
A Methodological Approach for Software
Architecture Recovery

R. Martin Monroy *, Julio R. Ribon and Plinio Puello

Department of System Engineering, University of Cartagena, Colombia; mmonroyr@unicartagena.edu.co,
jrodriguezr@unicartagena.edu.co, ppuellom@unicartagena.edu.co

Indian Journal of Science and Technology, Vol 11(21), DOI: 10.17485/ijst/2018/v11i21/124487, June 2018

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Abstract

Background/Objectives: The software architecture recovery process is an activity that is included in different contexts.
However, the methodological proposals to perform this process do not take into account the particular needs of the con-
text in which it is developed. The objective of this work is to propose a methodology for Software Architecture Recovery,
responding the specific needs of the context in which the need to recover the architecture of a software product is
presented. Methods: The model was obtained after applying the pattern-matching technique in order to establish
the common aspects to all the proposals identified in the literature review. Findings: The results of the evaluation of
the methodological proposal reveal the usefulness when recovering architectures, since it allows focusing attention on the
most relevant aspects of recovery for the specific context in which the process is performed. Novelty: The defined meth-
odological proposal is a new way of performing architecture recovery processes, which achieves more relevant results to
the context in which the needs arise.

Keywords: Architecture Recovery, Methodological Approach, Reverse Engineering, Software Architecture

1. Introduction
From the beginning, reverse engineering has been used as
a software maintenance technique1, however, throughout
its evolution, it has been used to solve several problems
which software engineering is facing, such as: the recovery
of architectures and design patterns, the re-documentation
of programs and databases, the identification of reusable
assets, the definition of traceability between software arti-
facts, the identification of the impact of software product
changes, the restructuring of existing systems, the renewal
of interfaces of user, the migration towards new architec-
tures and platforms among others2. This characteristic
has caused in the fields of application of reverse engineer-
ing to be extended to different contexts, such as: Software
production, computer security, forensic computing and
education3.

On the other hand, architecture recovery techniques
and methods identified in the literature review have been
defined only for situations that arise in the context of
software production4. For example, there are techniques

that are specialized in reconstructing system documenta-
tion5–9, in the evolution10,11 and analysis12 of the product,
or in the review of compliance13,14, while other tech-
niques are used to achieve one or more purposes at the
same time15,16. However, in each of the contexts in which
reverse engineering is applied, different situations arise
to affect individuals with unlike and particular purposes,
additionally not all contexts have the same resources3.

For example, in a context like computer security, there
are situations such as the analysis of malicious software,
which are addressed by security experts, whose purpose
is to understand the structure and behavior of this type
of program to solve the representing risks. Under these
circumstances, there are no artifacts such as source code,
configuration files, data structures or documentation. In
addition, the views that need to be recovered are more
oriented to understanding the modular structures and
the execution profiles than the structures themselves.
Therefore, there is a need to define a methodological
proposal that guides the process of architecture recovery,
taking into account the interests of the participants and

*Author for correspondence

mailto:mmonroyr@unicartagena.edu.co
mailto:jrodriguezr@unicartagena.edu.co
mailto:ppuellom@unicartagena.edu.co
10.17485/ijst

A Methodological Approach for Software Architecture Recovery

Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org2

the specific characteristics of each context, in which the
situation to be solved is presented.

The main contribution of this work is the definition of
a methodology to recover software product architectures,
taking into account the specific needs of the context in
which this process is carried out. It is aimed at software
engineers and participants in architecture recovery pro-
cesses. This methodological proposal is used as a guide to
recover the artifacts that describe the architecture of soft-
ware products, taking into account the purposes within
the context in which it is applied, its circumstances, its
characteristics and the available resources, which contrib-
utes to the solution of the problem posed. Additionally,
the results of the case study applied for the evaluation of
the methodology are documented.

Following this, the methods and materials used for
the development of the research are presented. Then the
methodological proposal is explained, detailing the sus-
tained axioms and the established process. Subsequently,
the results of the case study that was applied to evaluate
the proposed methodology are presented. Later, the results
are analyzed and finally the conclusions are presented.

2. Materials and Methods
The investigation was carried out in two phases. In the
first, a review of the literature was made applying the
methodological approach established by17 and a charac-
terization model of the architecture recovery process was
defined. The results of this phase were published in4,18. In
the second phase, the analysis of the documentation iden-
tified in the previous phase was carried out, applying the
technique of pattern matching19 to establish the aspects
common to all the proposals. As a result of this phase, the
methodological proposal for recovering software archi-
tectures was obtained.

