
*Author for correspondence

Indian Journal of Science and Technology, Vol 11(20), DOI: 10.17485/ijst/2018/v11i20/122472, May 2018
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Prioritizing Code Smell Correction Task using
Strength Pareto Evolutionary Algorithm

 G. Saranya1, H. K.Nehemiah1* A. Kannan3 and V. Pavithra4

 1Ramanujan Computing Centre, College of Engineering Guindy, Anna University,
Chennai - 600025, Tamil Nadu, India; nehemiah@annauniv.edu

3Information Science and Technology, College of Engineering Guindy, Anna University,
Chennai - 600025,Tamil Nadu, India

4Computer Science and Engineering, College of Engineering Guindy, Anna University,
Chennai - 600025, Tamil Nadu, India

Keywords: Code Smells, Maintenance, Prioritizing, Refactoring, Search Based Software Engineering, Strength Pareto
Evolutionary Algorithm (SPEA)

Abstract
Objective: Code smells indicate the design decay in software applications. The code smells existence in the software will
hinder the understandability of code and possibly increases changes and fault proneness. Methods / Statistical Analysis:
To remove the code smells’ from the software applications refactoring operations are applied which in turn improves the
software system structure without changing its overall behaviour. Generally, in a large sized system, code smell cannot be
fixed automatically. Therefore based on the maintainer’s preference, the prioritized list of refactoring sequences to fix the
code smells is essential. Findings: Majority of the refactoring just rely on the structural information, which fails to preserve
the construct semantics, minimization of changes and the use of development history. To overcome this, in this work, the
Strength Pareto Evolutionary Algorithm (SPEA) is used to prioritize the list of refactoring operations that maximize the quality
improvement, constructs semantics coherence and preserving the consistency with the previous refactoring. This work is
carried out on two open source software Xerces-J and J Hot Draw. Blob, shotgun surgery, functional decomposition, data
class, Swiss army knife and schizophrenic class code smells’ are considered for prioritizing refactoring operations in these
open source system. SPEA is evaluated using the metrics Code smell Correction Ratio (CCR) and Refactoring Meanings (RM).
Application / Improvements: SPEA is compared with other algorithms namely Non-dominated Sorting Genetic Algorithm
II (NSGA II) and Chemical Reaction Optimization (CRO), to prove its efficiency in prioritizing code smell correction tasks.

1.  Introduction
Software plays a vital role in all areas of human effort to
produce progression. A software system consists of pro-
grams, configuration files, project files, and system docu-
mentation and user documentation files1. The software
systems design exhibit several problems during the initial
construction or during software systems aging, where the
system quality degenerates over time. Some researchers
view these issues in software design either as noncom-
pliance with the system design principles or violations
of software design heuristics. One such major design
problem in software systems is the code smells2. Code
smells indicate poor software design and different system

implementation choices that hinder code comprehension
which possibly increases the changeability and liability of
faults in the software3. Such symptoms may originate from
activities performed by developers during the submission
of project. Generally code smells indicate the weakness in
design that may increase the risk of failure in future.

Removing the code smells is done by an appropriate
refactoring, i.e. an improvement in the software system
structure without any of the modification of its behav-
iour. Moreover, the simplicity and the cumulative effect
of successive refactoring solutions on the software design
problem can be significant. Detecting the code smells
in the modules of the software and identifying the cor-
rect refactoring operation for the detected code smell is

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 2

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

a very challenging task. Generally for the large sized sys-
tem, not all code smells can be fixed automatically; fixing
the refactoring operations is very large for the number of
code smells’ detected. Therefore based on the maintainer’s
preference, the prioritized list of refactoring sequence is
needed to fix the code smells for the large systems.

In this work, for the number of detected code smells’, a
sequence of refactoring operations is suggested based on
the maintainer’s preferences using multi objective optimi-
zation approach Strength Pareto Evolutionary Algorithm
(SPEA)4. The sequence of refactoring operation preserves
the construct semantics, maximize the code smells cor-
rection and use the development history as the powerful
source for maintenance tasks.

The paper is organised as follows: In Section 2, a brief
description of the existing literatures such as code smell
detection and correction are discussed. Section 3 presents
the methodology for the sequence of refactoring opera-
tions to the detected code smell using SPEA. Empirical
study definition and design is discussed in section 4. In
section 5, the analysis of experiments and their
results are explained; Section 6 presents the threats
that could affect the validity of the sequence of refactoring
operation using SPEA. Finally, conclusion and scope for
future work are discussed in section 7.

2.  Literature Survey
The code smell detection and correction task has been
addressed in the literature from different perspectives.
Those detection and correction of code smells approaches
are discussed in this section.

Refactoring was first introduced by5, who provided a
catalogue of refactoring that could be applied in specific
situations. Using the concept of refactoring the software
quality aspects such as maintainability, extensibility and
reusability are improved3.

The researchers’ in6 investigated and suggested the
use of quality metrics for design flaws detection and cor-
rection. The researchers used inheritance and coupling
metrics namely, number of methods inherited, number
of children, number of methods added, coupling between
object classes, number of methods overridden, data
abstraction coupling, others method-method export cou-
pling to detect the design flaws. Finally, the researchers
developed a tool called OO1 for correction. This tool uses
a transformation that is applied automatically in order to

improve quality estimated by the metrics. The limitation
of this tool is, it requires some form of human interven-
tion and acknowledgement before applying the suggested
transformation.

