
*Author for correspondence

Indian Journal of Science and Technology, Vol 11(21), DOI: 10.17485/ijst/2018/v11i21/121596, June 2018
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645

Data Migration Tool to Minimize the Spatial 
Redundancy without Affecting the Query 

Performance
Adel A. Sewisy*, T. Ahmed, Aly S. Abdelrahim and Waleed F. Awwad

Faculty of Computers and Information, Assiut University, Egypt; Dr.adelsewisy@yahoo.com, 
Taloba@aun.edu.eg, aly_saber@yahoo.com, Wafs_73@yahoo.com

Keywords: Data Migration, MongoDB, Relational Database, NoSQL, SQL

Abstract
Objectives: The study is to minimize the spatial redundancy without affecting the query performance, i.e., time taken to 
execute the query. Methods/Statistical Analysis: This paper illustrates a new method of analyzing the source database 
system: data, relations, etc., and generation of a Graph model based upon the database and conversion of the model by 
creating a new algorithm compatible with NoSQL databases, keeping in mind the following parameters: (1) Less time to 
execute each query, (2) Maximize spatial performance with minimum space and (3) Robustness of algorithm i.e., no data 
loss, metadata loss, or relational data loss during two transition stages, that is from old data migration to new model and 
analysis of new model (comparison with relational model). Findings: The advantage of NoSQL model is the decreased time 
taken to execute each query and increased speed for execution of queries due to ability to deal with the unstructured data. 
It was found that out of the three scenarios considered in the study that is nested, non- nested and hybrid, hybrid scenario 
is the one that possesses the most consistent performance and hence can be stated to be the best performer. Further, the 
study presented a robust algorithm for the migration of data in such a way that data loss, meta data loss, or relational 
data loss during transition is null or minimum. Application/Improvements: The present study proposes a method to 
convert the relational database to NoSQL database schema conversion model. This specific model has used the concept of 
embedded documents to improve query speed of NoSQL database.

1. Introduction
Data Migration is the method of relocating data from 
one system to another wherein its database, storage or 
application could be changed. According to IBM Global 
Technology Services (2007) “Data migration is the pro-
cess of making an exact copy of the current data from one 
device to another device-preferably without disrupting 
or disabling active applications—and then redirecting all 
input/output (I/O) activity to the new device”. In simplest 
words, data migration is the process of transferring data 
from one database to another database. Data migration 
is usually conducted when a new system is introduced. 
This can include consolidation or application migration 

in which some older systems is replaced by a newer sys-
tem. Irrespective of the nature of data migration, the aim 
of the migration process is to improve the performance 
which can be in terms of space, time or to increase the 
robustness. 

Many studies were made on Oracle data migration1–8. 
In1 states that now the systems have started to move from 
the traditional RDBMS to NoSQL wherein the movement 
from Oracle to NoSQL was considered. The study further 
stated that based on the requirements and the data struc-
ture, different NoSQL database can be used as data stores. 
Proper mappings should also be done while migrating 
from Oracle to NoSQL. In2 created an abstraction layer 
between SQL and NoSQL databases. The study stated that 



Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org 2

Data Migration Tool to Minimize the Spatial Redundancy without Affecting the Query Performance

an efficient and successful data migration process could 
help the organizations and businesses to move to the most 
recent systems with negligible disturbance in the work. 
Further, the risks related to managing the multifaceted 
business process can be tackled3. The study stated that 
Data in the legacy system is frozen and then extracted dur-
ing this period after which the data is loaded to the target 
system, verification is done and then the target system is 
implemented. Before conducting the migration, the data 
should be cleaned while accumulating enough informa-
tion about the data so that the control can be maintained. 
Also mock implementations should be conducted before 
the actual implementation so that the actual implementa-
tion can be shielded from the risks along with conducting 
proper testing like unit testing, post migration testing and 
functional testing7,8. 

In4 suggested two migration strategies namely big 
bang migrations and trickle migrations. Big bang migra-
tions engage implementation of the whole migration in a 
miniature, distinct processing window. This includes sys-
tem downtime in case of system migration while the data 
is taken out from the source system. After this, the data 
is processed and loaded to the target system. This pro-
cess is further followed by the transferring of processing 
over to the new environment. Trickle migrations take into 
account an incremental approach. As opposite to the big 
bang migration, a trickle migration includes running the 
old and new systems together and migrating the data in 
steps.

In5 conducted a study on development of an 
application for data migration. This application was 
custom-made for a company called Dipcon to cater 
its data migration needs. The author stated that the 
maximum time required to develop a data migration 
tool is during the collection of information about the 
databases and systems. The study suggested landscape 
analysis to be done to avoid this problem while tak-
ing into consideration a more thorough data profiling 
period. 

