 
asserted and there will be no change in the state 
of the FIFO.

•	 Read Operation:
  When read enable is asserted and the FIFO is not 

empty, data is read from the FIFO on the out-
put bus (DOUT), and the valid flag (VALID) is 
asserted. The FIFO empties If the FIFO is continu-
ously read without being written. When the FIFO 
is not empty, then the read operations are success-
ful. The read operation is ignored when the FIFO is 
empty and a read is requested, the underflow flag is 
asserted and there will be no change in the state of 
the FIFO. 

2.4 Implementation of AFIFO with FWFT
The 512X36 Bram is used as the output of FIFO should 
be given as 32-bit word to AURORA protocol1. The input 
to the FIFO is 192-bit PD word data so FIFO will write 
these 192-bits and it is given as six 32 bit words output to 
AURORA protocol. FIFO consists of 2 clocks read clock 
(156.25 MHz) and write clock (50 MHz). The read clock 
is always faster than write clock6. If FIFO is not Full and 
write enable is high, then write flag is generated similarly 
if FIFO is not Empty and read enable is set to one then 
read flag is generated. Here writes flag is given with 1-bit 
latency and read flag is given with 2-bit latency so read 



C. Mani Pradhitha and S. Kolangiammal

Indian Journal of Science and Technology 3Vol 11 (23) | June 2018 | www.indjst.org 

flag is generated after only write flag generates. If read flag 
and read clock is enabled, then address pointer goes on 
increasing similarly for write flag also. The binary address 
is converted to grey code address to clear data in read 
and write flags and never in unknown state due to asyn-
chronous relationship of the read and write clocks. If read 
flag is enabled, then pointer moves on increasing until it 
reads last grey code similarly if write flag is enabled then 
pointer moves on increasing until it writes last grey code. 

From Figure 1, read enable is checked and if FIFO is 
not empty for every transfer of read date then FIFO data 
will be read into user data automatically without any 
external operation being executed. By using this algo-
rithm, the AFIFO is implemented.

3. Aurora Protocol

3.1 Introduction
The Aurora 8B/10B protocol is implemented by the Logic 
CORE™ IP Aurora 8B/10B core using the high-speed 
serial Transceivers on the Virtex-7 LXT, SXT, FXT, and 
TXT Family5. The Aurora 8B/10B core is a lightweight, 
scalable, link layer protocol for high-speed serial com-
munication. The protocol is open source and can be 
implemented using Xilinx® FPGA technology. The proto-
col is typically used in applications requiring, low-cost, 
simple, high rate, data channels. In our application vir-
tex7 FXT is used because it supports High-performance 
embedded systems with advanced serial connectivity.

Figure 1. FWFT algorithm.



Development and Implementation of Parallel to Serial Data Transmitter using Aurora Protocol for High Speed Serial Data 
Transmission on Virtex-7 FPGA

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org 4

The source code is produced by the CORE Generator 
software for Aurora 8B/10B cores with variable data path 
width. The cores can be simplex or full-duplex.

3.2 Functional Blocks
Figure 2 shows a block diagram of the Aurora 8B/10B 
core. The major functional modules of the Aurora 8B/10B 
core are:

•	 Lane logic: Each GTP/GTX transceiver is driven 
by an instance of the lane logic module, which 
initializes each individual GTP/GTX transceiver 
and handles the encoding and decoding of control 
characters and error detection.

•	 Global logic: The global logic module in performs 
the bonding and verification phases of channel ini-
tialization.

•	 RX user interface: This interface moves data from 
the channel to the application. Frames are pre-
sented using a standard Local Link interface.