Subsequently, the methodological proposal was
evaluated by applying to single case study (embedded)
with two units of analysis19, in two use scenarios. The
first scenario concerns the software production, since it
is the typical context for which all the proposals identi-
fied in the review of the literature have been defined,
becoming a mandatory unit of analysis. The second
scenario corresponds to the context of education, since
it is one of the contexts of the use of reverse engineer-
ing, in which no specialized proposal was found in the
literature review.

The design of the case study was based on its five com-
ponents: the research question, propositions, the units
of analysis, the logic to connecting data to propositions,
and the criteria for interpreting the findings19. In the first
instance, the question arises from the intention of the case
study: to evaluate the methodological proposal, for that
reason it is posed as follows: How does the methodologi-
cal proposal contribute to the recovery of the architecture
of a software product? The main proposition states that
the proposed methodology guides the process of recov-
ering the architecture of a software product, taking into
account the particular characteristics of the situation sur-
rounding the context in which the process is carried out.

The units of analysis were taken from the contexts
of reverse engineering. The first is the production of
software, and the second is the context of education.
The main logical connection between the data and the
propositions in this case study was carried out using the
analysis technique called the Logic Model, which consists
of observing the coincidence of the observed empirical
events and the theoretical events13. This model of analy-
sis was selected because the case study is carried out to
evaluate the proposed methodology, demonstrating that
the empirical events observed when using it coincide with
the theoretical proposal presented. To argue the interpre-
tation of the findings, the main strategy used was analysis
based on theoretical propositions to make logical infer-
ences based on the conceptual proposals identified in the
literature review.

3. Results and Discussion
This section describes the methodological proposal for
architecture recovery, explaining the elements that com-
prise it and the process that defines it. Then the results of
the case study that was applied to evaluate the proposed
methodology are presented. Finally, the analysis of the
obtained results is made, and future works are proposed.

3.1 Methodological Proposal
The process for recovering architectural views is pre-
sented as a methodology, because it not only refers to the
technical procedures used to achieve the objective but
also shapes the diversity of the entire set of knowledge
required to achieve it, thus establishing the four axioms
that differentiate a methodology20. The proposal is called
SAReM (Software Architecture Recovery Methodology);

www.indjst.org

R. Martin Monroy , Julio R. Ribon and Plinio Puello

Indian Journal of Science and Technology 3Vol 11 (21) | June 2018 | www.indjst.org

Figure 1. Methodological Approach Structure

the structure is represented in Figure 1, and each axiom is
explained below. For the application of the methodology
requires the use of techniques, tools and instruments to
achieve the recovery of architectural views.

The epistemological axiom offers for clarity about
what counts as knowledge and ways of knowing. It is
constituted by Software Architecture Recovery Body of
knowledge (SAR BoK), and is synthesized in the results
of the literature review18. The ontological axiom defines
the object of study and the nature of the reality that sur-
rounds it. It is represented by the recovery of architectural
views, as a need that presents itself in a situation under a
specific context, as explained by3.

The axiological axiom reveals what is counted as fun-
damental values and what consciousness is, establishing
moral, ethical and normative judgments. It is represented
by the following methodology guidelines: 1) the proposed
methodology obeys a generic process that supports the
recovery of architectural views taking into account the
context in which the situation under study is presented.
2) The methodology does not define any new technique;
it only integrates the existing ones so that their use is rele-
vant to the context and the situation in which the problem
arises. 3) The recovery process complies with the charac-
terization model established by4. 4) The definition of the
process specifies the activities that comprise it, indicating
the logical sequence of its execution, the goals proposed;
the resources received as input and those generated as

output, as well as the instruments that they are used and
the techniques applied to achieve the proposed goals.

Finally, the logical axiom indicates what is accept-
able in terms of rigor and inference in the development
of arguments, judgments, reflections or actions. It is con-
stituted by the recovery process of the architecture that
explains the development of the actions. The software
architecture recovery process is executed in a specific
context; it refers to the set of activities that are carried out
under a logical and temporal order organized in phases,
following a focus, and establishing one or several objec-
tives. There are three types of approaches21: Top - down
(from the abstract to the concrete), Bottom - up (from the
concrete to the abstract) and hybrid.