The researchers’ in7 analyzed the circumstances in which
refactoring operations improve the source code by hav-
ing high cohesion and low coupling. The researchers also
presented a guideline for applying refactoring under these
circumstances. This guideline was validated in the Apache
Tomcat open source software system which exhibits cohe-
sion and coupling characteristics. The authors in the study8
proposed a fully automatic approach for code smell correc-
tion technique based on relational concept analysis (RCA).
The proposed work RCA is extended from the Formal
Concept Analysis (FCA). The framework RCA is combined
with the cohesion and coupling metrics to suggest the refac-
toring operations. To validate this approach the research-
ers used four open source software namely, Azureus, Log4J,
Lucene and Nutch. The approach of automatic suggestion
of refactoring operation is illustrated using the design
defect blob. The drawback of this approach is the associa-
tion between the design defect detection and correction is
not obvious, which is difficult to the software maintainers.

The authors in the study9 presented a concept lattice
based approach for identifying least cohesive classes and
guidelines for refactoring operation. Using this approach,
the researchers suggest the guidelines for refactoring
operation such as, move method, extract class, remove
unused attribute and localize attributes to the less cohe-
sive classes. This approach was validated using cohesion
and coupling metrics.

The researchers’ in10 proposed a framework for detec-
tion and correction of design defects. The researchers
investigated the list of object oriented metrics for detect-
ing the design defect and suggested refactoring operation
for correcting them. This framework is illustrated on the
Java Expert System Shell (JESS) rule engine.

In a study, the researchers’11 presented an approach
to progress the reconstruction of refactoring over an
integrated development environment. To improve the
reconstruction of refactoring, the researchers used
graph transformation approach to detect the changes.
They compared their approach with Ref-Finder12. The
approach indentifies Move method and Rename method
more accurately than Ref-Finder. The limitation of this
work is, the developers require a change-recorded plug in
to detect the changes.

www.indjst.org

Indian Journal of Science and Technology 3Vol 11 (20) | May 2018 | www.indjst.org

 G. Saranya, H. K.Nehemiah A. Kannan and V. Pavithra

tion measures such as severity, risk, priority and impor-
tance of code smells. CRO was evaluated on five open
source system namely, Xerces-J, Jfree chart, Gantt proj-
ect, J Hot Draw and Artofillusion and seven types of code
smell were considered namely, blob, data class, spaghetti
code, functional decomposition, schizophrenic class,
shotgun surgery and feature envy. The approach when
tested with five open source systems yielded an accuracy
of 90% for all the code smells fixed.

The researchers’ in19 defined search based refactoring
approaches based on Genetic Algorithm (GA), Genetic
Programming (GP), parallel evolutionary algorithm and
Non dominated Sorting Genetic Algorithm (NSGA II).
To improve the search based refactoring the researchers
has used Pareto optimality with metrics to give sequence
of refactoring operations. The concept of Pareto optimal-
ity was evaluated on three open source software namely,
J Hot Draw, Maven and XOM. The drawback of this
approach is the Pareto optimal search focused explicitly
on suggesting the refactoring, not on detecting the defects
in the code.

In another study, the researchers’ in20 proposed an
approach REMODEL based on genetic programming
and a set of software metrics to automatically generate
the most appropriate set of refactoring to the software
design. The researchers used Quality Model for Object
Oriented Design (QMOOD)21 a suite of OO metrics to
improve the quality of the software design and introduce
design patterns to improve the maintainability of the soft-
ware design. REMODEL was validated using Repository
for Model-Driven Development (REMODD) a web based
software system proposed by22 that support research
and education in Model-Driven Development (MDD).
The limitation of the approach is, the researches focused
mainly on suggesting the suitable refactoring operation
and the design defects are not detected explicitly.

 The authors’ in the study23 described how to predict
refactoring operations for open source system on short
time duration. To predict the refactoring operation, a
process undergoes three stages such as, data understand-
ing, pre-processing and classifiers. To predict the refac-
toring the researchers used data mining algorithms such
as J48, Logistic Model Tree (LMT), Repeated Incremental
Pruning (RIP) and Nearest Neighbor Generalization
(NNge). The researchers evaluated the prediction model
using 10-fold cross validation on two open source soft-
ware namely, Argo UML and spring framework.

Other than manual and semi-automated approaches,
the researchers13 used program invariants to discover
refactoring candidates. The researcher developed an
invariant pattern matcher to infer the refactoring opera-
tion. This work is applied to Nebulous a component of
aspect browser.

In14 the researchers’ developed a tool called ROSE to
predict future changes and give warning about the missed
changes in software. To perform the prediction regard-
ing changes, the ROSE tool needs the version history
of the software which is under maintenance. This tool
retrieves the changes from the version histories and uses
Apriori algorithm to compute the association rules for
those changes. The ROSE tool is evaluated using eight
large open source software’s namely, Eclipse, GCC, GIMP,
JBOSS, JEDIT, KOFFICE, POSTGRES and PYTHON.
This approach was validated using the metrics precision
and recall. The average precision is above 50% and the
average recall is above 70 %.

Authors’ in15 proposed formulation of refactoring
operations for the number of detected code smells based
on graph transformation. The graph transformation is
limited only to the structural and syntactic information.
The researchers used Ant Colony Optimization (ACO)
algorithm for the formulation of refactoring opera-
tion. The approach ACO is evaluated on the Local Area
Network (LAN) presented by16 for analyzing the steps in
refactoring operation operations.

