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1. Introduction
Heavy metals discharged through different industrial activi-
ties are one of the major causes of water pollution causing 
numerous diseases and disorders. Heavy metals can accu-
mulate in the environment and steps must be taken to reduce 
their release and subsequent build-up1. Metals which are 
toxic pollutants include: mercury, cadmium, cobalt, nickel, 
and lead, among others. These metals show an extreme 
toxicity and high-level contamination in aquatic environ-
ments2. Exposure of humans to high levels of risk elements 
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through their contact with contaminated waters, soils and 
the food chain can lead to serious chronic even carcino-
genic disease3. In order to mitigate this problem, different 
methods have been developed by which such elements can 
be removed from aqueous solutions. Chemical procedures 
as reverse osmosis, coagulation, chemical precipitation, 
electro dialysis and ultra-filtration are widely employed in 
wastewater treatment4. However, all these methods are asso-
ciated with discharge of toxic byproducts and are expensive5. 
Biosorption is regarded as one of the most suitable methods 
for removing heavy metals because of its promising advan-
tages as low cost and high uptake efficiency6,7. 
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Abundant waste byproducts from industrial and 
agricultural activities may be potential inexpensive 
alternatives for heavy metals removal8. Fruit and vege-
table peels are mainly composed of cellulose and pectin 
compounds which get ionized on alkaline treatment and 
generate negative charges which bind metal cations5. 
Being a renewable resource, agricultural waste peels 
are, therefore, a promising resource of biomass for pre-
paring biosorbents9. In addition, agro-industrial sector 
generates a great amount of wastes annually worldwide 
and it is presently causing a serious disposal problem10. 
Alternatively, nanotechnology has been applied in 
wastewater treatment11. When nanomaterials are used as 
adsorbents mass transport resistance is greatly reduced 
due to their high surface area and adsorption capacity12. 
Titanium dioxide nanoparticles exhibit excellent chemi-
cal properties and nontoxicity, which make of it one of 
the most produced nanoparticles13. In this work, bioma-
terials from agricultural residues (lemon, cassava and 
yam peels) were modified with TiO2 nanoparticles and 
used to carry out adsorption experiments for lead and 
nickel uptake. 

2. Material and Methods

2.1 Preparation of Biomaterials
Agricultural wastes were selected as source of bio-
masses including lemon peels (Citrus limonum, LP), 
cassava peels (Manhiotesculenta, CP) and yam peels 
(Dioscorearotundata, YP), which were used to synthetize 
the biosorbents. These peels were cut and washed thor-
oughly to remove surface-adhered particles as reported 
by author in14. After drying for 24 hours at 80°C, the 
particle size of dried biomass was reduced to 0.5 mm by 
grounding and sieve-meshing15. 

2.2 Synthesis of TiO2 Nanoparticles   
The TiO2 nanoparticles were synthesized by the green 
method pointed out by author in16. A leaf extract of lemon 
grass was used to reduce titanium (IV) isopropoxide. This 
extract was added to Ti[OCH(CH3)2]4 solution and con-
tinuously stirred for 12 hours. The resulting nanoparticles 
were centrifuged in order to separate them from aque-
ous solution. To obtain powder, the TiO2 nanoparticles 
were dried at room temperature and heated at 550°C for 
3 hours. 

2.3 Modification of Biomaterials with TiO2 
Nanoparticles   
In order to load TiO2 nanoparticles onto biomaterials, 
Dimethyl Sulfoxide (DMSO) was used as organic solvent. 
In brief, 0.5 g of biomass was mixed with DMSO solution 
on a stirring plate for 24 hours at 120 rpm. The resulting 
suspension was stirred for 48 hours after adding 3 mL of 
Tetra Ethyl-O-Silicate (TEOS), which caused the hydro-
lysis and condensation of TEOS molecules. Then, 0.3 g of 
nanoparticles were added and centrifuged for 15 minutes 
at 3000 rpm.  The synthetized biosorbents were washed 
with ethanol and dried17,18.