The aim of the process establishes the target that is
intended to be achieved. Some possible objectives that
can be raised in an architecture recovery process are:
documentation reconstruction, reusable assets identifica-
tion, analysis of compliance, analysis for the identification
of patterns, aspects, characteristics, roles, and collabora-
tions, among others. An activity is a set of operations or
tasks that a person or entity does, in which artifacts or
pieces of information represented by documents or archi-
tectural elements are received, which are manipulated to
meet the goals of the activity, with the help of resources
represented by architecture recovery techniques and
tools. The activities also operate with instruments, sup-
port elements, used to guide or record the activities, and
the results obtained in each one of them.

An activity can consist of several sub-activities or tasks
organized from a work plan; the latter is an instrument
that establishes the sequence of activities to be carried
out under a logical and temporal order, indicating those
responsible, the resources to use, and the results that
must be obtained. The logical order of the development
of activities is defined from the realization of phases. A
phase represents the states through which the process
faces, depending on the compliance with the established
milestones. The fulfillment of the goals of the activities
contributes to the achievement of the milestones of the
phases, and these in turn make possible the achievement
of the aims proposed in the process.

3.2 The Process
The process is structured in four phases; each one has
established one or several milestones and a set of activities
that are carried out under a logical sequence described

www.indjst.org

A Methodological Approach for Software Architecture Recovery

Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org4

in Figure 2. Each activity defines the goals that are to
be achieved and the techniques and necessary tools to
be performed. Similarly, for each activity the arguments
justifying it (motivation), the stakeholders involved,
the artifacts required as input and the artifacts that are

Figure 2. The Process

generated as an output or result are identified. If the activ-
ity leads to the completion of tasks, the aforementioned
aspects are specified for each task.

The order of execution of the activities that make
up each of the phases is established in the work plan,
depending on the analysis made of the context and the
situation generated by the architecture recovery pro-
cess. In the data extraction phase, the activity oriented
to define the domain model of the application, appears
if a Top-Down approach is used. In addition, the use
of some architecture recovery tools, such as Imagix4D
and the Moose platform, among others, merge the
activities corresponding to the decomposition of
artifacts, abstraction and model representation. No
activity involved implies the modification of the prod-
uct is, since this is a reverse engineering process. Each
of the phases is summarized in Tables 1–4, specifying
their milestones and activities. The goals and purposes
for each activity, the techniques and instruments used,
the inputs required and the outputs generated are
presented.

3.3 Case Study
The results of the case study are presented for each unit
of analysis. In the first instance, the analysis unit cor-
responding to the software-development process was
carried out in a company of the industrial sector of the
city of Cartagena. The stated objective is: Recover the
software documentation, so that its functionality can
be extended to new requirements requested by senior
management. By applying the proposed methodology,
it was possible to recover the following documenta-
tion for the ICR software product: 1) The general
description of the product, 2) the domain model of the
problem, 3) the domain model of the application and

Table 1. Inception Phase

Milestones
Specify the scope of the problem
Establish the feasibility of carrying out the process
Establish the work plan

Activity Goals Inputs Techniques Instruments Outputs
Define the
context

Identify the
context

Knowledge of the expert in
reverse engineering

Inference Characterization of
the contexts of use

Description of the problem

Pose a problem Stakeholders knowledge
and documentation

Interview Template for the
description of the
problem

www.indjst.org

R. Martin Monroy , Julio R. Ribon and Plinio Puello

Indian Journal of Science and Technology 5Vol 11 (21) | June 2018 | www.indjst.org

Activity Goals Inputs Techniques Instruments Outputs
Analyze the
feasibility of
the process

Define the
feasibility of the
process

Description of the
problem, Stakeholders
knowledge, documentation

Decision
algorithm

List of architectural
views according to
context, checklists,
characterization of
Reverse Engineering
tools

Decision about the viability
of the process, The target
views, List of available
artifacts, List of required
artifacts, Techniques to
be used, Tools to be used,
Cost of the process

Plan the
process

Define the work
plan

Description of the
problem, target views, list
of available and required
artifacts, list of techniques
and tools to be used

Resource
allocation

 Work plan

Table 2. Data Extraction Phase

Milestones Identify the elements that make up the software product and the relationships that exist between them at
a low level

Activity Goals Inputs Techniques Instruments Outputs
Define the application
domain model