The researchers’ in17 presented an approach for sug-
gesting the refactoring operations with all necessary con-
ditions using genetic algorithm. The researchers used a
fitness function that depends on the existing set of object
oriented metrics such as Response For Class (RFC),
Information flow based Coupling (ICP), Tight Class
Cohesion (ICH), Lack of Cohesion (LCOM5), Weighted
Method Count (WMC) and Number of Methods (NOM).
The approach is evaluated on the open source software J
Hot Draw.

In18 proposed a sequence of refactoring operation
for code smell correction using Chemical Reaction
Optimization (CRO) a met heuristic search based
approach. Using this approach, the maintainers maximize
the number of refactoring solution to the code-smell fixed
by software maintainers. The approach CRO is compared
with other approaches such as Genetic Algorithm (GA),
Simulated Annealing (SA) and PSO. The approach CRO
outperforms other approaches in terms of four prioritiza-

www.indjst.org

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 4

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

3.  Proposed Method
This proposed work is to prioritize the code smell correc-
tion tasks using Strength Pareto Evolutionary Algorithm
(SPEA)4. The objective is to improve the software quality
and maintenance of the object oriented software system
by identifying the code smells in the classes placed in
package of the software and to find the optimal refactor-
ing solution to fix the code smells.

3.1  Strength Pareto Evolutionary Algorithm
(SPEA)
The SPEA algorithm was proposed by Zitler and Thiele
in 1998 for solving the real world optimization prob-
lems, such as network optimization problem, the grid
scheduling problem, Quadratic Assignment Problem
(QAP), routing problem and Resource Constrained
Project Scheduling Problem (RCPSP). SPEA is a Meta
heuristic search based optimization algorithm. The
notion of SPEA is to make a non dominated solution
or pareto set from the population (sequence of refac-
toring solution) to solve multi objective optimization
problem. Using this algorithm, it is easy to find the near
optimal solution, which is called as the non-dominated
solution.

In this work, refactoring solutions is considered as an
individual and are represented as vectors with the order of
application of the refactoring operations corresponding
to the positions in the vector. For each refactoring opera-
tion, the controlling parameters such as classes/methods/
fields are randomly selected from the source of the soft-
ware system to be refactored. The initial population for
SPEA is generated, by randomly choosing refactoring
solutions containing sequences of refactoring operations.
The description about the fitness functions and the opera-
tions used are as follows.

3.2  Fitness Functions
Semantic similarity fitness and history of change fitness
functions are used in this work to assess the quality of the
individuals.

3.2.1  Semantic Similarity Fitness
The semantic similarity fitness is measured with values
obtained from the structural similarity and the semantic
coherence value.

SemanticSimilarityfitness
n

SRH ROi
i

n

=
=

−

∑1

0

1

() � (2)

Where, SRH= SimilarityRefactoringHistory

SRH RO W contextsimilarity RO RORO
i

n

ii
() * (,)=

=
∑

1

� (3)

Where n is the number of recorded refactoring operations
collected from different software systems. wi is a refactor-
ing weight that reflects the similarity between the rec-
ommended refactoring operation RO and the recorded
refactoring operation ROi .

CS RO RO
CBOSim C C DSim C C

SS C C

i

RO RO RO RO

RO

i i

(,)
((,) (,))

* (,

= +
+

+

α

β
2

RROi
)

� (4)

Where, CS is the contextsimilarity and SS is the semantic
similarity. The contextsimilarity aims at calculating the
context similarity between the refactoring operation RO
applied to the code fragment CRO and the refactoring oper-
ation ROi applied to the code fragment CROi. And CBOSim
refers to the coupling between objects similarity, DSim
refers to the dependency based similarity. Where α and β
are the coefficients for the two components representing
the structural and semantic similarities and α+β=1.

CBOSim C C CBO C CBO CRO RO RO ROi i
(,) () ()= − � (5)

DSim C C coup c c coup c cRO ROi
(,) (,) (’ , ’)= −1 2 1 2 � (6)

where coup(c1,c2) returns the number of relationships
between the two classes c1 and c2 and coup c c(’ , ’)1 2 returns
the number of relationships between the two classes c ’1
and c ’2 .

Semantic sim C C sim c c sim c cRO ROi
(,) (,) (’ , ’)= −1 2 1 2 � (7)

where sim(c1,c2) returns the cosine similarity between the
two classes c1 and c2 and it is calculated as follows

sim c c

c c
c c

c c

W W

W

i i
i

n

i

(,)

cos(.)
.

*

(*)

(

, ,

1 2

1 2
1 2

1 2

1 2
1= = =

→ →
→ →

→ →
=
∑

,, ,) ()1
2

1
2

2

1i

n

i
i

n

W
= =
∑ ∑

�(8)

www.indjst.org

Indian Journal of Science and Technology 5Vol 11 (20) | May 2018 | www.indjst.org

 G. Saranya, H. K.Nehemiah A. Kannan and V. Pavithra

Where c1

→
is the term vector corresponding to the class c1

and c2

→

 is the term vector corresponding to the class c2 .
The weights Wij is computed using information retrieval
based technique named as term-frequency-inverse term
frequency method.