According to a study conducted on best practices in 
data migration6, it was stated that for data migrations to 
be successful, data quality and data profiling are to be 
included. Further, the data migration practices should 
support the iterative nature since deployment of data 
is iterative as it includes numerous handoff and rollout 
phases that requires a lot of time and should involve 
software automation for enhancing and correcting data. 
Finally, the study presented Extraction, Transformation 

and Loading (ETL) technologies to be used for data 
migration because of its exceptional capability to take 
care of severe necessities of data migration like multi-pass 
data transformations, profound data profiling, terabyte-
scale datasets, interoperability with data quality tools and 
many-to-many data incorporation abilities.

The present investigation is to minimize the spatial 
redundancy without affecting the query performance, 
i.e., time taken to execute the query.

2. Methodology and 
Implementation 
The source database used in the present study has been 
created especially to conduct the migration.  Microsoft 
SQL has been used for creating the data and storing it. 
The dataset thus created consists of seven tables namely 
countries, departments, employees, job history, jobs, 
locations and regions. The description of the tables has 
been presented in the Table 1.  

3. Generation of a Graph Model 
based Upon the Database 
The graph model created here is based on directed acy-
clic graph. A directed acyclic graph is a directed graph 
that does not contains any cycles. Each node in a graph 
corresponds to a Table in the database, and each edge in 
the graph corresponds to a Foreign Key reference in the 
DB. The Graph will be directed, and for each edge, source 
node represents the parent table and destination node 
represents the child table.

4. Conversion of the Model by 
Creating a New Algorithm to One 
Compatible with NoSQL Databases
The present study is based on developing an algorithm 
to migrate data from SQL which is a relational data base 
to NoSQL. NoSQL or not only SQL is a non relational 
database that is capable of dealing with different types of 
databases like ones stored in format of document, key-
value, and graph and columnar formats. The algorithm 
thus developed has the ability to minimize the time taken 
to execute the query, conducting migration in such a 
way so as to minimize data loss, metadata loss, or rela-



Indian Journal of Science and Technology 3Vol 11 (21) | June 2018 | www.indjst.org 

Adel A. Sewisy, T. Ahmed, Aly S. Abdelrahim and Waleed F. Awwad

tional data loss during transition. In the present study, 
MongoDB is an open source document-oriented NoSQL 
database.  Further, in migrating data from a traditional 
RDBMS to NoSQL (MongoDB in present study), the co-
relations between the two have been presented as below in 
Figure 1. For converting relational database into NoSQL 
database, Author in8 proposed a general schema conver-
sion approach.

4.1 Minimize Time Taken to Execute each 
Query 
One of the reasons for conducting data migration is to 
improve the performance. A performance of a system can 

be said to be improved if the time taken to extract the 
output is reduced. In case of MongoDB, it is known to 
deal with large and unstructured data wherein the tradi-
tional RDBMS lacks behind. Thus MongoDB saves time 
in dealing with the unstructured data where RDBMS 
lacks behind. Further, its ability to store large amount 
of data in form of documents further makes it a faster 
choice. MongoDB keeps as much data in RAM as pos-
sible which makes the execution of queries faster thereby 
saving time and improving the performance of overall 
migration algorithm. Also, MongoDB has the facilities of 
integrated storage engines and it has the ability to reduce 
the time between the primary failure and recovery along 
with in memory speed. These options further improve the 

Table 1. Summary table of dataset

S. No Table Name Attributes Data types Keys
1 Countries COUNTRY_ID

COUNTRY_NAME 
REGION_ID 

CHAR(2)
VARCHAR2(40)
NUMBER

Primary Key- country_id
Foreign Key- region_id

2 Department DEPARTMENT_ID,
DEPARTMENT_NAME
MANAGER_ID 
LOCATION_ID 

NUMBER(4)
VARCHAR2(30)
NUMBER(6)
NUMBER(4)

Primary Key- department_
id
Foreign Key- location_id

3 Employee EMPLOYEE_ID, 
FIRST_NAME, 
LAST_NAME, 
EMAIL, 
PHONE_NUMBER, 
HIRE_DATE, 
JOB_ID, 
SALARY, 
COMMISSION_PCT, MANAGER_ID, 
DEPARTMENT_ID

NUMBER(6)
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(25)
VARCHAR2(20)
DATE
VARCHAR2(10)
NUMBER(8,2)
NUMBER(2,2)
NUMBER(6)
NUMBER(4)