Define the domain
of the application

knowledge of the expert,
users and technical staff; and
Description of the problem

Conceptual
modeling

UML
Diagrams

Domain
application model

Decompose artifacts Identify the
elements that make
up the system and
its relationships

Software artifacts Static analysis,
dynamic
analysis

KDM System model in
low level

Table 3. Knowledge Organization Phase

Milestone Convert the system model to a low level in a high level model
Activity Goals Inputs Techniques Instruments Outputs
Models
abstraction

Identify elements and
relationships at a high
level based on the low-
level system model

Low-level system model,
application domain model
and expert knowledge

Manual, semi-
automatic and
automatic
techniques

Mapping rules Elements and
relationships at a
high level

Models
representation

Represent software
models at a high level

Elements and relationships
at a high level

Mapping UML, mapping
rules

Model of the system
in high level

Table 4. Information Exploration Phase

Milestone Prepare the report with the analysis of the architectural views recovered, indicating the fulfillment of the objectives
established for the process in the inception phase.

Activity Goals Inputs Techniques Instruments Outputs
Results
visualization

Present the results in
graphic form

Model of the system in high level Metaphors,
hyperlinks

UML Target views
represented in UML

Results
analysis

Interpret the results
obtained in the process

System model at a high level,
domain model of the problem,
application model and expert
knowledge

Inference Querying
mechanism

Results analysis

Results
formulations

Organize the results in
a final report so that it
can be interpreted by all
stakeholders

Target views represented in UML,
results analysis, domain model of
the problem, application domain
model, and expert knowledge

Drafting of the
document

 Process report

www.indjst.org

A Methodological Approach for Software Architecture Recovery

Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org6

4) the system views: View of decomposition, layers
view; classes view components and connectors view, and
the assignment structures view.

In the data extraction phase, the domain of the prob-
lem and the domain of the application were defined. The
elements that make up the system and its relationships
were also identified. The system model in the low-level
represented in XMI was obtained, fulfilling the milestone
established in this phase. In the knowledge organization
phase, mapping rules, manual and semiautomatic tech-
niques were used to transform the system model into a
low-level obtained in the previous phase, in the high-level
system model. The milestone established in this phase
was achieved, since the elements of the system, and their
relationships were identified. Finally, in the information
exploration phase, the results were presented in graphical
form using models represented in UML, the interpreta-
tion and analysis of the results obtained in the process were
made, and the final report presented to the Company of
the industrial sector in the city of Cartagena was organized.

The Interpretation and analysis of the results, gen-
erated two recommendations for the Company of the
industrial sector of the city of Cartagena: 1) to carry out
a code cloning analysis to debug the system and identify
possible reusable assets; and 2) to make a refactoring pro-
cess, assigning more descriptive names to some modules
and classes, defining interfaces for the modules respon-
sible for the logic of the application, to guarantee the
encapsulation, the reuse, facilitate the extensibility, and
the maintenance capacity of the system.

The second unit of analysis corresponded to the
context of Education. SAReM was used to support a
teaching-learning process, in the development of an
academic activity of the Object-Oriented Programming
course, in which students of the systems engineering
program of the University of Cartagena participated.
The objective of the process was established: At the end
of the class, students will be able to understand the con-
cept of polymorphism and have the skills to use it in
practical situations. For this unit of analysis, the results
are measured not only from the recovered artifacts and
the direct analysis made on the architectural views, but
also the effect that the application of SAReM had on the
apprentice, and the teacher’s perception when using it.

Taking into account the characteristics of this context
of use, it was only necessary to recover: 1) The general
description of the product, 2) the domain model of the

application and 3) the system views: View of decomposi-
tion, the view of classes and the view of components and
connectors. The inception phase was carried out by the
teacher, who defined the context of the problem, the via-
bility of the process and the work plan. It also determined:
The target views, the list of available artifacts, the list of
required artifacts, the techniques and tools to be used and
the cost of the process.

The teacher and the students participated in the data
extraction phase. The teacher recovered the domain
of the application, presented at the beginning of the
academic activity so that the students understood the
purpose of the software they analyze. Then the stu-
dents recovered the view of classes using the Enterprise
Architect tool. In the knowledge organization phase,
only the teacher participated, who reconstructed the
view of communication between processes through
interfaces, using mapping rules, manual, and semi-
automatic techniques. This view was used in the class
to explain the students the structure of the software that
was analyzed in the academic activity.