3.2.3  History of Changes Fitness
The History of change fitness function24 is defined as the
number of changes applied in the past to the same code
elements which is shown in the Eq. (9)

HistoryMeasure RO t ei
i

n

() ()=
=
∑

1
� (9)

Where, t(e) is the number of times the code element e was
refactored in the past, and n is the number of possible
refactoring operations. If this number is high, it is a good
indication that this code element is badly designed, thus
representing a refactoring opportunity.

3.3  Crossover and Mutation of the
Individuals
Single random crossover is used in SPEA to improve the
quality of prioritization of refactoring operations4. Two
refactoring solutions for crossover are selected randomly.
From them, the refactoring operations are interchanged

to produce two new off springs. The crossover operation
on the refactoring operation is shown in the Figure 1.

The refactoring solutions for mutation are selected
randomly. From them, the position of the refactoring
operation and their controlling parameters in the vector
is interchanged. For interchanging the position in the vec-
tor the pre and post conditions are used. Figure 2 shows
the effect of the mutation operation.

In the above operations, MM refers to the move
method, MF to the move field, EC to the extract class,
PDF to the push down field, PUF to the pull up field,
ESUBC to the extract subclass, PDM to the push down
method and IC to the inline class. All these represent the
different refactoring operations.

3.4  Adaptation of SPEA for Prioritizing
Code Smell Correction Task
Input: Initial Model, Set of Quality metrics, Set of design

defect examples
Output: Best sequence of refactoring solutions
Generate an initial population P /* sequence of refactor-

ing operations with the controlling parameters */
Create an empty pareto optimal P =ϕ
Repeat
While stopping criteria not reached do
′P =fast_non_dominated_sort (P) /* Calculate the exter-

nal pareto solution from the current population*/
′′P = ′P + P /* Extended pareto set is obtained*/

While (′′P > N) do
Figure 1.  Crossover applied for the selected refactoring
operations.

Figure 2.  Mutation applied for the crossover individuals.

www.indjst.org

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 6

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

Calculate reduce extended pareto set by clustering (′′P)
and go to line 3.

End
P = ′′P + P /*extended population is obtained */
For all i in P do
Calculate the Semantic similarity fitness and change fit-

ness function for the extended population (P)
End for
Compare the fitness of individuals (refactoring solutions)
Perform single random crossover
Perform random mutation
End
P: = generate new_ population (P)	
It=it+1;
Until it=max_it or fitness function (best solution);
Return best solution
End

The algorithm description is as follows: In line 1-2, the algo-
rithm generates randomly, a sequence of refactoring opera-
tions with controlling parameters as initial population P
and creates an empty pareto optimal set P . In line 3-6, the
external pareto solution ′P is calculated and the extended
pareto set ′′P is formed. The external pareto solution is cal-
culated using the fast_non_dominated_sort from the cur-
rent population P . Then the refactoring solution from the
fast_non_dominated_sort ′P is combined with the empty
pareto optimal set P , to obtain the extended pareto set ′′P
. In line 7-9, if the extended pareto set is greater than the
maximum size of the entire population N then reduce the
set with use of hierarchical clustering algorithm and then go
to line 3 else go to line 10. In line 10, the extended pareto set
′′P combines with the population P to create the extended

population P . Line 11-13 calculates the fitness functions
such as Semantic similarity fitness and change fitness func-
tion for the extended population. In Line 14 two individu-
als are selected randomly to compare their fitness value
and select the best fitness to the matting pool. From line
15-19 the individuals are selected randomly from the mat-
ting pool to perform the genetic crossover and mutation
operation according to their probabilities to generate the
new population. The algorithm terminates after the given
maximum number of iterations or the best_solution (line
20) and returns the best_solution (line 21).

3.5  Fast Non Dominated Sort Algorithm
Initially the SPEA algorithm creates an empty pareto-
optimal set externally. This external pareto-optimal set is

used to evaluate each individual (refactoring solution) in
the population. At each point of time the external pareto
set contains the non-dominated solutions of the search
space. The goal of the algorithm is to find new non domi-
nated solutions. The individuals are evaluated in depen-
dence of the number of pareto points by which they are
covered. First the fast non dominated sort is calculated
from the initial population to update the extended pareto
population. The pseudo code of the fast non dominated
sort algorithm is as follows25.

Input: Population P
Output: Non-dominated fronts Fi
′P =fast_non_dominated_sort (P)

For each refactoring solution, p∈P
Sp =φ /* A set of refactoring solution which the somi-

nates */
np = 0 /* Number of refactoring solution which domi-

nates the solution p*/ for each refactoring solution,
q∈P

If (p


q) then /*If p dominates q*/
S S qp p= ∪{ } /*add q to the set Sp*/
Else if (q



p) then /*if p is dominated by q*/
n np p= +1 /*Increment np*/
End for
If nq = 0 then /*If no refactoring solution dominates p*/
prank =1

End for
F F p1 1= ∪{ } /*p is a refactoring solution of the first front*/
i = 1 /*Initialize the front counter*/
While Fi ≠ϕ
Q = 0 /*used to store the solutions of the next front*/
For each p Fi∈ /*for each solution p in Fi*/
For each q Sp∈ /*modify each solution from the set Sp*/
n nq q= −1 /*decrement nq by one*/	
if nq = 0 then /*if nq is zero then q is a solution of a list