2.4 Characterization Techniques 
The Fourier Transform Infrared Spectroscopy (FT-IR) was 
carried out to identify functional groups in biosorbents 
(LP-TiO2, CP-TiO2 and YP-TiO2) and TiO2 nanoparticles. 
Energy Dispersive X-ray spectroscopy (EDX) on a JEOL 
JSM-6490 LV equipment was also used to identify ele-
mental composition of these samples. 

2.5 Batch Adsorption Experiments 
Nickel sulfate (NiSO4) and lead chloride (PbCl2) were dis-
solved in deionized water to prepare stock solutions at 100 
ppm. The initial solution pH was adjusted to 6 by adding 
NaOH and HCl solutions. The experiments were per-
formed in a flask placed on a stirrer plate at 150 rpm and 
25 °C. The pretreated biomass (YP, CP and LP) and the 
synthesized materials(LP-TiO2, CP-TiO2 and YP-TiO2) 
were used as biosorbent and its concentration was fixed 
in 5 g/L and the remaining heavy metal concentration 
was determined by atomic absorption spectrophotometry 
analytical technique19. Equation (1) was used to calculate 
adsorption capacity: 

q
C C V
me

e=
−( )0  (1)

Where  (mg/L) is the initial concentration of nickel 
and lead,  (mg/L) the remaining concentration of nickel 
and lead,  is the sample volume (L) and  the biosorbent 
amount (g).

2.6 Adsorption Isotherms and Kinetics 
Aliquots of 5 mL were taken in a period of time and the 
remaining concentration was measured. These results were 
fitted to kinetic models (pseudo-first order, pseudo-second 
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order, intraparticle diffusion and Elovich). The adsorption 
isotherms were calculated by varying initial heavy metal 
ions concentration in 25, 50 and 75 ppm and isotherm 
expressions purposed by Langmuir, Freundlich and Temkin 
were used as source of information related to adsorp-
tion mechanism and biosorbent surface20. The regression 
coefficient values were judged to find the applicability of 
these models to the adsorption data21. The application of 
experimental data on simple equations represents the fun-
damental interactions that happen between charged surface 
and nickel and lead ions22. The experiments were carried 
out in triplicate using chemically modified biosorbents and 
its arithmetic average was used to determine parameters of 
kinetic and isotherm models, whose mathematical expres-
sions are presented in Tables 1,2.

Table 1. Mathematical expressions of kinetic models 

Kinetic 
model

Equation Parameters

Pseudo-1st-
order q q et e

kt= −( )−1
qe, Adsorption capacity 
at equilibrium (mg/g)
k1, pseudo-1st-order 
constant (min-1)

Pseudo-2nd-
order q t

k q
t
q

t

e e

=

( )











+










1

2
2

k2 pseudo-2nd-order 
constant (g/mg.min)
qe, Adsorption capacity 
at equilibrium (mg/g)

Elovich 
equation q tt = ( ) +1 1

β
αβ

β
ln ln

α, Elovich constant 
(mg/g min)
β, Elovich exponent (g/mg)

Intraparticle 
diffusion

q k tt =
k, diffusion constant

Table 2. Parameters of isotherm models  

Isotherm Equation Parameters

Freundlich q K Ce F e
n= 1/ KF, indicator of the 

absorption capacity 
(mg/g)
1/n,heterogeneity 
factor 
Ce, concentration of 
the metal (mg/L)

Langmuir
q

q bC
bCe

max e

e

=
+1

qmax, maximum 
quantity of the metal/
mass of biomass 
(mg/g)
b, affinity of union 
sites Ce concentration 
of the metal (L/mg)

Temkin q b K Ce t t e= ( )ln bt, temkin isotherm 
constant (mg/g)
Kt, equilibrium binding 
constant (L/mg)