Primary Key- employee_id
Foreign Key- department_
id, 
job_id, manager_id

4 Job History EMPLOYEE_ID
START_DATE
END_DATE 
JOB_ID 
DEPARTMENT_ID 

NUMBER(6)
DATE
DATE
VARCHAR2(10)
NUMBER(4)

Primary Key- employee_id, 
start_date
Foreign Key- job_id, 
employee_id, department_id

5 Jobs JOB_ID 
JOB_TITLE 
MIN_SALARY 
MAX_SALARY 

VARCHAR2(10)
VARCHAR2(35)
NUMBER(6)
NUMBER(6)

Primary Key- job_id

6 Locations LOCATION_ID, STREET_ADDRESS, 
POSTAL_CODE, 
CITY, 
STATE_PROVINCE, COUNTRY_ID 

NUMBER(4)
VARCHAR2(40)
VARCHAR2(12)
VARCHAR2(30)
VARCHAR2(25)
CHAR(2)

Primary Key- location_id
Foreign Key- country_id

7 Region REGION_ID, 
REGION_NAME 

NUMBER
VARCHAR2(25)

Primary Key- region_id



Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org 4

Data Migration Tool to Minimize the Spatial Redundancy without Affecting the Query Performance

performance of MongoDB in terms of speed. The other 
reason is that MongoDB has lots of drivers which help in 
translating between programs and MongoDB which fur-
ther facilitates in building the applications faster. 

Figure 1.  Correlation between traditional RDBMS and 
NoSQL (MongoDB).

4.2 Maximize Spatial Performance by 
Keeping Space Occupied to a Minimum 
One of the major performance attributes is the space 
required for the overall process. MongoDB keeps as 
much data in RAM as possible. This becomes a setback 
for the algorithm since if the RAM space is not sufficient 
in the system, the overall process will slowdown. Also it 
takes all the RAM space which again becomes a draw-
back since if continuous IO requests are being generated 
to load the working data from the hard drive, almost all 
the performance in terms of speed achievements will be 
lost. MongoDB does this by mapping all the data into 
RAM and then management of the memory is done by 
the operating system. If, not whole dataset then at least 
enough RAM is required by MongoDB to hold all the 
database indexes. Reason being if it is required to access 
the hard drive just to access the index, IO performance 
will be blocked which will decrease the speed expecta-
tions to the minimum. Thus, irrespective of the amount 
of optimizations done in the code, if the data cannot be 
loaded fast enough from wherever it is stored, the overall 
performance will degrade (Figure 2).

In the algorithm above, the inputs taken into con-
sideration are vertex and edges of the nodes along with 
threshold value for each weight. The threshold limit is the 
limit of the number of embedded tables to be executed 
and used at a time has been pre defined to further improve 
the performance of the algorithm.

Figure 2. The algorithm.

4.3 Robustness of Algorithm
The robustness of the algorithm used for the migration 
in the present research study is based on conducting the 
migration in a way that data loss, metadata loss, or rela-
tional data loss during transition is null or minimum. The 
robustness of the algorithm in the present study is based 
on the inbuilt feature of NoSQL that is dynamic schema. 
The property of the accepting dynamic schema by NoSQL 
eradicates the requirement to pre-define the arrangements 
like value types or fields. Such property facilitated the algo-
rithm to inculcate hierarchical relationships representation 
and facility to alter or modify the records or their struc-
ture by merely adding or deleting fields. The algorithm 
became more robust due to the document oriented nature 
of MongoDB as it stores the tables or relational structures 
in minimal number of documents called Book. This docu-
ment oriented approach helps in presenting the complex 
hierarchical relationship at a single place thereby elimi-
nating the requirement of pre defining the schemas. This 
again reduces the intake of time and implementation of 
algorithm.  Further, the NoSQL offers the options of auto-
sharding, embedding, and on-board replication which has 
further facilitated in making the algorithm more robust 
leading to improved scalability and high availability.

 5. Data Migration to New Model 
The migration of the data from traditional RDBMS to 
NoSQL (MongoDB), has been done using the algorithm 



Indian Journal of Science and Technology 5Vol 11 (21) | June 2018 | www.indjst.org 

Adel A. Sewisy, T. Ahmed, Aly S. Abdelrahim and Waleed F. Awwad

above. In directed acyclic graph, when out degree of a 
vertex is zero; it is called a leaf node. Thus, a table that 
corresponds to a leaf node has not been referenced to any 
other table in the graph. In the present study, firstly, all 
the leaf nodes have been converted to NoSQL database 
according after which the edges that reference to them 
have been removed. The process was repeated until all the 
nodes are processed.