Q*/
q irank = +1
Q Q q= ∪{ }
End for
i = i + 1
End for
F Qi = /*Current front is formed with all refactoring

solution of Q*/
End

For each refactoring solution the two fitness functions
namely, semantic similarity fitness and change fitness

www.indjst.org

Indian Journal of Science and Technology 7Vol 11 (20) | May 2018 | www.indjst.org

 G. Saranya, H. K.Nehemiah A. Kannan and V. Pavithra

are calculated and compared with another refactoring
solution. If the refactoring solution p dominates another
refactoring solution q then add q in the set Sp, a set of
refactoring solutions where the refactoring solution p
dominates. If the refactoring solution q dominates p then
increment np, the number of refactoring solution which
dominates the refactoring solution p. Identify the refac-
toring solution which does not dominate the solution p
have np=0 and Prank=1and put those solutions in a list F1
called as current front. Now, for each refactoring solution
in F1 visit each solution q in its set Sp and reduce its nq
count by one. By doing so, for any refactoring solution in
q the count becomes zero, we put all these solution in a
new list Q. When all the refactoring solution of the cur-
rent front has been checked, it is declared that the refac-
toring solution in the list F1 has solution of the first front.
To continue this process the newly identified front Q is
used as the current front. This process continues until all
fronts are identified.

3.6  Clustering Algorithm
In this work, the Pareto optimal set can have extremely
large number of solutions which depends on the size of
the software system. An average linkage based hierarchi-
cal clustering algorithm is used to reduce the Pareto set.
This clustering algorithm works iteratively by combining
the adjacent clusters until the required number of groups
is obtained. The algorithm is given in the following
steps.

Step 1: Initialize cluster set C; each individual (refactor-
ing solution) i∈P constitute a distinct cluster.

Step 2: If number of clusters |C|≤ N the total population
set (sequence of refactoring operation), then go to
Step 5, and else go to Step 3.

Step 3: Calculate the distance of all possible pairs of clus-
ters. The distance dxy between two clusters C1 and C2
is defined as the average Euclidean distance of all pairs
of solutions (x∈C1 and y∈C2). It is calculated using
the following Eq.(10):

d
n n

d x yxy
x c y c

=
∈ ∈
∑1

1 2 1 2
*

(,)
,

� (10)

Where, n1 is the numbers of individuals (refactoring solu-
tions) in clusters C1 and n2 is the numbers of individuals
(refactoring solutions) in clusters C2

Step 4: Determine two clusters with minimal distance
dxy. Merge these clusters together. This reduces the
number of clusters by one. Go to Step 2.

Step 5: For each cluster, the centroid should be found and
the nearest refactoring solutions are selected to that
centroid and then all other individuals (refactoring
solutions) from the clusters are removed.

Step 6: Compute the reduced non dominated set by unit-
ing the representatives of the clusters.

Output: Optimal set of refactoring suggestions is pro-
vided

4  Empirical Study Definitions and
Design
The goal of this study is to observe the prioritized list of
refactoring sequence using SPEA algorithm in software
systems. The quality focus is on the correction accuracy
of code smells using SPEA when compared to the correc-
tion accuracy of the same code smell with NSGA II26,27
and Chemical Reaction Optimization (CRO)18 approach,
while the perspective of other researchers, who want to
evaluate the effectiveness of the approach in prioritizing
the list of refactoring operations using SPEA to build bet-
ter recommenders for developers. The context of the study
consists of two open source software, namely, Xerces-J
and J Hot Draw. Xerces-J is a library completely written in
Java for parsing, validating and manipulating XML docu-
ments. and J Hot Draw is an open-source project and is
basically a Java GUI. One of the main intend behind its
development was to port it to new Java GUI toolkits.

4.1  Research Question, Data Analysis and
Metrics:
This work aims at addressing the following two research
questions:

RQ1: How does SPEA perform when compared to
another multi-objective algorithm?

RQ2: To what extent can the proposed approach rec-
ommend the refactoring operations in the situation where
the change history is not available?

To answer RQ1, the authors compared SPEA with other
multi-objective algorithms such as NSGA II and CRO
using the same fitness function and the metrics Refactoring
Meaningfulness (RM) and Code smell Correction Ration
(CCR)28. The answer to this question is given in section

www.indjst.org

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 8

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

5.1. To answer RQ2, we compare the recommended refac-
toring operation in the situation where the change history
is available and not available using the metric CCR.

4.2  Refactoring Meaningfulness (RM)
RM is shown in the Eq. (11) which gives the ratio of the
number of meaningful refactoring operations, in terms of
construct semantic coherence on total number of evalu-
ated refactoring.

RM Meaningful factorings
oposed factorings

=
Re

Pr Re � (11)

4.3  Code smells Correction Ratio (CCR)
CCR is given in Eq. (12) that calculates the ratio of
number of corrected code smells after applying the pro-
posed refactoring sequence by the total number of code
smells detected before applying the proposed refactoring
sequence.