Finally, the exploration phase of information was
carried out by students with the Enterprise Architect
modeling tool. In this phase, the students visualized the
results obtained in the process and with the help of the
querying mechanism QModel-XMI3 the interpretation
and analysis of the results were made. This allowed them
to identify possible polymorphic behaviors, which they
reported as a result of the realization of the class activ-
ity, and which in turn were useful for the teacher to make
the respective report on the learning activity supported
by SAReM.

The use of SAReM in the academic process contrib-
uted to the learning objectives, because the results of
the activity revealed that: 1) all students understood the
concept of polymorphism and have the ability to identify
where it is being applied. 2) The majority (75%) can apply
the concept to modify the functionality of a software
product.

3.4 Results Analysis
A new way of carrying out architecture recovery processes
was defined, which complements existing propos-
als9,10,12,14. Unlike other methodologies, SAReM integrates
relevant aspects to the specific needs of the context in
which the architecture recovery process takes place, as
shown in Table 5; where the results of the case study are

www.indjst.org

R. Martin Monroy , Julio R. Ribon and Plinio Puello

Indian Journal of Science and Technology 7Vol 11 (21) | June 2018 | www.indjst.org

product is presented. The results of the case study allow
us to conclude that: 1) the methodology can be used
to guide the recovery of the artifacts that describe the
architecture of software products. 2) By applying this
methodology, the attention can be focused on the most
relevant aspects for the specific context in which the
architecture recovery process takes place. 3) The use
of this methodology allows the achievement of results
more pertinent to the context in which the need arises.
4) To improve the methodology it is necessary to apply
it in contexts such as computer security and forensic
computing.

5. References
1. Ganesh S, Girish S, Arbind KG, Raghu N. FOCUS: An

adaptation of a SWEBOK-based curriculum for industry
requirements. 34th International Conference on Software
Engineering (ICSE). 2012; p. 1215–24.

2. Canfora G, Di Penta M. Cerulo YL. Achievements and
Challenges in Software Reverse Engineering, communica-
tions of the ACM. 2011; 54(4):142–51.

3. Monroy M, Arciniegas JL, Rodríguez JC. Characterization
of the contexts of use of reverse engineering. Información
tecnológica. 2017 July; 28(4):75–84.

compared for each unit of analysis. This allows defining
a work plan according to the circumstances, the available
resources and the purposes within the context in which
the architecture recovery process is done. Consequently,
it ensures that the process focuses on the most pertinent
aspects of the context of the problem. Therefore, the
results are relevant to specific needs. Thus, SAReM can be
used in contexts such as software production, computer
security, forensic computing and education.

The methodology corresponds to a generic process,
which does not include activities related to the modifica-
tion of software products, since its scope only includes the
reverse engineering process. As future work, it is planned
to apply the methodology in contexts related to computer
security and forensic computing. It is also recommended
to explore the possibility of extending this proposal to
other fields of knowledge, such as mechanical and elec-
tronic engineering among others.

4. Conclusions
A methodology was defined to recover software archi-
tectures, based on the specific needs of the context in
which the need to recover the architecture of a software

Table 5. Comparison of Analysis Units

Criterion
Analysis unit
Software Production Context Education context

Aim Extend the functionality of the software product. Support the learning process
Objective Recover software documentation At the end of the class, students must understand

the concept of polymorphism and have the skills to
use it in practical situations

Situation Company of the industrial sector has a software
product that supports its production processes. It is
necessary to extend the functionality of the system but
the documentation is not available.

The study plan of the Systems Engineering
program of the University of Cartagena has
the subject Object-Oriented Programming.
Polymorphism is a issue that must be addressed in
this subject, therefore at the end of this course the
student must understand and apply this concept.

Available resources Software product source code, MARIADB relational
database, database dictionary (Excel), business process
models VPMN - Bizagi (production control, transport
freight management, quality retention management),
Persistence (xml of the databases it connects),
Enterprise Architect. Expert in reverse engineering.

JHotDraw Java System Code, Student and Teacher
Lab Guide, JHotDraw Documentation, Enterprise
Architect, QModel-XMI, Reverse Engineering
Expert.

Recovered
documentation

The general description of the product, the domain
model of the problem, the application domain model
and the system views: Decomposition view, the layer
view, the class view, the components and connectors
view and the view of allocation structures.