The present algorithm has been based to solve the 
issue of converting data from a traditional RDBMS to 
NoSQL database while preventing the loss of data. The 
output of the process will present a sequence of foreign 
keys, which will then present a sequence of data integra-
tion from child to parent node. It has been assumed in the 
study that there is no data loss among such data integra-
tion (Figure 3).

Figure 3. The definition.
Array O[v] means the out degree of point v.
Point set Q is the set of points who’s out degree is not 

0. Point set P is the set of points who’s out degree is 0 and 
in degree is not 0.

Point set T is the set of points who’s out degree and in 
degree are 0. Sequence S is the foreign key sequence.

6. Results
This section consists of the results derived from the 
experiment on a sample SQL database and converted it to 
MongoDB, including the robustness of the algorithm, and 
performance with respect to query time and space as Table 2.

Table 2. SQL experiment queries

Query No. of 
Rows

SELECT EMPLOYEE_ID, FIRST_NAME, 
LAST_NAME
FROM EMPLOYEES WHERE JOB_ID=’SA_REP’;

30

SELECT E.EMPLOYEE_ID, E.FIRST_NAME, 
E.SALARY, J.MIN_SALARY, J.MAX_SALARY
FROM EMPLOYEES E, JOBS J WHERE E.JOB_
ID  = J.JOB_ID
AND E.MANAGER_ID=’148’;

6

SELECT E.EMPLOYEE_ID, E.FIRST_NAME, 
E.SALARY, J.JOB_ID, JH.START_DATE, 
JH.END_DATE, JH.DEPARTMENT_ID
FROM EMPLOYEES E, JOBS J, JOB_HISTORY 
JH WHERE E.JOB_ID   = J.JOB_ID
AND E.EMPLOYEE_ID=JH.EMPLOYEE_ID;

10

SELECT E.EMPLOYEE_ID, E.FIRST_NAME, 
E.SALARY, J.JOB_ID, JH.START_DATE, JH.END_
DATE, D.DEPARTMENT_NAME, L.CITY
FROM EMPLOYEES E, JOBS J, JOB_HISTORY 
JH, DEPARTMENTS D, LOCATIONS L
WHERE E.JOB_ID      = J.JOB_ID AND 
E.EMPLOYEE_ID   =JH.EMPLOYEE_ID
AND JH.DEPARTMENT_ID=D.
DEPARTMENT_ID AND D.LOCATION_ID   
=L.LOCATION_ID;

10

6.1 Robustness
Robustness of the algorithm can be defined as no data loss 
occurring as a result of the data migration. This can ascer-
tained by the running the same SQL query on both the 
relation schema and the NoSQL schema and comparing the 
results. As shown in Table 1, 4 SQL queries were run both in 
relational schema and NoSQL schema, resulting in the same 
output in terms of both relation data and metadata.

6.2 Analysis of New Model: Comparison 
with Relational Model Performance
This section provides a comparative study of the per-
formance between 3 cases, viz., Nested, Non-Nested 



Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org 6

Data Migration Tool to Minimize the Spatial Redundancy without Affecting the Query Performance

and Hybrid. Nested refers to a scenario where all data is 
embedded into their respective parent records irrespec-
tive of the weightage of their foreign key. Non-Nested 
refers to a scenario where all data is stored in a relational 
format, i.e., in separate collections in the same manner as 
the relational schema. Both of these approaches are not 
used by the algorithm. The third scenario, Hybrid refers 
to algorithm used in the present study, i.e., according to 
the weightage given to each relation, a table might either 
be embedded or stored in a separate collection.

The results shown in the Figure 1 implies that by the 
Hybrid approach, queries take a little longer to execute 
as compared to a Nested solution, but is definitely better 
than a Non-Nested solution. This decrease in query per-
formance when compared to a Nested solution is made 
up for by the increase in space performance, as shown in 
the Tables 3 and Figures 4 and 5.

Figure 4.  Query performance of nested MongoDB, Non-
Nested MongoDB and Hybrid MongoDB.

Figure 5. Space performance of nested MongoDB, non-
nested MongoDB and hybrid MongoDB.

It can be inferred from the table above that though 
nested scenario took least query time, it took maximum 

space while non nested took maximum query time, it 
took minimum space. Thus both nested and non nested 
compensated for their good and bad performances in 
query time and space performance. The hybrid scenario 
is the one that possess the most consistent performance 
and hence can be stated to be the best performer.