CCR
Number of corrected codeSmells

Number of codeSmells before
=

_
_ _ aapplying refactoring

CCR
_

(,)∈ 0 1 �(12)

4.4  Experimental Setup
This section describes in detail the subject, process and
results of two case studies carried out for the Meta heuris-
tic approach. The experiments are carried out using two
different open source systems Xerces-J and J Hot Draw
and their evaluation parameters are given in Table 1. Six
different types of code smells’ are detected from the open
source systems are given in Table 2. The code smells used
in this experiment are detected using in Fusion, I Plasma

and DÉCOR tools. The number of code smells detected
from the open source software with respect to the sev-
eral versions are collected and tabulated below in Table 3.
After detecting the code smell, the changes in each class
are tracked with the use of G it Hub repositories and the
change frequency is calculated using eq. (10). The simi-
larity measures are calculated using the context similarity
with corresponding similarity weights of the refactoring
operations. Hence context similarity is tracked with the
use of structural and semantic similarity using eq. (3).
Finally, the quality fitness is calculated. Experimental
results show the effectiveness of prioritizing code smell
correction using SPEA approach with the normal detec-
tion strategy.

5.  Evaluation of Results
A preliminary evaluation of SPEA approach was per-
formed on well-designed open-source system, namely

Table 1.  Evaluation parameters for two open
source systems

Metrics Xerces-J J Hot Draw
Lines of Code 21088 5280
Number of Classes 87 46
Number of Methods 698 433
Quality Deficit Index 351.8 36.2
Total No. of Children in all
Classes

4 23

Number of Packages 13 1
Flawed Classes 3 2
Flawed Methods 46 6

Table 2.  Code smells description

Code Smells Description

Blob It is a class which implements many methods and declares several fields and operations with low
cohesion.

Data Class The class that has only variables and unused methods for accessing them. The purpose of the class is
only to store the data and cannot independently operate on the data they own.

Swiss Army Knife It is a complex class that provides more services. The class with more interfaces and inheritance.
Functional
Decomposition

A class where the object oriented principles are poorly used. It has more private variables and single
function methods.

Schizophrenic Class It occurs in a class when a public interface of a class is larger and used non- cohesively by client
methods.

Shotgun Surgery It is a smell, when a change occurs in the source code then the developer has to change many classes
and methods in source code.

www.indjst.org

Indian Journal of Science and Technology 9Vol 11 (20) | May 2018 | www.indjst.org

 G. Saranya, H. K.Nehemiah A. Kannan and V. Pavithra

Xerces-J and J Hot Draw. SPEA Optimization has found
promising results on two open source systems and six
types of code-smell. The approach is more effective by
prioritizing the code smell correction task with respect
to the reference of prioritization and maintainer’s prefer-
ences to automate the refactoring operation. The evalua-
tion is aimed at investigating the correction accuracy of
the code smells using SPEA approach. To test the accu-
racy of SPEA approach, the measures, namely, RM and
CCR has been calculated.

5.1  Result of RQ1
To answer this question, this work uses the RM and CCR
values to compare the existing approach NSGA II and
CRO with the SPEA approach. In Table 4 the RM and
CCR values for the two open source software are given.
It is observed that the approach SPEA achieved good
results when compared to the other approaches CRO
and NSGA II in terms of CC and RM. Overall of the two

studied projects J Hot Draw and Xerces-J, our approach
SPEA provides 93% of CCR and 85% of RM, while CRO
and NSGA II provides only 81%, 70% CCR and 77%, 71%
RM respectively. For example, after applying the pro-
posed prioritized refactoring operations, it is found that
for J Hot Draw 21 out of 23 detected code smells were
fixed with an average of 92% of CCR. At the same time,
90% of the refactoring operations were evaluated for J Hot
Draw using the metric RM. There is a trade-off between
the metrics CCR and RM: when CCR increases then RM
decreases. This provides evidence that the quality of the
refactoring solutions is in conflict with the construct
semantics. Due to this reason, the SPEA multi-objective
approach is used.

5.2  Result of RQ2
Table 5 presents the answer for this question. It is
observed that the majority of suggested refactoring by our
approach (where the change history is not available) suc-
ceeded in improving significantly the code quality with
good correction scores. After applying the prioritized
refactoring solutions, it is observed that SPEA achieved
good CCR values when compared to NSGA II and CRO.
The corrected code smells were of different types, which
are discussed in Table 1. It is observed that the approach
SPEA achieved superior CCR values with respect to the
other approaches. For instance, shotgun surgery and
Swiss army knife provides the same results of 0% in J Hot
Draw for all the approaches. For the schizophrenic class
our approach SPEA and CRO yielded the same result of
66% (2 out of 3) detected code smells were fixed in the
open source software J Hot Draw. Where as in Xerces-J
for the code smell functional decomposition 90% (10 out

Table 3.  Detected code smells

Systems Blob Shotgun
Surgery

Functional
Decomposition

Schizophrenic
Class

Swiss Army
Knife

Data Class

Xerces J 2.6 16 5 0 7 25 9

Xerces J 2.7 20 10 0 9 15 10

Xerces J 2.8 20 11 41 6 8 17

JHotDraw 5.2 11 0 7 3 0 2

JHotDraw 5.3 13 4 23 4 4 8

JHotDraw 6.0 15 5 34 8 3 22

Table 4.  Comparison of SPEA with CRO and NSGA II
on two open source systems
Systems Approach CCR

(%)
RM
(%)

JhotDraw SPEA 92 (21/23) 90
 CRO 79 (18/23) 79
NSGA II 57 (1/23) 76

Xerces-J SPEA 94 (99/105) 78
 CRO 84 (88/105) 75
NSGA II 72 (75/105) 65

Average for all
the Systems

SPEA 93 85
 CRO 81 77
NSGA II 70 71

www.indjst.org

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 10

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

of 11) detected code smells were fixed in both the
approach SPEA and CRO. SPEA obtained better results
when compared to NSGA II.