3. Results and Discussion

3.1 Characterization of Biosorbent
Figure 1 shows FT-IR spectrum for all synthesized 
biosorbents. It was found characteristic peak around 
1000 cm-1 attributed to carboxylate groups of cellulosic 
compounds23. The absorption band located between 3000-
3500 cm-1 are assigned to -OH stretching vibrations24. The 
bands around 2300 and 1700 cm-1 correspond to aliphatic 
C-H groups and stretching vibrations of C=C and C=O, 
respectively25. The modification with TiO2 nanoparticles 
is confirmed by the presence of Ti-O-Ti bond at 1457 
cm-1 in YP-TiO2 biosorbent spectrum26. The sharp peaks 
at 1456 cm-1 and 1507 cm-1 in CP-TiO2 and LP-TiO2 bio-
sorbents spectrum were also attributed to Ti-O-N and 
Ti-O-C bonds27.

Figure 1.  FT-IR spectrum for. (a) YP-TiO2. (b) CP-TiO2. 
(c) LP-TiO2 biosorbents.

The EDX analysis shown in Figure 2 revealed a strong 
signal in the titanium region. For TiO2 nanoparticles, it 
was observed peaks for Ti and O elements and there are 
traces of other impurities, which differs to the results 
reported by author in28. Its elemental composition was: O 
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(wt%) 69.38, Ti (wt%) 18.21, Si (wt%) 9.10 and P (wt%) 
3.31. For chemically modified biomaterials more ele-
ments are identified including C, Mg, Ca, Cl, Al and S, 
which can be attributed to organic nature of biomasses. 
The main elements for CP-TiO2 were: O (wt%) 50.81,  

C (wt%) 29.50 and Ti (wt%) 9.43; for YP-TiO2: O (wt%) 
45.10, C (wt%) 44.52 and Ti (wt%) 4.68; for LP-TiO2: O 
(wt%) 48.11, C (wt%) 20.25 and Ti (wt%) 16.78. These 
results confirm the formation of TiO2 nanoparticles and 
its loading onto biomasses. 

Figure 2.  EDX analysis of. (a) TiO2 nanoparticles.  
(b) CP-TiO2. (c) YP-TiO2. (d) LP-TiO2 biosorbents.

3.2 Adsorption Experiments   
The effect of loading TiO2 nanoparticles on the adsorption behavior of biomasses was evaluated by calculating the removal 
yieldsof both biomaterials and synthesized biosorbents by Equation (2).  These results are shown in Figure 3. 

Removal yield % %( ) =
−( )C C

C
o e

o

100  (2)

Figure 3.  Removal yield of. (a) Pb (II). (b) Ni (II) using 
pretreated biomass and synthesized biosorbents.
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The biomaterial schemically modified with TiO2 
nanoparticles exhibited the highest removal yield 
(99.87% using YP-TiO2 and 90.10%using LP-TiO2 for 
lead and nickel, respectively), which confirmed that 
loading these nanoparticles onto biomasses improves 
its adsorption capacity. As is shown in Figure 3, the 
removal yield increased in an approximated range 
of 2-15 % for synthesized biosorbents attributed to 
particle size homogeneity and crystalline form of 
nanoparticles29. In addition, it was observed that lead 
was more efficiently removed that nickel due to the 
affinity of this heavy metal with functional groups 
of biosorbents. Different authors have claimed that 
lignocellulosic biomasses from agricultural residues 
contain carboxyl and hydroxyl groups which can easily 
bind with metal ions to remove them from the solu-
tion30,31. Author in32 reported removal yields for lead 
solutions between 40-70% using amorphous nano-
aluminophosphates. Poursani showed removal yields 
above 90% using TiO2 nanoparticles, which are similar 
to that obtained in this work29. 