•	 TX user interface: This interface moves data 
from the application to the channel. A standard 
Local Link interface is used for the data frames. 
This module has an interface for controlling clock 
Compensation 

The Aurora 8B/10B protocol uses a symbol-based 
method. Two symbols of information is transferred 
across an Aurora 8B/10B channel therefore it is called a 
symbol-pair. The information on an Aurora 8B/10B chan-
nel (or lane) always consists of multiple symbol-pairs. 
Implementations of the Aurora 8B/10B protocol takes a 
stream of octets from user applications and transfer them 
across the Aurora 8B/10B channel as one or more streams 
of symbol-pairs. Transmission of user PDUs requires the 
following procedures:

•	 Padding
•	 Encapsulation with channel PDU delimiters
•	 8B/10B encoding of channel PDU payload
•	 Serialization and clock encoding.

Reception of user PDUs involves the following proce-
dures:

•	 •	Deserialization
•	 •	8B/10B	decoding	of	channel	PDU	payload
•	 •	Link	layer	stripping
•	 •	Pad	stripping.

The Aurora 8B/10B core is a lightweight, serial commu-
nications protocol for multi-gigabit links. It is used to 

Figure 2. Aurora 8B/10B core block diagram.



C. Mani Pradhitha and S. Kolangiammal

Indian Journal of Science and Technology 5Vol 11 (23) | June 2018 | www.indjst.org 

transfer data between devices using one or many GTP/
GTX transceivers. Connections can be full-duplex (data 
in both directions) or simplex. Aurora 8B/10B cores auto-
matically initialize a channel when they are connected to 
an Aurora channel partner. After initialization, applica-
tions can pass data freely across the channel as frames or 
streams of data. Whenever data is not being transmitted, 
idles are transmitted to keep the link alive.

 Aurora frames can be of any size, and they can be 
interrupted at any time. Gaps between valid data bytes are 
automatically filled with idle to maintain lock and to pre-
vent excessive electromagnetic interference. The Aurora 
8B/10B core detects both single-bit and multi bit errors 
using 8B/10B coding rules. Excessive disconnections, bit 
errors or equipment failures causes the core to reset and it 
attempts to re-initialize a new channel.

The 7 series FPGA from Xilinx introduces high-speed 
serial communication and some techniques are used to 
increase performance on transmission channels.

A multi gigabit transceiver, or MGT for short, is the 
heart of a high-speed serial I/O interface. Simplified, its 
work is to take a word in parallel on each clock cycle at 
some frequency A. Then serialize the word at frequency 
B= length(word)_A and transmit this serial stream data 
over a channel. On the receiver end, the serial stream data 
is de-serialized at frequency B. It is then sent to the receiv-
ing application with a word in parallel, at frequency A. 
The circuitry that does the serializing and de-serializing 
is commonly called a SerDes. 

The 7-series FPGA from Xilinx contains transceiv-
ers which can cope with speeds up to 28 Gbps using a 
GTZ transceiver. The 7-series could also be equipped 
with a GTP or a GTH transceiver, with 6.6 and 13.1 Gbps 
respectively. A transceiver in the 7-series is located in a 
GTX Quad. Collection of four GTX transceivers is called 
a quad and it is placed near each other on the silica, shar-
ing resources. Each quad contains four CPLL and one 
QPLL. These are Xilinx names for the PLLs that synthe-

Figure 3. Xilinx 7-series GTX transceiver quad.



Development and Implementation of Parallel to Serial Data Transmitter using Aurora Protocol for High Speed Serial Data 
Transmission on Virtex-7 FPGA

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org 6

size the reference clocks for the transceivers. Each CPLL 
can synthesize different clock frequencies and it allows 
the four transceivers to run at different speeds which 
are independent to each other. The QPLL can operate 
between 5.93 and 12.5 GHz whereas the CPLL can oper-
ate at frequencies between 1.6 and 3.3 GHz. Each quad 
has two reference clock inputs.

3.3 Applications
Aurora 8B/10B cores can be used in a wide variety of 
applications because of their low resource cost, scal-
able throughput, and flexible data interface. Examples of 
Aurora 8B/10B core applications include:

•	 Chip-to-chip links
•	 Board-to-board and backplane links: 

•	 Simplex connections (unidirectional): 
•	 ASIC applications

4. Implementation of the 
Proposed work
The implementation of above application involves the fol-
lowing stages. They are,

•	 Implementation of Simulator with AFIFO.
•	 Implementation of Quad Independent Aurora 

Links using Multi-Gigabit transceivers.