In this work the following refactoring operations
are used such as move method, move field, extract class,
extract interface, move class, pull up field, pull up method,
push down field, inline class, push down method, extract
subclass, extract super class and extract method. This
study suggests that most of the refactoring operations
are related to move method, move field, and extract class
for two systems studied. The graphical representations of
distributions of different refactoring types for the open
source software J Hot Draw and Xerces-J are given in
Figure 3,4.

From the graph it is inferred that the move method
has the highest number of refactoring operation in both
the open source systems J Hot Draw and Xerces-J. Then
the move field, inline class and extract class has the high-
est refactoring operation for the open source system J Hot
Draw, whereas for Xerces-J, the move field, extract class,

extract method and inline class has the highest number of
refactoring operations.

6.  Threats to Validity
External validity is the extendibility of the findings in
other environment. In this work, the experiments are
performed on two open source software, the evaluation
parameters of two open source software’s are described in
Table 3. However, the result stated cannot be generalized
to other programming languages, industrial applications
and to other practitioners. To confirm the extendibility of
this approach, future work is needed.

Construct validity is concerned with the relation-
ship between theory and what is observed. Most of
what is measured in this experiment are standard met-
rics such as refactoring meaningfulness and code smell
correction ratio that are widely accepted for quality of
code-smell correction solutions. In future, this approach
will be compared using different meta-heuristics search
algorithms.

Table 5.  Code Smell Correction Ratio for the two systems

Code Smell Correction Ratio
 (CCR) %

Systems Approach Blob
(%)

Functional
Decom-position
(%)

Shotgun
Surgery
(%)

Data Class
(%)

Swiss Army
Knife
(%)

Schizo-
phrenic Class
(%)

JHotDraw SPEA 90(10/11) 95(6/7) 0(0/0) 100(2/2) 0(0/0) 66(2/3)
CRO 81(9/11) 57(5/7) 0(0/0) 50(1/2) 0(0/0) 66(2/3)
NSGA II 64(7/11) 57(4/7) 0(0/0) 50(1/2) 0(0/0) 33(1/3)

Xerces-J SPEA 100(20/20) 90(10/11) 95(39/41) 100(6/6) 88(7/8) 89(17/19)
CRO 90(18/20) 90(10/11) 82(34/41) 83(5/6) 63(5/8) 84(16/19)
NSGA II 75(15/20) 81(9/11) 73(30/41) 83(5/6) 50(4/8) 63(12/19)

Figure 3.  Suggested refactoring distribution for J Hot
draw.

Figure 4.  Suggested refactoring distribution for Xerces-J.

www.indjst.org

Indian Journal of Science and Technology 11Vol 11 (20) | May 2018 | www.indjst.org

 G. Saranya, H. K.Nehemiah A. Kannan and V. Pavithra

7.  Conclusion and Future Work
In this paper, Strength Pareto Evolutionary Algorithm
is used in suggesting automatic refactoring solutions to
fix the detected code-smells’ with concern to the soft-
ware maintainer’s preferences. In this work, six different
types of code smells are considered. Then the available
refactoring operations are collected for the detected code
smells. The fitness functions used in this optimization is
based mainly on three objectives: maximize design qual-
ity, construct semantic preservation and the re-use of the
history of changes applied to the similar contexts. For
these detected code smells the refactoring solutions are
obtained in a prioritized manner. SPEA optimization has
found a promising result on two open source systems and
six types of code-smell. The Prioritization of code smell
correction task using SPEA is compared with other multi-
objective Meta heuristics algorithm such as NSGA II and
CRO, it is found that most of the detected code smells are
corrected with a good correction score of 89% using the
SPEA approach. As part of future work, it is planned to
compare this study with different meta-heuristics search
algorithm and it is considered to conduct an experimental
analysis to understand the association between corrected
code-smells and new types of code smells in the source
code for effective software maintenance and also to prove
its quality to retain for a long time and to fix other code-
smells implicitly.

8.  References
  1.	� Grubb P, Takang AA. Software maintenance: concepts and

practice. World Scientific. 2003. Crossref
  2.	� Brown WH, Malveau RC, McCormick HW, Mowbray TJ.

AntiPatterns: Refactoring software, architectures, and projects
in crisis. John Wiley and Sons. 1998.

  3.	� Fowler M. Refactoring: Improving the design of existing code.
Proceedings of 11th European Conference. Jyväskylä, Finland.
1997; p.1–337.

  4.	� Zitzler E, Thiele L. An evolutionary algorithm for multi objec-
tive optimization: The strength pareto approach. TIK-report.
1998; p.1–43.

  5.	� Opdyke WF. Refactoring: A program restructuring aid in
designing object-oriented application frameworks. [PhD the-
sis], University of Illinois. 1992.

  6.	� Sahraoui HA, Godin R, Miceli T. Can metrics help to bridge
the gap between the improvement of oo design quality and
its automation? IEEE Proceedings of ICSM. 2000. p.154–62.
Crossref

  7.	� Du Bois B, Demeyer S, Verelst J. Refactoring-improving cou-
pling and cohesion of existing code. IEEE Proceedings of 11th
Reverse Engineering, 2004. p.144–51.