The general description of the product, the
application domain model and the system
views: decomposition view, the classes view and
components and connectors view.

www.indjst.org

A Methodological Approach for Software Architecture Recovery

Indian Journal of Science and TechnologyVol 11 (21) | June 2018 | www.indjst.org8

4. Monroy M, Rodríguez J, Puello P. Characterization Model
of Software Architectures Recovery Process. Indian Journal
of Science and Technology. 2018; 11(1):1–10. Crossref.

5. Eisenbarth T, Koschke R, Simon D. Locating features in
source code. IEEE Transactions on Software -Engineering.
2003; 29(3):210–24. Crossref.

6. Favre JM. Cacophony: Metamodel-driven software archi-
tecture reconstruction. IEEE 11th Working Conference on
Reverse Engineering. 2004 November; p. 204–13.

7. Callo Arias TB, Avgeriou P, America, P, Blom K, Bachynskyy S.
A top-down strategy to reverse architecting execution views
for a large and complex software-intensive system: An expe-
rience report. Science of Computer Programming. 2011;
76(12):1098–112. Crossref.

8. Boussaidi GE, Belle AB, Vaucher S, Mili H. Reconstructing
architectural views from legacy systems. IEEE 19th Working
Conference on Reverse Engineering. 2012; p. 345–54.
Crossref.

9. Garcia J, Krka I, Medvidovic N, Douglas C. A framework for
obtaining the ground-truth in architectural recovery. Joint
Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture. 2012;
p. 292–96. Crossref.

10. Pinzger M, Gall H, Girard JF, Knodel J, Riva C, Pasman
W,Wijnstra JG. Architecture recovery for product fami-
lies. In Software Product-Family Engineering. Heidelberg;
Springer, Berlin. 2003; p. 332–51.

11. Kang S, Lee S, Lee D. A framework for tool-based soft-
ware architecture reconstruction. International -Journal of
Software Engineering and Knowledge Engineering. 2009;
19(2):283–305. Crossref.

12. Stoermer C, Brien L, Verhoef C. Moving towards qual-
ity attribute driven software architecture reconstruction.

Proceedings 10th Working Conference on Reverse
Engineering (WCRE). 2003 November; p. 46–56.

13. Guo GY, Atlee JM, Kazman R. A software architecture
reconstruction method. Springer US. 1999; p. 15–33.
Crossref.

14. Deursen VA, Hofmeister C, Koschke R, Moonen L, Riva C.
Symphony: View-driven software architecture reconstruc-
tion. Proceedings. Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA). 2004 June; p. 122–32.
Crossref.

15. Vasconcelos A, Werner C. Evaluating reuse and program
understanding in ArchMine architecture recovery approach.
Information Sciences. 2011; 181(13):2761–86. Crossref.

16. Kazman R, O’Brien L, Verhoef C. Architecture reconstruc-
tion guidelines. Third Edition. Carnegie Mellon University.
Software Engineering Institute, Pittsburgh. 2003; p. 1–43.

17. Kitchenham BA, Budgen D, Brereton OP. Using mapping
studies as the basis for further research - A participant
observer case study. Information and Software Technology.
2011; 53(6):638–51. Crossref.

18. Monroy M, Arciniegas JL, Rodríguez JC. Recuperación
de Arquitecturas de Software: Un Mapeo Sistemático de
la Literatura. Información tecnológica, 2016 September;
27(5)201–20

19. Yin RK. Case study research: Design and methods. Sage
publications; 2013.

20. McGregor SL, Murnane JA. Paradigm, methodology
and method: Intellectual integrity in consumer scholar-
ship. International Journal of Consumer Studies. 2010;
34(4):419–27. Crossref.

21. Ducasse S, Pollet D. Software architecture reconstruction: A
process-oriented taxonomy. IEEE Transactions on Software
Engineering. 2009 April; 35(4):573–91. Crossref.

www.indjst.org
https://doi.org/10.17485/ijst/2018/v11i1/118364
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1016/j.scico.2010.11.008
https://doi.org/10.1109/WCRE.2012.44
https://doi.org/10.1109/WICSA-ECSA.212.48
https://doi.org/10.1142/S0218194009004167
https://doi.org/10.1007/978-0-387-35563-4_2
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.1016/j.ins.2010.05.024
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1111/j.1470-6431.2010.00883.x
https://doi.org/10.1109/TSE.2009.19