The resources used for design and implementation of the 
high speed data transmission are as follows:

Figure 4. Xilinx 7-series GTX transceiver.



C. Mani Pradhitha and S. Kolangiammal

Indian Journal of Science and Technology 7Vol 11 (23) | June 2018 | www.indjst.org 

A. Software Resources:
 1. Xilinx Vivado 
 2. Xilinx core generator tool
B. Hardware Resources: 
 1. Virtex-7 Rocket IO development board.
 2. Fibre optic cable
 3. Switch Mode Power Supply(SMPS)
 4. JTAG cable

The Xilinx FPGA device (XCV7FX585T-1FFG1761) 
used is XILINX CMOS VIRTEX-7 FX585T series with 
package ffG1761 and speed grade -1. Here Virtex-7 

FXT is a High-performance embedded system with 
advanced serial connectivity. It contains GTX trans-
ceivers capable of running up to 6.5 GB/s. Each GTX 
transceiver supports full duplex, clock and data recov-
ery. And also contains Embedded IBM Power Pc 440 
RISC CPUs.

5. Results
The following Figures 4–6 are the results obtained 
during the transmission of 192-bit parallel data and 
reception.

Figure 5. AFIFO.

Figure 6. Aurora core.



Development and Implementation of Parallel to Serial Data Transmitter using Aurora Protocol for High Speed Serial Data 
Transmission on Virtex-7 FPGA

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org 8

Figure 6. FIFO along with Aurora protocol.

6. Conclusion
The 192-bit parallel data is transmitted serially at the rate 
of 3.125Gbps over dual independent aurora links present 
on one GTX DUAL TILE through fiber optic cable using 
multi gigabit transceivers and they are received by the 
multi-gigabit transceivers of the same TILE using optical 
fiber cable. Finally, both the transmitted data and received 
data are verified by using logic analyzer software.

7. Future Scope
The present paper was implemented over dual indepen-
dent aurora links on one GTX DUAL TILE for serial data 
transmission at the rate of 3.125Gbps using aurora proto-
col. We can also achieve 6.25Gbps speed with some other 
vertex series boards which supports 6.25Gbps line rate 
using aurora protocol. The other protocol is Serial Rapid 
IO (SRIO) which works on the principle of data packets 
switching which is more efficient for error free transmis-
sion and speed can be increased to higher level.

8. Acknowledgement
We wish to acknowledge with thanks, the support given 
by SRM University, in carrying out this work.

9. References
1. Reddy TVB. A real time implementation of high speed data 

transmission using aurora protocol on multi-gigabit trans-
ceivers in Virtex-5 FPGA. International Journal of Research 
in Computer and Communication Technology. 2012 Aug; 
1(3):106–11.

2. Clive MAX Maxfield. The design warriors’ guide to FPGAs; 
2004.

3. Athavale A, Christensen C. High speed serial I/O made 
simple- A designers’ guide with FPGA applications; 2005.

4. Xilinx, Aurora 8b/10b protocol specification, available at 
“http://www.xilinx.com/support/documentation/ip_doc-
umentation/aurora_8b10b_protocol_spec_sp002.pdf ”, 
SP002 (v2.2) April 19, 2010.

5. Xilinx, LogiCORE ip aurora 8b/10 v6.2 user guide 
[Internet]. 2010 Jul 23. Available from: available at http://
www.xilinx.com/support/documentation/ip_documenta-
tion/aurora_8b10b_ug353.pdf.

6. Kishore V. Design and implementation of high speed data 
transmission over dual independent aurora channels on one 
GTX dual tile usingVirtex-5. 2013 International Journal of 
Scientific & Engineering Research; 2013.

http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ug353.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ug353.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ug353.pdf