  8.	� Moha N, Hacene AM, Valtchev P, Guéhéneuc YG. Refactorings
of design defects using relational concept analysis. Proceedings
of International Conference on Formal Concept Analysis.
Springer Berlin Heidelberg. 2008. p. 289–304. Crossref

  9.	� Joshi P, Joshi RK. Concept analysis for class cohesion. IEEE
Proceedings of 13th European Conference on CSMR.. 2009. p.
237–40. Crossref

10.	� Tahvildari L, Kontogiannis K. A metric-based approach to
enhance design quality through meta-pattern transformations.
IEEE Proceedings of 7th European Conference on Software
Maintenance and Reengineering, 2003; p.183–92. Crossref

11.	� Soetens QD, Perez J, Demeyer S. An initial investigation
into change-based reconstruction of floss-refactorings. IEEE
Proceedings of 29th ICSM. 2013. p.384–7. Crossref

12	� Kim M, Gee M, Loh A, Rachatasumrit N. Ref-Finder: a refac-
toring reconstruction tool based on logic query templates.
Proceedings of 18th ACM SIGSOFT international sympo-
sium on Foundations of software engineering. 2010. p.371–2.
Crossref

13.	� Kataoka Y, Notkin D, Ernst MD, Griswold WG. Automated
support for program refactoring using invariants. Proceedings
of the IEEE ICSM. 2001 November, p.736. Crossref

14.	� Zimmermann T, Zeller A, Weissgerber P, Diehl S. Mining ver-
sion histories to guide software changes. IEEE Transactions on
Software Engineering. 2005; 31(6):429–45. Crossref

15.	� Qayum F, Heckel R. Local search-based refactoring as graph
transformation. IEEE Proceedings of 1st International
Symposium on. Search Based Software Engineering. 2009.
p.43–6. Crossref

16.	� Mens T, Taentzer G, Runge O. Analysing refactoring depen-
dencies using graph transformation. Software and Systems
Modeling. 2007; 6(3):269–85. Crossref

17.	� Seng O, Stammel J, Burkhart D. Search-based determination
of refactorings for improving the class structure of object-
oriented systems. Proceedings of 8th annual conference on
Genetic and evolutionary computation, ACM. 2006. p.1909–
16. Crossref

18.	� Ouni A, Kessentini M, Bechikh S, Sahraoui H. Prioritizing
code-smells correction tasks using chemical reaction optimi-
zation. Software Quality Journal. 2015; 23(2):323–61. Crossref

19.	� Harman M, Tratt L. Pareto optimal search based refactoring
at the design level. Proceedings of 9th annual conference on
Genetic and evolutionary computation, ACM. 2007. p.1106–
13. Crossref

20.	� Jensen AC, Cheng BH. On the use of genetic programming for
automated refactoring and the introduction of design patterns.
Proceedings of 12th annual conference on Genetic and evolu-
tionary computation, ACM. 2010. p. 1341–8 Crossref

www.indjst.org
https://doi.org/10.1142/5318
https://doi.org/10.1109/ICSM.2000.883034
https://doi.org/10.1007/978-3-540-78137-0_21
https://doi.org/10.1109/CSMR.2009.54
https://doi.org/10.1109/CSMR.2003.1192426
https://doi.org/10.1109/ICSM.2013.53
https://doi.org/10.1145/1882291.1882353
https://doi.org/10.1109/ICSM.2001.972794
https://doi.org/10.1109/TSE.2005.72
https://doi.org/10.1109/SSBSE.2009.27
https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1145/1143997.1144315
https://doi.org/10.1007/s11219-014-9233-7
https://doi.org/10.1145/1276958.1277176
https://doi.org/10.1145/1830483.1830731

Indian Journal of Science and TechnologyVol 11 (20) | May 2018 | www.indjst.org 12

Prioritizing Code Smell Correction Task using Strength Pareto Evolutionary Algorithm

21.	� Bansiya J, Davis CG. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on software
engineering. 2002; 28(1):4–17. Crossref

22.	� France R, Bieman J, Cheng BH. Repository for model driven
development (ReMoDD). Proceedings of International
Conference on Model Driven Engineering Languages and
Systems, Springer Berlin Heidelberg. 2006. p. 311–7.

23.	� Ratzinger J, Sigmund T, Vorburger P, Gall H. Mining soft-
ware evolution to predict refactoring. IEEE Proceedings
of first International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). 2007. p.354–63.
Crossref

24.	� Olbrich SM, Cruzes DS, Sjøberg DI. Are all code smells harm-
ful? A study of God Classes and Brain Classes in the evolution

of three open source systems. Proceedings of ICSM. 2010.
p.1–10. Crossref

25.	� Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist
multi objective genetic algorithm: NSGA-II. IEEE transactions
on evolutionary computation. 2002; 6(2):182–97. Crossref

26.	� Ouni A, Kessentini M, Sahraoui H. Search-based refactor-
ing using recorded code changes. Proceedings of 17th IEEE
European CSMR. 2013. p. 221–30. Crossref

27.	� Deb K. Multi-objective optimization using evolutionary algo-
rithms. John Wiley and Sons. 2001.

28.	� Ouni A, Kessentini M, Sahraoui H, Inoue K, Hamdi MS.
Improving multi-objective code-smells correction using
development history. Journal of Systems and Software. 2015,
105:18–39. Crossref

www.indjst.org
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/ESEM.2007.9
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CSMR.2013.31
https://doi.org/10.1016/j.jss.2015.03.040