Table 3. Performance comparison table

Performance
Nested Non- Nested Hybrid (present 

case)
Least Query 
time (40.55 ms)

Maximum Query 
Time (300.57 ms)

Intermediate Query 
Time (148.39 ms)

Maximum space 
used (15.68 GB)

Minimum space 
used (10.45 GB)

Intermediate space 
used (12.83 GB)

6.3 The New Model is Better in Terms of 
Performance when Compared with the 
Relational Model
For example, considering the countries table, its infor-
mation will be presented in a tabular format as follows 
in a traditional RDBMS. The tabular design is not eas-
ily changeable as it follows a fixed pre defined schema as 
Table 4.

Table 4. Traditional RDBMS structure

COUNTRY_ID COUNTRY_NAME REGION_ID
AR Argentina 2
AU Australia 3

Following, is the format in which, MongoDB stores 
the data. As it can be seen that its structure can be easily 
changed as per the requirement as it is not rigid.  

{
COUNTRY_ID: AR,
COUNTRY_NAME: Argentina,
REGION_ID: 2,
}
Above is a single document which is equal to a sin-

gle row in RDBMS. A collection includes large number 
of such documents in the same way as a table consists 
of many rows. Thus, it is possible for MongoDB for one 
document to have supposed three fields while the other 
document can have five fields. The fields can be easily 
added, removed and modified anytime thus making it 
more effective and efficient when compared with tradi-
tional RDBMS. 



Indian Journal of Science and Technology 7Vol 11 (21) | June 2018 | www.indjst.org 

Adel A. Sewisy, T. Ahmed, Aly S. Abdelrahim and Waleed F. Awwad

The threshold limit set in the model further increases 
the speed and efficiency of the model. Further, the present 
system was found to be more robust since it includes no 
data loss during migration, increased speed for execution 
of queries since it saves time in dealing with the unstruc-
tured data where RDBMS lacks behind. Also, MongoDB 
keeps as much data in RAM as possible which makes 
the execution of queries faster thereby saving time and 
improving the performance and has lots of drivers which 
help in translating between programs and MongoDB 
which further facilitates in building the applications. 

7. Conclusion
The present study proposes a method to convert the 
relational database to NoSQL database schema conver-
sion model. This specific model has used the concept of 
embedded documents to improve query speed of NoSQL 
database. Further, the paper has presented a migration 
algorithms based on the embedded document method. 
The paper presented the advantage of NoSQL model that 
is the decreased time taken to execute each query and 
increased speed for execution of queries due to ability to 
deal with the unstructured data. It was found that out of 
the three scenarios considered in the study that is nested, 
non- nested and hybrid, the hybrid scenario is the one 
that possesses the most consistent performance and hence 
can be stated to be the best performer. Further, the study 
presented a robust algorithm for the migration of data 
in such a way that data loss, meta data loss, or relational 
data loss during transition is null or minimum. But the 
study found a drawback that is irrespective of the amount 
of optimizations done in the code, if the data cannot be 
loaded fast enough from wherever it is stored, the overall 
performance will degrade since MongoDB requires a lot 

of RAM space that often results in space issues and dis-
ruption in the hard disk space leading to the problems of 
bottleneck and backlogs. Thus future studies are needed 
to come up with a solution to the disk space related issues.

8. References 
1.	 Cognizant. A path to efficient data migration in core bank-

ing; 2016. Available from: https://www.cognizant.com/
whitepapers/a-path-to-efficient-data-migration-in-core-
banking-codex2287

2.	 IBM Global Technology Services. Best practices for data 
migration; 2007. Available from: https://www-935.ibm.
com/services/us/gts/pdf/softek-best-practices-data-migra-
tion

3.	 Mittal N, Anupindi RS, Velumani K. Oracle data migration- 
A comparative study; 2017 Available from: https://www.
infosys.com/industries/aerospace-defense/white-papers/
Documents/oracle-data-migration-comparative-study

4.	 Oracle. Successful Data Migration. Oracle; 2011. Available 
from: http://www.oracle.com/technetwork/middleware/
oedq/successful-data-migration-wp-1555708

5.	 Rintamäki L. Data migration, a practical example from 
the business world master of science thesis in software 
engineering and technology; 2010. Available from: http://
publications.lib.chalmers.se/records/fulltext/126754

6.	 Russom P. Best practices in data migration best practices 
in data migration table of contents. Available from: http://
download.101com.com/pub/tdwi/files/tdwi_monograph_
bpindatamigration_april20062006.

7.	 Roijackers J. Bridging SQL and NoSQL [Master thesis]. 
Eindhoven University of Technology. Department of 
Mathematics and Computer Science; 2012.

8.	 Zhao G, Lin Q, Li L, Li Z. Schema conversion model of SQL 
database to NoSQL. IEEE 9th International Conference 
on P2P, Parallel, Grid, Cloud and Internet Computing 
(3PGCIC); 2014. p. 355–62.


	_GoBack