3.3 Kinetic Study    
To study the adsorption kinetics of biosorbents synthesized 
from TiO2 nanoparticles and biomasses, different kinetic 
models were used to fit experimental results as pseudo-first 
order, pseudo-second order, and Elovich intraparticle diffu-
sion. Among these models, intraparticle diffusion did not fit 
accurately the adsorption results over time showing significant 
deviations in Figures 4,5, which suggested that adsorption 
process takes place in heterogeneous surface-active sites 
instead of internal biomass porous33,34. The pseudo-second 
order model reported a better fit than the others for Ni 
(II) ions onto LP-TiO2 and YP-TiO2 and Pb (II) ions onto 
YP-TiO2. Hence, the heavy metal ions are adsorbed onto two 
active sites obeying chemisorption, which involves chemical 
valence forces through ion exchange between lead/nickel ions 
and active sites, ion exchange reaction, complexation, coor-
dination or quelation14,35. On the other hand, Elovich model 
best fitted experimental data for nickel ions onto CP-TiO2 and 
lead ions onto LP-TiO2 and CP-TiO2. This model is based on 
interchanging of species in heterogeneous surface of solids 
assuming different isotopes interchange process36,37. 

Figure 4.  Kinetic models for Ni (II) ions onto. (a) CP-TiO2. 
(b) YP-TiO2. (c) LP-TiO2 biosorbents.
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3.4 Adsorption Isotherms
Adsorption isotherms are widely used to describe the 
adsorption characteristics of adsorbents providing infor-
mation about adsorbent surface properties38. Tables 3,4 
summarize parameter of isotherm models for nickel and 
lead, respectively. The results revealed that Temkin model 
best describes adsorption process of Ni (II) ions using 
CP-TiO2 and YP-TiO2biosorbentsand Pb (II) ions using 

CP-TiO2, YP-TiO2 and LP-TiO2 biosorbents. The adsorp-
tion of nickel onto LP-TiO2biosorbent obeyed Freundlich 
model.  The maximum adsorption capacity corresponds to 
136.3, 125.4 and 161.2mg/g for Ni (II) ions removal using 
CP-TiO2, YP-TiO2 and LP-TiO2biosorbents, respectively. 
For Pb (II) ions, the maximum adsorption capacities were 
181.5, 193.4 y 199.5mg/g using the previously mentioned 
biosorbents. 

Figure 5.  Kinetic models for Pb (II) ions onto. (a) CP-TiO2. 
(b) YP-TiO2. (c) LP-TiO2 biosorbents.

Table 3. Fitting data of the nickel adsorption onto biosorbents according to Langmuir,  
Freundlich and Temkin models 

Model Parameter CP- TiO2 YP- TiO2 LP- TiO2

Langmuir

qmax(mmol/g) 1073.36151 35579.9685 116.308065

(L/mg) 0.0004123 9.8136E-06 0.01307292

SSE 3.56 11.81 6.34

Freundlich

(mg/g) 0.26633036 0.08761077 1.64762062

1/n 0.86588074 0.70670138 1.09954012

SSE 2.61635423 8.02 6.22

Temkin

K(L/mg) 0.13104266 0.09555859 0.5155867

Bt(mg/g) 0.25549676 0.23423656 0.29330272

SSE 0.87129866 7.58564566 7.77940648
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4. Conclusion
The removal of nickel and lead by adsorption technol-
ogy using biomaterials chemically modified with TiO2 
nanoparticles was studied in this work. The presence of 
titanium dioxide in biomasses was confirmed by elemen-
tal composition analysis. FT-IR spectra revealed carboxyl 
and hydroxyl groups in biosorbents, which can easily bind 
with metal ions to remove them from aqueous solution. 
All biomasses exhibited higher removal yields after load-
ing TiO2 nanoparticles reaching values above 98% and 
80% for Pb (II) and Ni (II), respectively. It was found that 
pseudo-second order and Elovichbest fitted experimental 
results for both heavy metal ions. The adsorption process 
obeyed Temkin and Freundlich isotherms suggesting a 
heterogeneous surface for lead and nickel uptake. 
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